1
|
A review on the role of PCA3 lncRNA in carcinogenesis with an especial focus on prostate cancer. Pathol Res Pract 2022; 231:153800. [DOI: 10.1016/j.prp.2022.153800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/31/2022]
|
2
|
Yuan Y, Zhu B, Su X, Chen X. Comprehensive Analysis of the Mechanism of Periodontitis-Related mRNA Expression Combined with Upstream Methylation and ceRNA Regulation. Genet Test Mol Biomarkers 2021; 25:707-719. [PMID: 34788142 DOI: 10.1089/gtmb.2021.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Periodontitis is a multifactorial disease mainly caused by the formation of plaque biofilm, which can lead to the gradual destruction of tooth-supporting tissues. Current research on the genetics and epigenetics of periodontitis remains relatively limited, and the molecular mechanisms remain largely unknown. Objective: Our aims were to construct competitive endogenous RNA (ceRNA) network and determine DNA methylation patterns of target genes to help elucidate the pathogenesis of periodontitis. Methods: We analyzed the expression profiles of the GSE16134, GSE54710, GSE10334, and GSE59932 datasets from the Gene Expression Omnibus database through the weighted gene coexpression network analysis system and screened mRNAs that are regulated by the level of methylation and are associated with the occurrence of periodontitis. Next, a lncRNA-miRNA-mRNA ceRNA network was constructed using databases including miRanda and TargetScan. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted for genes in the clinically significant modules. Finally, a protein-protein interaction network was built. Results: We finally identified four mRNAs, four miRNAs, and six lncRNAs as shared differentially expressed genes related to the periodontitis inflammation pathway. IL-6, IFNA17, CXCL12, and TNFRSF13C were identified as key genes whose expression was significantly enriched in the nuclear factor κB and TLR4 pathways. Moreover, the expression of 28 genes were downregulated by hypermethylation and 70 genes were upregulated by hypomethylation. Conclusions: The constructed ceRNA network can improve our understanding of the pathogenesis of periodontitis. Candidate mRNAs from the ceRNA network could serve as new therapeutic targets and prognostic biomarkers in periodontitis.
Collapse
Affiliation(s)
- Yifang Yuan
- School of Stomatology, Xinjiang Medical University, Urumqi, China
| | - Bo Zhu
- Department of Gastroenterology and Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Xu Su
- Department of Stomatology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Xiaotao Chen
- Department of Stomatology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| |
Collapse
|
3
|
Li H, Hardin H, Zaeem M, Huang W, Hu R, Lloyd RV. LncRNA expression and SDHB mutations in pheochromocytomas and paragangliomas. Ann Diagn Pathol 2021; 55:151801. [PMID: 34461576 DOI: 10.1016/j.anndiagpath.2021.151801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
Although pheochromocytomas and paragangliomas (PPGLs) are usual low-grade neoplasms, the metastatic forms of these lesions are associated with high morbidity and mortality. Recent studies have discovered multiple aberrantly expressed long non-coding RNAs (lncRNAs) in cancers that may have regulatory roles in tumor pathogenesis and metastasis; however, the roles of some lncRNAs in PPGLs are still unknown. The expression levels of lncRNAs including metastasis-associated lung adenocarcinoma transcript (MALAT1), prostate cancer antigen 3 (PCA3), and HOX transcript antisense intergenic RNA (HOTAIR) in PPGLs were analyzed by in situ hybridization, using two tissue microarrays (TMAs). The pheochromocytoma (PCC) TMA consisted of normal adrenal medulla (N = 25), non-metastatic PCCs (N = 76) and metastatic PCCs (N = 5) while the paraganglioma (PGL) TMA had 73 non-metastatic PGLs and 5 metastatic PGLs. Immunohistochemical staining was performed on all samples with an anti-SDHB antibody. The correlations between lncRNA expression, loss of SDHB expression and clinical characteristics including tumor progression and disease prognosis were investigated. The expression levels of MALAT1 and PCA3 were significantly elevated (2.5-3.9 folds) in both non-metastatic and metastatic PCCs compared to normal adrenal medulla, although there were no significant differences between the non-metastatic and metastatic neoplasms. In contrast to non-metastatic PGLs, metastatic PGLs had significantly upregulated expression of MALAT1, PCA3, and HOTAIR. SDHB loss was more frequently observed in PGLs (25 of 78), especially in metastatic PGLs (5 of 5), compared to PCCs (2 of 81) and in 0 of 5 metastatic PCCs. Patients with SDHB loss, in contrast to SDHB retained, were younger at diagnosis, had higher rates of tumor recurrence, metastatic disease, and mortality. In addition, PGLs with SDHB loss had significantly increased expression of PCA3 compared to tumors with intact SDHB expression. Our findings suggest that specific lncRNAs may be involved in the SDHx signaling pathways in the tumorigenesis and in the development of PPGL.
Collapse
Affiliation(s)
- Huihua Li
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA.
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Misbah Zaeem
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA.
| |
Collapse
|
4
|
Li L, Gao Z, Zhao L, Ren P, Shen H. Long non-coding RNA LINC00607 silencing exerts antioncogenic effects on thyroid cancer through the CASP9 Promoter methylation. J Cell Mol Med 2021; 25:7608-7620. [PMID: 34232553 PMCID: PMC8358880 DOI: 10.1111/jcmm.16265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) was the most frequent thyroid malignant tumour, accounting for about 1% of all malignant tumours. Some long non-coding RNAs (lncRNAs) have been reported to exert essential tumour promotion effects, while caspase-9 (CASP9) gene could play a promotive role in the cell apoptosis in TC. However, whether they have a specific effect on TC remains unclear. Hence, this study aims to explore the relationship between LINC00607 and CASP9, and its effect in TC. LINC00607 expression in the TC tissues and cell lines was determined. Then, we explored the combination effect between a LINC00607 and a methylation inhibitor 5-Aza-dc in doxorubicin-resistant ARO cells using colony formation assay, flow cytometry, WST-1 and EdU assay, as well as in vivo tumour growth assay. Besides, the dual-luciferase reporter gene assay, RIP, ChIP, methylation-specific PCR and BSP method were employed to detect the relationship between LINC00607 and CASP9 and its methylation. LINC00607 expression was up-regulated in the doxorubicin-resistant TC cell lines and tissues and negatively correlated to the poor prognosis of TC patients. Knockdown of LINC00607 suppressed doxorubicin resistance, proliferation and colony formation, and promoted cell apoptosis of TC cells in vitro, as well as suppressed tumour growth in vivo, whereas LINC00607 overexpression was observed to exercise the opposite effects. Notably, it was also revealed that LINC00607 down-regulated the CASP9 expression by promoting CASP9 promoter methylation. In conclusion, LINC00607 could inhibit the apoptosis and augment the doxorubicin resistance of TC cells by decreasing CASP9 expression, which might provide a novel therapeutic target for TC treatment.
Collapse
Affiliation(s)
- Lanzhen Li
- Department of General Surgery Three WardsLinyi People’s HospitalLinyiChina
| | - Zhongcheng Gao
- Department of Breast SurgeryLinyi People’s HospitalLinyiChina
| | - Lei Zhao
- Department of General Surgery Three WardsLinyi People’s HospitalLinyiChina
| | - Peiyou Ren
- Department of General Surgery Three WardsLinyi People’s HospitalLinyiChina
| | - Hongyan Shen
- Department of General Surgery Three WardsLinyi People’s HospitalLinyiChina
| |
Collapse
|
5
|
Liu WB, Feng QJ, Li GS, Shen P, Li YN, Zhang FJ. Long non-coding RNA HOTAIRM1-1 silencing in cartilage tissue induces osteoarthritis through microRNA-125b. Exp Ther Med 2021; 22:933. [PMID: 34306202 PMCID: PMC8280714 DOI: 10.3892/etm.2021.10365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/11/2021] [Indexed: 11/29/2022] Open
Abstract
Aberrations in long noncoding RNA (lncRNA) expression have been recognized in numerous human diseases. In the present study, the of role the long noncoding RNA HOX antisense intergenic RNA myeloid 1 variant (HOTAIRM1-1) in regulating the pathological progression of osteoarthritis (OA) was investigated. The aberrant expression of HOTAIRM1-1 in OA was demonstrated, but the molecular mechanisms require further analysis. The aim of the present study was to explore the function of miR-125b in modulating chondrocyte viability and apoptosis, and to address the functional association between HOTAIRM1-1 and miR-125b as potential targets. A miR-125b inhibitor was used, which laid the foundation for the following investigation. The study confirmed that HOTAIRM1-1 and miR-125b are inversely expressed in chondrocytes. The expression of HOTAIRM1-1 was downregulated and the expression of miR-125b was upregulated in tissues from patients with OA. HOTAIRM1-1 directly interacted with miR-125b in chondrocytes. HOTAIRM1-1 knockdown was associated with chondrocyte proliferation and extracellular matrix degradation. Furthermore, miR-125b reversed the effect of HOTAIRM1-1 on cell proliferation and apoptosis. In conclusion, the present study indicates that the loss of HOTAIRM1-1 function leads to aberrant increases in the proliferation and apoptosis of chondrocytes. miR-125b may be a potential downstream mechanism that regulates the function of HOTAIRM1-1, and this finding provides a therapeutic strategy for OA.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Qi-Jin Feng
- Department of Orthopedics, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, P.R. China
| | - Gui-Shi Li
- Department of Joint Surgery, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Peng Shen
- Department of Rheumatology and Immunology, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Ya-Nan Li
- Department of Orthopedics, Tianjin Dongli Hospital, Tianjin 300300, P.R. China
| | - Fu-Jiang Zhang
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
6
|
Role of Regulatory Non-Coding RNAs in Aggressive Thyroid Cancer: Prospective Applications of Neural Network Analysis. Molecules 2021; 26:molecules26103022. [PMID: 34069428 PMCID: PMC8159115 DOI: 10.3390/molecules26103022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Most TCs have a favorable prognosis, whereas anaplastic thyroid carcinoma (ATC) is a lethal form of cancer. Different genetic and epigenetic alterations have been identified in aggressive forms of TC such as ATC. Non-coding RNAs (ncRNAs) represent functional regulatory molecules that control chromatin reprogramming, including transcriptional and post-transcriptional mechanisms. Intriguingly, they also play an important role as coordinators of complex gene regulatory networks (GRNs) in cancer. GRN analysis can model molecular regulation in different species. Neural networks are robust computing systems for learning and modeling the dynamics or dependencies between genes, and are used for the reconstruction of large data sets. Canonical network motifs are coordinated by ncRNAs through gene production from each transcript as well as through the generation of a single transcript that gives rise to multiple functional products by post-transcriptional modifications. In non-canonical network motifs, ncRNAs interact through binding to proteins and/or protein complexes and regulate their functions. This article overviews the potential role of ncRNAs GRNs in TC. It also suggests prospective applications of deep neural network analysis to predict ncRNA molecular language for early detection and to determine the prognosis of TC. Validation of these analyses may help in the design of more effective and precise targeted therapies against aggressive TC.
Collapse
|
7
|
Volante M, Lam AK, Papotti M, Tallini G. Molecular Pathology of Poorly Differentiated and Anaplastic Thyroid Cancer: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:63-76. [PMID: 33543394 PMCID: PMC7960587 DOI: 10.1007/s12022-021-09665-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The molecular characterization of poorly and anaplastic thyroid carcinomas has been greatly improved in the last years following the advent of high throughput technologies. However, with special reference to genomic data, the prevalence of reported alterations is partly affected by classification criteria. The impact of molecular pathology in these tumors is multifaceted and bears diagnostic, prognostic, and predictive implications although its use in the clinical practice is not completely assessed. Genomic profiling data claim that genetic alterations in poorly differentiated and anaplastic thyroid carcinomas include "Early" and "Late" molecular events, which are consistent with a multi-step model of progression. "Early" driver events are mostly RAS and BRAF mutations, whereas "Late" changes include above all TP53 and TERT promoter mutations, as well as dysregulation of gene involved in the cell cycle, chromatin remodeling, histone modifications, and DNA mismatch repair. Gene fusions are rare but represent relevant therapeutic targets. Epigenetic modifications are also playing a relevant role in poorly differentiated and anaplastic thyroid carcinomas, with altered regulation of either genes by methylation/deacetylation or non-coding RNAs. The biological effects of epigenetic modifications are not fully elucidated but interfere with a wide spectrum of cellular functions. From a clinical standpoint, the combination of genomic and epigenetic data shows that several molecular alterations affect druggable cellular pathways in poorly differentiated and anaplastic thyroid carcinomas, although the clinical impact of molecular typing of these tumors in terms of predictive biomarker testing is still under exploration.
Collapse
Affiliation(s)
- Marco Volante
- Department of Oncology, University of Turin, Turin, Italy.
| | - Alfred K Lam
- School of Medicine, Griffith University, Gold Coast, Australia
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, Bologna, Italy
| |
Collapse
|
8
|
Zhao ZW, Zhang M, Liao LX, Zou J, Wang G, Wan XJ, Zhou L, Li H, Qin YS, Yu XH, Tang CK. Long non-coding RNA PCA3 inhibits lipid accumulation and atherosclerosis through the miR-140-5p/RFX7/ABCA1 axis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158904. [PMID: 33578049 DOI: 10.1016/j.bbalip.2021.158904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The purpose of this study was to explore the role of long noncoding RNA (lncRNA) prostate cancer antigen 3 (PCA3) in atherosclerosis and the underlying mechanism. METHODS The Gene Expression Omnibus (GEO) datasets were used to divide differentially expressed lncRNAs, microRNAs (miRNAs), and mRNAs. The expression of PCA3, miR-140-5p, RFX7 and ABCA1 were determined by qPCR or Western blot in ox-LDL-treated macrophages. Macrophage lipid accumulation s was evaluated using the Oil Red O staining and high-performance liquid chromatography. Target relationships among PCA3, miR-140-5p, RFX7, and ABCA1 promoter area were validated via dual-luciferase reporter gene assay or chromatin immunoprecipitation assay. The apoE-/- mouse model in vivo was designed to evaluate the effect of PCA3 on the reverse cholesterol transport (RCT) and atherosclerosis. RESULTS PCA3 was down-regulated in foam cells, whereas miR-140-5p was highly expressed. Overexpression of PCA3 promoted ABCA1-mediated cholesterol efflux and reduced lipid accumulation in macrophages. Besides, RFX7 bound to the ABCA1 promoter and increased ABCA1 expression. Targeted relationships and interactions on the expression between miR-140-5p and PCA3 or RFX7 were elucidated. PCA3 up-regulated ABCA1 expression by binding to miR-140-5p to up-regulate RFX7 and ABCA1 expression in macrophages. PCA3 promoted RCT and impeded the progression of atherosclerosis by sponging miR-140-5p in apoE-/- mice. Meanwhile, miR-140-5p also inhibit ABCA1 expression via downregulation of RFX7 to impede RCT and aggravate atherosclerosis. CONCLUSIONS lncRNA PCA3 promotes ABCA1-mediated cholesterol efflux to inhibit atherosclerosis through sponging miR-140-5p and up-regulating RFX7.
Collapse
Affiliation(s)
- Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ling-Xiao Liao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.; Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan 421001, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang-Jun Wan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu-Sheng Qin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China..
| |
Collapse
|
9
|
Gİrgİn B, KaradaĞ-Alpaslan M, KocabaŞ F. Oncogenic and tumor suppressor function of MEIS and associated factors. ACTA ACUST UNITED AC 2021; 44:328-355. [PMID: 33402862 PMCID: PMC7759197 DOI: 10.3906/biy-2006-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
MEIS proteins are historically associated with tumorigenesis, metastasis, and invasion in cancer. MEIS and associated PBX-HOX proteins may act as tumor suppressors or oncogenes in different cellular settings. Their expressions tend to be misregulated in various cancers. Bioinformatic analyses have suggested their upregulation in leukemia/lymphoma, thymoma, pancreas, glioma, and glioblastoma, and downregulation in cervical, uterine, rectum, and colon cancers. However, every cancer type includes, at least, a subtype with high MEIS expression. In addition, studies have highlighted that MEIS proteins and associated factors may function as diagnostic or therapeutic biomarkers for various diseases. Herein, MEIS proteins and associated factors in tumorigenesis are discussed with recent discoveries in addition to how they could be modulated by noncoding RNAs or newly developed small-molecule MEIS inhibitors.
Collapse
Affiliation(s)
- Birkan Gİrgİn
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| | - Medine KaradaĞ-Alpaslan
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun Turkey
| | - Fatih KocabaŞ
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| |
Collapse
|
10
|
Luzón-Toro B, Villalba-Benito L, Fernández RM, Torroglosa A, Antiñolo G, Borrego S. RMRP, RMST, FTX and IPW: novel potential long non-coding RNAs in medullary thyroid cancer. Orphanet J Rare Dis 2021; 16:4. [PMID: 33407723 PMCID: PMC7789680 DOI: 10.1186/s13023-020-01665-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The relevant role of long non-coding RNAs (lncRNAs) in cancer is currently a matter of increasing interest. Medullary thyroid cancer (MTC) is a rare neuroendocrine tumor (2-5% of all thyroid cancer) derived from the parafollicular C-cells which secrete calcitonin. About 75% of all medullary thyroid cancers are believed to be sporadic medullary thyroid cancer (sMTC), whereas the remaining 25% correspond to inherited cancer syndromes known as Multiple Endocrine Neoplasia type 2 (MEN2). MEN2 syndrome, with autosomal dominant inheritance is caused by germline gain of function mutations in RET proto-oncogene. To date no lncRNA has been associated to MEN2 syndrome and only two articles have been published relating long non-coding RNA (lncRNA) to MTC: the first one linked MALAT1 with sMTC and, in the other, our group determined some new lncRNAs in a small group of sMTC cases in fresh tissue (RMST, FTX, IPW, PRNCR1, ADAMTS9-AS2 and RMRP). The aim of the current study is to validate such novel lncRNAs previously described by our group by using a larger cohort of patients, in order to discern their potential role in the disease. Here we have tested three up-regulated (RMST, FTX, IPW) and one down-regulated (RMRP) lncRNAs in our samples (formalin fixed paraffin embedded tissues from twenty-one MEN2 and ten sMTC patients) by RT-qPCR analysis. The preliminary results reinforce the potential role of RMST, FTX, IPW and RMRP in the pathogenesis of MTC.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases CIBERER, Seville, Spain.
| |
Collapse
|
11
|
Shiyanbola O, Hardin H, Hu R, Eickhoff JC, Lloyd RV. Long Noncoding RNA Expression in Adrenal Cortical Neoplasms. Endocr Pathol 2020; 31:385-391. [PMID: 32725507 DOI: 10.1007/s12022-020-09642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) consist of nucleic acid molecules that are greater than 200 nucleotides in length and they do not code for specific proteins. A growing body of evidence indicates that these lncRNAs have important roles in tumorigenesis. Separating adrenal cortical adenomas from carcinomas is often a difficult problem for the surgical pathologist. This is especially true when only small needle biopsies are available for examination. We used in situ hybridization (ISH) analysis to study normal adrenal cortical tissues and adrenal cortical tumors to determine the role of specific lncRNAs in tumor development and classification. The lncRNAS studied included metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), psoriasis susceptibility-related RNA gene induced by stress (PRINS), and HOX antisense intergenic RNA myeloid 1 (HAM1). We constructed a tissue microarray (TMA) for the studies and also analyzed a subset of cases by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Two 1-mm duplicate cores of normal adrenal cortex (NAC) (n = 23), adrenal cortical adenomas (ACAs) (n = 95), and adrenal cortical carcinomas (ACCs), (n = 20) were used on the TMA. The results of ISH were analyzed by image analysis. ISH showed predominantly nuclear expression of lncRNAs in adrenal cortical tissues. MALAT1 showed more expression in ACCs than in NAC and ACA (p < 0.05). PRINS had higher expression in NACs and ACAs than in ACCs. The lncRNAs MALAT1, PRINS, and HAM1 are all expressed in normal and neoplastic adrenal cortical tissues. MALAT1 had the highest expression in ACC compared to ACAs and may have a role in ACC development.
Collapse
Affiliation(s)
- Oyewale Shiyanbola
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
12
|
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers (Basel) 2020; 12:3159. [PMID: 33126409 PMCID: PMC7693255 DOI: 10.3390/cancers12113159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| |
Collapse
|
13
|
Zhang L, Zhang J, Li S, Zhang Y, Liu Y, Dong J, Zhao W, Yu B, Wang H, Liu J. Genomic amplification of long noncoding RNA HOTAIRM1 drives anaplastic thyroid cancer progression via repressing miR-144 biogenesis. RNA Biol 2020; 18:547-562. [PMID: 32951513 DOI: 10.1080/15476286.2020.1819670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic aberrations are frequently found in anaplastic thyroid cancer (ATC). However, the functional genes in aberrantly genomic regions are largely unclear. In this study, we identified a long noncoding RNA (lncRNA) HOTAIRM1, whose encoding gene was amplified and expression was upregulated in ATC compared with papillary thyroid cancer and normal thyroid. Increased genomic copy number and expression of HOTAIRM1 were both correlated with poor survival of ATC patients. Functional assays revealed that HOTAIRM1 promoted proliferation, inhibited apoptosis, and promoted migration and invasion of ATC cells in vitro, and promoted ATC tumour growth and metastasis in vivo. HOTAIRM1 was found to bind ILF3, repress the binding between ILF3 and precursor miR-144 (pre-miR-144), block the effects of ILF3 on stabilizing pre-miR-144, and therefore downregulate pre-miR-144. Intriguingly, HOTAIRM1 was also found to directly bind primary miR-144 (pri-miR-144), repress the binding between pri-miR-144 and DROSHA, block the processing of pri-miR-144 by DROSHA, and therefore upregulate pri-miR-144 and downregulate pre-miR-144. Thus, HOTAIRM1 remarkably downregulated pre-miR-144 and further downregulated miR-144. Knockdown of ILF3 and DROSHA abolished the effects of HOTAIRM1 on pre-miR-144 and miR-144. The expression of miR-144 was downregulated and reversely correlated with HOTAIRM1 in ATC. Via repressing miR-144 biogenesis, HOTAIRM1 upregulated MET and activated AKT signalling. miR-144 overexpression reversed the oncogenic roles of HOTAIRM1 in ATC. Altogether, these findings identified a genomic copy number amplified and highly expressed lncRNA HOTAIRM1, which exerted oncogenic roles via repressing miR-144 biogenesis in ATC. Our data suggested HOTAIRM1 as a potential prognostic biomarker and therapeutic target for ATC.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jin Zhang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shujing Li
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanyan Zhang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Liu
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian Dong
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenjun Zhao
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Yu
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huifang Wang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Liu
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Narayanan D, Mandal R, Hardin H, Chanana V, Schwalbe M, Rosenbaum J, Buehler D, Lloyd RV. Long Non-coding RNAs in Pulmonary Neuroendocrine Neoplasms. Endocr Pathol 2020; 31:254-263. [PMID: 32388776 DOI: 10.1007/s12022-020-09626-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pulmonary neuroendocrine neoplasms (NENs) are classified into low-grade neuroendocrine tumors and high-grade neuroendocrine carcinomas (NECs). There are significant differences in therapeutic strategies of the different NEN subtypes, and therefore, precise classification of pulmonary NENs is critical. However, challenges in pulmonary NEN classification include overlap of diagnostic histological features among the subtypes and reduced or negative expression of neuroendocrine markers in poorly differentiated pulmonary NECs. Recently, transcription factor insulinoma-associated protein 1 (INSM1) was identified as a sensitive marker of neuroendocrine and neuroepithelial differentiation. In this study, INSM1 expression was detected by immunohistochemistry in greater than 94% of pulmonary NENs, indicating that it is a highly sensitive marker of pulmonary NENs and is useful to detect poorly differentiated pulmonary NECs. Although there are well-established morphological and immunohistologic criteria to diagnose pulmonary NENs, there is no universal consensus regarding prognostic markers of pulmonary NENs. Studies have shown that non-small cell lung cancers express long non-coding RNAs (lncRNAs), which regulate gene expression, epithelial-to-mesenchymal transition, and carcinogenesis. We characterized expression and function of lncRNAs, including HOX transcript antisense RNA (HOTAIR), maternally expressed 3 (MEG3), and prostate cancer antigen 3 (PCA3) in pulmonary NENs, including typical carcinoid tumors, atypical carcinoid tumors, small cell lung carcinoma (SCLC/NEC), and large cell neuroendocrine carcinoma (LCNEC/NEC). In situ hybridization and real-time polymerase chain reaction studies showed higher expression (p < 0.01) of all lncRNAs in SCLC/NEC. Small interfering RNA studies indicated a role for MEG3 and PCA3 in tumor proliferation. Therefore, these lncRNAs may serve as prognostic indicators of pulmonary NEN aggressiveness and as possible therapeutic targets.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Neuroendocrine/diagnosis
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/mortality
- Carcinoma, Neuroendocrine/pathology
- Cohort Studies
- Female
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Grading
- Neuroendocrine Tumors/diagnosis
- Neuroendocrine Tumors/genetics
- Neuroendocrine Tumors/mortality
- Neuroendocrine Tumors/pathology
- Prognosis
- RNA, Long Noncoding/physiology
- Tissue Array Analysis
- Tumor Cells, Cultured
- Young Adult
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Rakesh Mandal
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Vishal Chanana
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Michael Schwalbe
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Jason Rosenbaum
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA.
| |
Collapse
|
15
|
Samimi H, Sajjadi-Jazi SM, Seifirad S, Atlasi R, Mahmoodzadeh H, Faghihi MA, Haghpanah V. Molecular mechanisms of long non-coding RNAs in anaplastic thyroid cancer: a systematic review. Cancer Cell Int 2020; 20:352. [PMID: 32760219 PMCID: PMC7392660 DOI: 10.1186/s12935-020-01439-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND anaplastic thyroid cancer (ATC) is one of the most lethal and aggressive cancers. Evidence has shown that the tumorigenesis of ATC is a multistep process involving the accumulation of genetic and epigenetic changes. Several studies have suggested that long non-coding RNAs (lncRNAs) may play an important role in the development and progression of ATC. In this article, we have collected the published reports about the role of lncRNAs in ATC. METHODS "Scopus", "Web of Science", "PubMed", "Embase", etc. were systematically searched for articles published since 1990 to 2020 in English language, using the predefined keywords. RESULTS 961 papers were reviewed and finally 33 papers which fulfilled the inclusion and exclusion criteria were selected. Based on this systematic review, among a lot of evidences on examining the function of lncRNAs in thyroid cancer, there are only a small number of studies about the role of lncRNAs and their molecular mechanisms in the pathogenesis of ATC. CONCLUSIONS lncRNAs play a crucial role in regulation of different processes involved in the development and progression of ATC. Currently, just a few lncRNAs have been identified in ATC that may serve as prognosis markers such as GAS5, MIR22HG, and CASC2. Also, because of the dysregulation of Klhl14-AS, HOTAIRM1, and PCA3 during ATC development and progression, they may act as therapeutic targets. However, for most lncRNAs, only a single experiment has evaluated the expression profile in ATC tissues/cells. Therefore, further functional studies and expression profiling is needed to resolve this limitation and identify novel and valid biomarkers.
Collapse
Affiliation(s)
- Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Seifirad
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, PERFUSE Study Group, Boston, MA USA
| | - Rasha Atlasi
- Evidence Based Practice Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgery, Iranian National Cancer Institute, Imam Khomeini Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Dr. Faghihi’s Medical Genetic Center, Shiraz, Iran
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, USA
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center (EMRC), Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114 Iran
| |
Collapse
|