1
|
Hoffet MS, Tomov NS, Hupp S, Mitchell TJ, Iliev AI. Glucose and Oxygen Levels Modulate the Pore-Forming Effects of Cholesterol-Dependent Cytolysin Pneumolysin from Streptococcus pneumoniae. Toxins (Basel) 2024; 16:232. [PMID: 38922127 PMCID: PMC11209487 DOI: 10.3390/toxins16060232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
A major Streptococcus pneumoniae pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, binding membrane cholesterol and producing permanent lytic or transient pores. During brain infections, vascular damage with variable ischemia occurs. The role of ischemia on pneumolysin's pore-forming capacity remains unknown. In acute brain slice cultures and primary cultured glia, we studied acute toxin lysis (via propidium iodide staining and LDH release) and transient pore formation (by analyzing increases in the intracellular calcium). We analyzed normal peripheral tissue glucose conditions (80 mg%), normal brain glucose levels (20 mg%), and brain hypoglycemic conditions (3 mg%), in combinations either with normoxia (8% oxygen) or hypoxia (2% oxygen). At 80 mg% glucose, hypoxia enhanced cytolysis via pneumolysin. At 20 mg% glucose, hypoxia did not affect cell lysis, but impaired calcium restoration after non-lytic pore formation. Only at 3 mg% glucose, during normoxia, did pneumolysin produce stronger lysis. In hypoglycemic (3 mg% glucose) conditions, pneumolysin caused a milder calcium increase, but restoration was missing. Microglia bound more pneumolysin than astrocytes and demonstrated generally stronger calcium elevation. Thus, our work demonstrated that the toxin pore-forming capacity in cells continuously diminishes when oxygen is reduced, overlapping with a continuously reduced ability of cells to maintain homeostasis of the calcium influx once oxygen and glucose are reduced.
Collapse
Affiliation(s)
- Michelle Salomé Hoffet
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland; (M.S.H.); (N.S.T.); (S.H.)
| | - Nikola S. Tomov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland; (M.S.H.); (N.S.T.); (S.H.)
| | - Sabrina Hupp
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland; (M.S.H.); (N.S.T.); (S.H.)
| | - Timothy J. Mitchell
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Asparouh I. Iliev
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland; (M.S.H.); (N.S.T.); (S.H.)
| |
Collapse
|
2
|
Scott IL, Dominguez MJ, Snow A, Harsini FM, Williams J, Fuson KL, Thapa R, Bhattacharjee P, Cornwall GA, Keyel PA, Sutton RB. Pathogenic Mutations in the C2A Domain of Dysferlin form Amyloid that Activates the Inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538129. [PMID: 37163031 PMCID: PMC10168229 DOI: 10.1101/2023.04.24.538129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Limb-Girdle Muscular Dystrophy Type-2B/2R is caused by mutations in the dysferlin gene ( DYSF ). This disease has two known pathogenic missense mutations that occur within dysferlin's C2A domain, namely C2A W52R and C2A V67D . Yet, the etiological rationale to explain the disease linkage for these two mutations is still unclear. In this study, we have presented evidence from biophysical, computational, and immunological experiments which suggest that these missense mutations interfere with dysferlin's ability to repair cells. The failure of C2A W52R and C2A V67D to initiate membrane repair arises from their propensity to form stable amyloid. The misfolding of the C2A domain caused by either mutation exposes β-strands, which are predicted to nucleate classical amyloid structures. When dysferlin C2A amyloid is formed, it triggers the NLRP3 inflammasome, leading to the secretion of inflammatory cytokines, including IL-1β. The present study suggests that the muscle dysfunction and inflammation evident in Limb-Girdle Muscular Dystrophy types-2B/2R, specifically in cases involving C2A W52R and C2A V67D , as well as other C2 domain mutations with considerable hydrophobic core involvement, may be attributed to this mechanism.
Collapse
|
3
|
The Inflammasome NLR Family Pyrin Domain-Containing Protein 3 (NLRP3) as a Novel Therapeutic Target for Idiopathic Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:837-846. [PMID: 35351468 DOI: 10.1016/j.ajpath.2022.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a dramatic disease without cure. The US Food and Drug Administration-approved drugs, pirfenidone and nintedanib, only slow disease progression. The clinical investigation of novel therapeutic approaches for IPF is an unmet clinical need. Nucleotide-binding oligomerization domain-like receptor or NOD-like receptors are pattern recognition receptors capable of binding a large variety of stress factors. NLR family pyrin domain-containing protein 3 (NLRP3), once activated, promotes IL-1β, IL-18 production, and innate immune responses. Multiple reports indicate that the inflammasome NLRP3 is overactivated in IPF patients, leading to increased production of class I IL and collagens. Similarly, data from animal models of pulmonary fibrosis confirm the role of NLRP3 in the development of chronic lung injury and pulmonary fibrosis. This report provides a review of the evidence of NLRP3 activation in IPF and of NLRP3 inhibition in different animal models of fibrosis, and highlights the recent advances in direct and indirect NLRP3 inhibitors.
Collapse
|
4
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
5
|
Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins (Basel) 2020; 12:toxins12090531. [PMID: 32825096 PMCID: PMC7551085 DOI: 10.3390/toxins12090531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections, including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen producing it. This review highlights host responses to CDC pathogenesis with a focus on macrophages. Due to their robust plasticity, macrophages play key roles in the outcome of bacterial infections. Understanding the unique features and differences within the common theme of CDCs bolsters new tools for research and therapy.
Collapse
|
6
|
König A, Hube B, Kasper L. The Dual Function of the Fungal Toxin Candidalysin during Candida albicans-Macrophage Interaction and Virulence. Toxins (Basel) 2020; 12:toxins12080469. [PMID: 32722029 PMCID: PMC7471981 DOI: 10.3390/toxins12080469] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
The dimorphic fungus Candida albicans is both a harmless commensal organism on mucosal surfaces and an opportunistic pathogen. Under certain predisposing conditions, the fungus can overgrow the mucosal microbiome and cause both superficial and life-threatening systemic infections after gaining access to the bloodstream. As the first line of defense of the innate immune response, infecting C. albicans cells face macrophages, which mediate the clearance of invading fungi by intracellular killing. However, the fungus has evolved sophisticated strategies to counteract macrophage antimicrobial activities and thus evade immune surveillance. The cytolytic peptide toxin, candidalysin, contributes to this fungal defense machinery by damaging immune cell membranes, providing an escape route from the hostile phagosome environment. Nevertheless, candidalysin also induces NLRP3 inflammasome activation, leading to an increased host-protective pro-inflammatory response in mononuclear phagocytes. Therefore, candidalysin facilitates immune evasion by acting as a classical virulence factor but also contributes to an antifungal immune response, serving as an avirulence factor. In this review, we discuss the role of candidalysin during C. albicans infections, focusing on its implications during C. albicans-macrophage interactions.
Collapse
Affiliation(s)
- Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, 07745 Jena, Germany;
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, 07745 Jena, Germany;
- Center for Sepsis Control and Care, University Hospital Jena, 07747 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Correspondence: (B.H.); (L.K.)
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, 07745 Jena, Germany;
- Correspondence: (B.H.); (L.K.)
| |
Collapse
|
7
|
Abstract
Tetanus is a neurologic disease of humans and animals characterized by spastic paralysis. Tetanus is caused by tetanus toxin (TeNT) produced by Clostridium tetani, an environmental soilborne, gram-positive, sporulating bacterium. The disease most often results from wound contamination by soil containing C. tetani spores. Horses, sheep, and humans are highly sensitive to TeNT, whereas cattle, dogs, and cats are more resistant. The diagnosis of tetanus is mainly based on the characteristic clinical signs. Identification of C. tetani at the wound site is often difficult.
Collapse
|
8
|
Chapeton-Montes D, Plourde L, Bouchier C, Ma L, Diancourt L, Criscuolo A, Popoff MR, Brüggemann H. The population structure of Clostridium tetani deduced from its pan-genome. Sci Rep 2019; 9:11220. [PMID: 31375706 PMCID: PMC6677821 DOI: 10.1038/s41598-019-47551-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/16/2019] [Indexed: 01/04/2023] Open
Abstract
Clostridium tetani produces a potent neurotoxin, the tetanus neurotoxin (TeNT) that is responsible for the worldwide neurological disease tetanus, but which can be efficiently prevented by vaccination with tetanus toxoid. Until now only one type of TeNT has been characterized and very little information exists about the heterogeneity among C. tetani strains. We report here the genome sequences of 26 C. tetani strains, isolated between 1949 and 2017 and obtained from different locations. Genome analyses revealed that the C. tetani population is distributed in two phylogenetic clades, a major and a minor one, with no evidence for clade separation based on geographical origin or time of isolation. The chromosome of C. tetani is highly conserved; in contrast, the TeNT-encoding plasmid shows substantial heterogeneity. TeNT itself is highly conserved among all strains; the most relevant difference is an insertion of four amino acids in the C-terminal receptor-binding domain in four strains that might impact on receptor-binding properties. Other putative virulence factors, including tetanolysin and collagenase, are encoded in all genomes. This study highlights the population structure of C. tetani and suggests that tetanus-causing strains did not undergo extensive evolutionary diversification, as judged from the high conservation of its main virulence factors.
Collapse
Affiliation(s)
| | | | | | - Laurence Ma
- Genomic Platform, Biomics, Institut Pasteur, Paris, France
| | - Laure Diancourt
- CNR Bactéries anaérobies Botulisme, Institut Pasteur, Paris, France
| | - Alexis Criscuolo
- Hub Bioinformatique Biostatistique, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
9
|
The Hydroalcoholic Extract Obtained from Mentha piperita L. Leaves Attenuates Oxidative Stress and Improves Survival in Lipopolysaccharide-Treated Macrophages. J Immunol Res 2017; 2017:2078794. [PMID: 29085843 PMCID: PMC5632461 DOI: 10.1155/2017/2078794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/29/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mentha piperita L. (peppermint) possesses antimicrobial properties, but little is known of its ability to modulate macrophages. Macrophages are essential in bacterial infection control due to their antimicrobial functions and ability to link the innate and adaptive immune responses. We evaluated the effects of the peppermint leaf hydroalcoholic extract (LHAE) on cultured murine peritoneal macrophages stimulated or not with lipopolysaccharide (LPS) in vitro. Vehicle-treated cells were used as controls. The constituents of the extract were also identified. Epicatechin was the major compound detected in the LHAE. LPS-induced macrophage death was reversed by incubation with LHAE (1-30 μg/ml). Higher concentrations of the extract (≥100 μg/ml) decreased macrophage viability (49-57%) in the absence of LPS. LHAE (1-300 μg/ml) attenuated H2O2 (34.6-53.4%) but not nitric oxide production by these cells. At similar concentrations, the extract increased the activity of superoxide dismutase (15.3-63.5-fold) and glutathione peroxidase (34.4-73.6-fold) in LPS-treated macrophages. Only LPS-unstimulated macrophages presented enhanced phagocytosis (3.6-6.6-fold increase) when incubated with LHAE (3-30 μg/ml). Overall, the LHAE obtained from peppermint modulates macrophage-mediated inflammatory responses, by stimulating the antioxidant pathway in these cells. These effects may be beneficial when the excessive activation of macrophages contributes to tissue damage during infectious disease.
Collapse
|
10
|
Intrinsic repair protects cells from pore-forming toxins by microvesicle shedding. Cell Death Differ 2017; 24:798-808. [PMID: 28186501 DOI: 10.1038/cdd.2017.11] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/13/2016] [Accepted: 01/17/2017] [Indexed: 01/01/2023] Open
Abstract
Pore-forming toxins (PFTs) are used by both the immune system and by pathogens to disrupt cell membranes. Cells attempt to repair this disruption in various ways, but the exact mechanism(s) that cells use are not fully understood, nor agreed upon. Current models for membrane repair include (1) patch formation (e.g., fusion of internal vesicles with plasma membrane defects), (2) endocytosis of the pores, and (3) shedding of the pores by blebbing from the cell membrane. In this study, we sought to determine the specific mechanism(s) that cells use to resist three different cholesterol-dependent PFTs: Streptolysin O, Perfringolysin O, and Intermedilysin. We found that all three toxins were shed from cells by blebbing from the cell membrane on extracellular microvesicles (MVs). Unique among the cells studied, we found that macrophages were 10 times more resistant to the toxins, yet they shed significantly smaller vesicles than the other cells. To examine the mechanism of shedding, we tested whether toxins with engineered defects in pore formation or oligomerization were shed. We found that oligomerization was necessary and sufficient for membrane shedding, suggesting that calcium influx and patch formation were not required for shedding. However, pore formation enhanced shedding, suggesting that calcium influx and patch formation enhance repair. In contrast, monomeric toxins were endocytosed. These data indicate that cells use two interrelated mechanisms of membrane repair: lipid-dependent MV shedding, which we term 'intrinsic repair', and patch formation by intracellular organelles. Endocytosis may act after membrane repair is complete by removing inactivated and monomeric toxins from the cell surface.
Collapse
|
11
|
Yoo SR, Kim Y, Lee MY, Kim OS, Seo CS, Shin HK, Jeong SJ. Gyeji-tang water extract exerts anti-inflammatory activity through inhibition of ERK and NF-κB pathways in lipopolysaccharide-stimulated RAW 264.7 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:390. [PMID: 27733198 PMCID: PMC5062814 DOI: 10.1186/s12906-016-1366-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
Background Gyeji-tang (GJT, Guizhi Tang in Chinese, Keishi-to in Japanese) is a traditional herbal decoction composed of 5 medicinal herbs. GJT has been used to treat the common cold, headaches, and fever in Asian countries including Korea, China, and Japan. In the present study, we investigated the inhibitory effect of a water extract of GJT on inflammatory response using the murine macrophage cell line, RAW 264.7. Methods RAW 264.7 macrophages were treated with lipopolysaccharide (LPS) to upregulate inflammatory genes. Cells were pretreated with various concentrations of GJT for 4 h and stimulated with LPS for an additional 20 h. Productions of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) were measured by enzyme-linked immunosorbent assays (ELISAs). Protein expressions of heme oxygenase (HO)-1, extracellular signal-regulated kinase (ERK), and nuclear factor kappa-B (NF-κB) were analyzed by immunoblotting. Results Treatment with the GJT extract enhanced expression of HO-1 in macrophages without cytotoxicity. GJT extract significantly inhibited proinflammatory cytokines TNF-α and IL-6 in LPS-stimulated cells. GJT suppressed LPS-induced COX-2 expression, leading to a decrease in COX-2-derived PGE2 level. In addition, GJT extract prevented phosphorylation of ERK and NF-κB translocalization to the nucleus in LPS-treated RAW 264.7 cells. Conclusion These data suggest that GJT has anti-inflammatory possibly through blocking ERK and NF-κB signaling pathways.
Collapse
|
12
|
Clostridial pore-forming toxins: Powerful virulence factors. Anaerobe 2014; 30:220-38. [DOI: 10.1016/j.anaerobe.2014.05.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 05/25/2014] [Indexed: 01/05/2023]
|
13
|
Kim LA, Amarnani D, Gnanaguru G, Tseng WA, Vavvas DG, D'Amore PA. Tamoxifen toxicity in cultured retinal pigment epithelial cells is mediated by concurrent regulated cell death mechanisms. Invest Ophthalmol Vis Sci 2014; 55:4747-58. [PMID: 24994868 DOI: 10.1167/iovs.13-13662] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To evaluate the mechanism of tamoxifen-induced cell death in human cultured RPE cells, and to investigate concurrent cell death mechanisms including pyroptosis, apoptosis, and necroptosis. METHODS Human RPE cells were cultured until confluence and treated with tamoxifen; cell death was measured by detecting LDH release. Tamoxifen-induced cell death was further confirmed by 7-aminoactinomycin D (7-AAD) and annexin V staining. Lysosomal destabilization was assessed using lysosomal-associated membrane protein-1 (LAMP-1) and acridine orange staining. The roles of lysosomal enzymes cathepsin B and L were examined by blocking their activity. Caspase activity was evaluated by caspase-1, -3, -8, and -9 specific inhibition. Cells were primed with IL-1α and treated with tamoxifen; mature IL-1β production was quantified via ELISA. Caspase activity was verified with the fluorochrome-labeled inhibitor of caspases (FLICA) probe specific for each caspase. Regulated cell necrosis or necroptosis was examined with 7-AAD and inhibition of receptor-interacting protein 1 (RIP1) kinase using necrostatin-1 (Nec-1). RESULTS Cell death occurred within 2 hours of tamoxifen treatment of confluent RPE cells and was accompanied by lysosomal membrane permeabilization. Blockade of cathepsin B and L activity led to a significant decrease in cell death, indicating that lysosomal destabilization and cathepsin release occur prior to regulated cell death. Tamoxifen-induced toxicity was shown to occur through both caspase-dependent and caspase-independent cell death pathways. Treatment of RPE cells with caspase inhibitors and Nec-1 resulted in a near complete rescue from cell death. CONCLUSIONS Tamoxifen-induced cell death occurs through concurrent regulated cell death mechanisms. Simultaneous inhibition of caspase-dependent and caspase-independent cell death pathways is required to protect cells from tamoxifen. Inhibition of upstream activators, such as the cathepsins, may represent a novel approach to block multiple cell death pathways.
Collapse
Affiliation(s)
- Leo A Kim
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Dhanesh Amarnani
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Gopalan Gnanaguru
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Wen Allen Tseng
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Demetrios G Vavvas
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Patricia A D'Amore
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Keyel PA, Roth R, Yokoyama WM, Heuser JE, Salter RD. Reduction of streptolysin O (SLO) pore-forming activity enhances inflammasome activation. Toxins (Basel) 2013; 5:1105-18. [PMID: 23744055 PMCID: PMC3717772 DOI: 10.3390/toxins5061105] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 12/21/2022] Open
Abstract
Pore-forming toxins are utilized by bacterial and mammalian cells to exert pathogenic effects and induce cell lysis. In addition to rapid plasma membrane repair, macrophages respond to pore-forming toxins through activation of the NLRP3 inflammasome, leading to IL-1β secretion and pyroptosis. The structural determinants of pore-forming toxins required for NLRP3 activation remain unknown. Here, we demonstrate using streptolysin O (SLO) that pore-formation controls IL-1β secretion and direct toxicity. An SLO mutant incapable of pore-formation did not promote direct killing, pyroptosis or IL-1β production. This indicated that pore formation is necessary for inflammasome activation. However, a partially active mutant (SLO N402C) that was less toxic to macrophages than wild-type SLO, even at concentrations that directly lysed an equivalent number of red blood cells, enhanced IL-1β production but did not alter pyroptosis. This suggests that direct lysis may attenuate immune responses by preventing macrophages from successfully repairing their plasma membrane and elaborating more robust cytokine production. We suggest that mutagenesis of pore-forming toxins represents a strategy to enhance adjuvant activity.
Collapse
Affiliation(s)
- Peter A. Keyel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA; E-Mail:
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA; E-Mails: (R.R.); (J.E.H.)
| | - Wayne M. Yokoyama
- Howard Hughes Medical Institute and Rheumatology Division, Department of Medicine, Washington University, St. Louis, MO 63110, USA; E-Mail:
| | - John E. Heuser
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA; E-Mails: (R.R.); (J.E.H.)
| | - Russell D. Salter
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-412-648-9471; Fax: +1-412-383-8096
| |
Collapse
|
15
|
Cassidy SKB, O'Riordan MXD. More than a pore: the cellular response to cholesterol-dependent cytolysins. Toxins (Basel) 2013; 5:618-36. [PMID: 23584137 PMCID: PMC3705283 DOI: 10.3390/toxins5040618] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/07/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022] Open
Abstract
Targeted disruption of the plasma membrane is a ubiquitous form of attack used in all three domains of life. Many bacteria secrete pore-forming proteins during infection with broad implications for pathogenesis. The cholesterol-dependent cytolysins (CDC) are a family of pore-forming toxins expressed predominately by Gram-positive bacterial pathogens. The structure and assembly of some of these oligomeric toxins on the host membrane have been described, but how the targeted cell responds to intoxication by the CDCs is not as clearly understood. Many CDCs induce lysis of their target cell and can activate apoptotic cascades to promote cell death. However, the extent to which intoxication causes cell death is both CDC- and host cell-dependent, and at lower concentrations of toxin, survival of intoxicated host cells is well documented. Additionally, the effect of CDCs can be seen beyond the plasma membrane, and it is becoming increasingly clear that these toxins are potent regulators of signaling and immunity, beyond their role in intoxication. In this review, we discuss the cellular response to CDC intoxication with emphasis on the effects of pore formation on the host cell plasma membrane and subcellular organelles and whether subsequent cellular responses contribute to the survival of the affected cell.
Collapse
Affiliation(s)
- Sara K B Cassidy
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
16
|
Abstract
The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca(2+) and an efflux of cytoplasmic proteins. In order to ensure cellular survival, lesions have to be identified, plugged and removed from the membrane. The Ca(2+)-driven fusion of lysosomes with the plasma membrane leads to hydrolysis of sphingomyelin by acid sphingomyelinase and a formation of ceramide platforms in the outer leaflet of the lipid bilayer. We propose that the negative curvature, promoted by tighter packing of lipids in the outer layer, leads to an inward vesiculation of the damaged area for its endocytotic uptake and internal degradation. In contrast, the activation of neutral sphingomyelinase triggers the production of ceramide within the inner leaflet of the lipid bilayer, thereby promoting an outward curvature, which enables the cell to shed the membrane-containing toxin pore into the extracellular space. In this process, ceramide is supported by members of the annexin protein family which act as Ca(2+) sensors and as membrane fusion agents.
Collapse
Affiliation(s)
- Annette Draeger
- Department of Cell Biology, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
17
|
Keyel PA, Tkacheva OA, Larregina AT, Salter RD. Coordinate stimulation of macrophages by microparticles and TLR ligands induces foam cell formation. THE JOURNAL OF IMMUNOLOGY 2012; 189:4621-9. [PMID: 23018455 DOI: 10.4049/jimmunol.1200828] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aberrant activation of macrophages in arterial walls by oxidized lipoproteins can lead to atherosclerosis. Oxidized lipoproteins convert macrophages to foam cells through lipid uptake and TLR signaling. To investigate the relative contributions of lipid uptake and TLR signaling in foam cell formation, we established an in vitro assay using liposomes of defined lipid compositions. We found that TLRs signaling through Toll/IL-1R domain-containing adapter inducing IFN-β promoted foam cell formation by inducing both NF-κB signaling and type I IFN production, whereas TLRs that do not induce IFN, like TLR2, did not enhance foam cell formation. Addition of IFN-α to TLR2 activator promoted robust foam cell formation. TLR signaling further required peroxisome proliferator-activated receptor α, as inhibition of peroxisome proliferator-activated receptor α blocked foam cell formation. We then investigated the ability of endogenous microparticles (MP) to contribute to foam cell formation. We found that lipid-containing MP promoted foam cell formation, which was enhanced by TLR stimulation or IFN-α. These MP also stimulated foam cell formation in a human skin model. However, these MP suppressed TNF-α production and T cell activation, showing that foam cell formation can occur by immunosuppressive MP. Taken together, the data reveal novel signaling requirements for foam cell formation and suggest that uptake of distinct types of MP in the context of activation of multiple distinct TLR can induce foam cell formation.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
18
|
The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog 2012; 8:e1002787. [PMID: 22792065 PMCID: PMC3390400 DOI: 10.1371/journal.ppat.1002787] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/19/2012] [Indexed: 12/03/2022] Open
Abstract
The cholesterol-dependent cytolysins (CDCs) constitute a family of pore-forming toxins that contribute to the pathogenesis of a large number of Gram-positive bacterial pathogens.The most highly conserved region in the primary structure of the CDCs is the signature undecapeptide sequence (ECTGLAWEWWR). The CDC pore forming mechanism is highly sensitive to changes in its structure, yet its contribution to the molecular mechanism of the CDCs has remained enigmatic. Using a combination of fluorescence spectroscopic methods we provide evidence that shows the undecapeptide motif of the archetype CDC, perfringolysin O (PFO), is a key structural element in the allosteric coupling of the cholesterol-mediated membrane binding in domain 4 (D4) to distal structural changes in domain 3 (D3) that are required for the formation of the oligomeric pore complex. Loss of the undecapeptide function prevents all measurable D3 structural transitions, the intermolecular interaction of membrane bound monomers and the assembly of the oligomeric pore complex. We further show that this pathway does not exist in intermedilysin (ILY), a CDC that exhibits a divergent undecapeptide and that has evolved to use human CD59 rather than cholesterol as its receptor. These studies show for the first time that the undecapeptide of the cholesterol-binding CDCs forms a critical element of the allosteric pathway that controls the assembly of the pore complex. The CDCs are a large family of pathogenesis-associated pore-forming toxins that are expressed by many Gram-positive pathogens. The conserved undecapeptide motif of the CDCs has been regarded as the signature peptide sequence for these toxins, yet its function has remained obscure. The studies herein show that the undecapeptide forms a critical structural element in the allosteric pathway that couples membrane binding to cholesterol to the initiation of distal structural changes, which are required for the assembly of the pore forming complex. These studies provide the first insight into the function of this highly conserved sequence and show that through evolution this pathway is missing in the CD59-binding CDCs.
Collapse
|
19
|
Kim SC, Kang SH, Jeong SJ, Kim SH, Ko HS, Kim SH. Inhibition of c-Jun N-terminal kinase and nuclear factor κ B pathways mediates fisetin-exerted anti-inflammatory activity in lipopolysccharide-treated RAW264.7 cells. Immunopharmacol Immunotoxicol 2012; 34:645-50. [DOI: 10.3109/08923973.2011.648270] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|