1
|
Kim JH, Jeong HG, Hyeon SJ, Park U, Oh WJ, Hwang J, Lim HH, Ko PW, Lee HW, Lee WH, Ryu H, Suk K. Crosstalk between lipocalin-2 and IL-6 in traumatic brain injury: Closely related biomarkers. Exp Neurol 2025; 385:115092. [PMID: 39637963 DOI: 10.1016/j.expneurol.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Clinical biomarkers are crucial for diagnosing and predicting outcomes in patients with traumatic brain injury (TBI). In this study, we performed an unbiased analysis of plasma proteins in acute TBI patients using bead-based multiplex assays and identified a strong positive correlation between LCN2 and IL-6 levels. Based on these findings, we hypothesized that LCN2 and IL-6 are closely related circulating biomarkers for TBI. Our previous and current studies demonstrate that the expression of LCN2, IL-6, and its receptors is upregulated in patients with chronic traumatic encephalopathy, in mouse models of traumatic and ischemic injury, and in an in vitro scratch injury model. Lcn2-deficiency reduced the injury-induced expression of IL-6 and its receptors in both animal and scratch injury models. These results suggest an augmented LCN2-dependent IL-6 signaling in the injured brain. As both LCN2 and IL-6 are secreted proinflammatory mediators, we further explored the possibility of cross-regulation between LCN2 and IL-6. In cultured glial cells, treatment with recombinant LCN2 protein enhanced the microglial expression of IL-6, while IL-6 protein treatment increased astrocytic LCN2 expression. Moreover, IL-6 expression and release were elevated in LCN2-overexpressing transgenic mice. Mechanistically, IL-6 enhanced astrocytic LCN2 expression through STAT3 signaling, while LCN2 upregulated microglial IL-6 expression through the NF-κB pathway. Taken together, our results suggest an important role of the LCN2-IL-6 axis in amplifying neuroinflammation through a positive feedback loop in secondary brain injury conditions. Finally, this study implies the utility of LCN2 and IL-6 as closely related biomarkers for TBI diagnosis and prognosis.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Han-Gil Jeong
- Division of Neurocritical Care, Department of Neurosurgery and Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si 13620, Republic of Korea
| | - Seung Jae Hyeon
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Uiyeol Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Won-Jong Oh
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Junmo Hwang
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Pan-Woo Ko
- Department of Neurology, Kyungpook National University School of Medicine, Daegu 41404, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine, Daegu 41404, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Veterans Affairs Boston Healthcare System, Boston, MA 02130, United States; Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, United States.
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
2
|
Flores-Prieto DE, Stabenfeldt SE. Nanoparticle targeting strategies for traumatic brain injury. J Neural Eng 2024; 21:061007. [PMID: 39622184 DOI: 10.1088/1741-2552/ad995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems hold immense potential for targeted therapy and diagnosis of neurological disorders, overcoming the limitations of conventional treatment modalities. This review explores the design considerations and functionalization strategies of NPs for precise targeting of the brain and central nervous system. This review discusses the challenges associated with drug delivery to the brain, including the blood-brain barrier and the complex heterogeneity of traumatic brain injury. We also examine the physicochemical properties of NPs, emphasizing the role of size, shape, and surface characteristics in their interactions with biological barriers and cellular uptake mechanisms. The review concludes by exploring the options of targeting ligands designed to augment NP affinity and retention to specific brain regions or cell types. Various targeting ligands are discussed for their ability to mimic receptor-ligand interaction, and brain-specific extracellular matrix components. Strategies to mimic viral mechanisms to increase uptake are discussed. Finally, the emergence of antibody, antibody fragments, and antibody mimicking peptides are discussed as promising targeting strategies. By integrating insights from these scientific fields, this review provides an understanding of NP-based targeting strategies for personalized medicine approaches to neurological disorders. The design considerations discussed here pave the way for the development of NP platforms with enhanced therapeutic efficacy and minimized off-target effects, ultimately advancing the field of neural engineering.
Collapse
Affiliation(s)
- David E Flores-Prieto
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
3
|
Mosini AC, Sanabria V, Nakamura TKE, Calió ML, Pompeu C, Silva CS, Nicolicht-Amorim P, da Graça Naffah-Mazzacoratti M, Porcionatto MA, Mello LE, Foresti ML. Posttraumatic epilepsy: Integrating clinical, inflammatory, and genetic profiles in traumatic brain injury patients. Epilepsy Res 2024; 205:107402. [PMID: 39024832 DOI: 10.1016/j.eplepsyres.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE This study aims to assess the clinical, inflammatory, and genetic profiles of traumatic brain injury (TBI) patients over a 2-year follow-up period, focusing on the development of posttraumatic epilepsy (PTE). METHODS Fifty-nine patients with acute TBI were recruited in the emergency unit of a hospital in Brazil. Clinical data and blood samples were collected after 10 days of hospitalization for posterior genetic profile (Apolipoprotein E- ApoE and Glutamic Acid Descarboxylase-GAD sequencing) analyses. A subset of 19 patients were assessed for cytokine markers (mRNA expression). The development of PTE was investigated for two years following TBI. Statistical analyses including univariate analysis, multiple correspondence analysis, and Mann-Whitney test were performed. RESULTS Analysis revealed an association between severe TBI and requirement for neurosurgery and polytrauma (p<0.05), as well as the development of PTE over a two-year follow-up period (p<0.05). Multiple correspondence analysis identified two distinct profiles associated with PTE and Non-PTE outcomes. The PTE profile showed a higher prevalence of the ApoE genotype E3/E3 and GAD1 SNP (rs769391) genotype AA in our study, while the Non-PTE profile showed a higher presence of E3/E4. mRNA expression analysis demonstrated acute elevated levels of TNF-α in the PTE group as compared to Non-PTE patients (6.70±1.53 vs 5.31 ±0.33, p<0.01). SIGNIFICANCE Our findings underscore the multifactorial nature of aspects potentially contributing to PTE. It is unlikely that any single factor might in isolation have a strong causative influence over the development of epilepsy after TBI. Our results provide a suggestion of potential clustering that might be relevant as prognostic factors for PTE.
Collapse
Affiliation(s)
- Amanda C Mosini
- Laboratory of Neurobiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil; Associação Brasileira de Epilepsia, São Paulo, Brazil; Associação Fundo de Incentivo à Pesquisa, AFIP, São Paulo, São Paulo, Brazil
| | - Viviam Sanabria
- Laboratory of Neurobiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Michele L Calió
- Laboratory of Neurobiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clara Pompeu
- Laboratory of Neurobiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clivandir S Silva
- Laboratory of Neurobiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | - Luiz Eugênio Mello
- Laboratory of Neurobiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, São Paulo, São Paulo, Brazil.
| | - Maira L Foresti
- Laboratory of Neurobiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Yan L, Li Z, Li C, Chen J, Zhou X, Cui J, Liu P, Shen C, Chen C, Hong H, Xu G, Cui Z. Hspb1 and Lgals3 in spinal neurons are closely associated with autophagy following excitotoxicity based on machine learning algorithms. PLoS One 2024; 19:e0303235. [PMID: 38728287 PMCID: PMC11086895 DOI: 10.1371/journal.pone.0303235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.
Collapse
Affiliation(s)
- Lei Yan
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zihao Li
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chuanbo Li
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jingyu Chen
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xun Zhou
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaming Cui
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Liu
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chong Shen
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chu Chen
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hongxiang Hong
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Guanhua Xu
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhiming Cui
- The First People’s Hospital of Nantong, Research Institute for Spine and Spinal Cord Disease of Nantong University, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Zhang Y, Liu J, Liu X, Zhou Y, Geng J, Shi Z, Ma L. Fecal Microbiota Transplantation-Mediated Ghrelin Restoration Improves Neurological Functions After Traumatic Brain Injury: Evidence from 16S rRNA Sequencing and In Vivo Studies. Mol Neurobiol 2024; 61:919-934. [PMID: 37668964 DOI: 10.1007/s12035-023-03595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
This study aimed to investigate how gut microbiota dysbiosis impacts the repair of the blood-brain barrier and neurological deficits following traumatic brain injury (TBI). Through 16S rRNA sequencing analysis, we compared the gut microbiota of TBI rats and normal controls, discovering significant differences in abundance, species composition, and ecological function, potentially linked to Ghrelin-mediated brain-gut axis functionality. Further, in vivo experiments showed that fecal microbiota transplantation or Ghrelin injection could block the intracerebral TNF signaling pathway, enhance GLP-1 expression, significantly reduce brain edema post-TBI, promote the repair of the blood-brain barrier, and improve neurological deficits. However, the TNF signaling pathway activation could reverse these beneficial effects. In summary, our research suggests that by restoring the balance of gut microbiota, the levels of Ghrelin can be elevated, leading to the blockade of intracerebral TNF signaling pathway and enhanced GLP-1 expression, thereby mitigating post-TBI blood-brain barrier disruption and neurological injuries.
Collapse
Affiliation(s)
- Yamei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China.
| | - Junying Liu
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China
| | - Xinyu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yan Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, 710032, People's Republic of China
| | - Jia Geng
- Department of Neurology, Affiliated Hospital of Chengdu University, Chengdu, 610082, People's Republic of China
| | - Zheng Shi
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, No. 76, Huacai Road, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China.
| |
Collapse
|
6
|
Doğanyiğit Z, Erbakan K, Akyuz E, Polat AK, Arulsamy A, Shaikh MF. The Role of Neuroinflammatory Mediators in the Pathogenesis of Traumatic Brain Injury: A Narrative Review. ACS Chem Neurosci 2022; 13:1835-1848. [PMID: 35732021 DOI: 10.1021/acschemneuro.2c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is a debilitating acquired neurological disorder that afflicts nearly 74 million people worldwide annually. TBI has been classified as more than just a single insult because of its associated risk toward various long-term neurological and neurodegenerative disorders. This risk may be triggered by a series of postinjury secondary molecular and cellular pathology, which may be dependent on the severity of the TBI. Among the secondary injury mechanisms, neuroinflammation may be the most crucial as it may exacerbate brain damage and lead to fatal consequences when prolonged. This Review aimed to elucidate the influence of neuroinflammatory mediators on the TBI functional and pathological outcomes, particularly focusing on inflammatory cytokines which were associated with neuronal dysfunctions in the acute and chronic stages of TBI. These cytokines include interleukins (IL) such as IL-1(beta)β, IL-4, IL-6, IL8, IL-10, IL-18, IL-33 and tumor necrosis factor alpha (TNF-α), which have been extensively studied. Apart from these, IL-2, interferon gamma (IFN-γ), and transforming growth factor-beta (TGF-β) may also play a significant role in the pathogenesis of TBI. These neuroinflammatory mediators may trigger a series of pathological events such as cell death, microglial suppression, and increased catecholaminergic activity. Interestingly, in the acute phase of TBI, most of these mediators may also play a neuroprotective role by displaying anti-inflammatory properties, which may convert to a pro-inflammatory action in the chronic stages post TBI. Early identification and treatment of these mediators may help the development of more effective treatment options for TBI.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Kaan Erbakan
- Ordu University, Faculty of Medicine, Ordu 52200, Turkey
| | - Enes Akyuz
- University of Health Sciences, Hamidiye International Faculty of Medicine, Department of Biophysics, Istanbul 34668, Turkey
| | | | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
7
|
Vinh To X, Mohamed AZ, Cumming P, Nasrallah FA. Subacute cytokine changes after a traumatic brain injury predict chronic brain microstructural alterations on advanced diffusion imaging in the male rat. Brain Behav Immun 2022; 102:137-150. [PMID: 35183698 DOI: 10.1016/j.bbi.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The process of neuroinflammation occurring after traumatic brain injury (TBI) has received significant attention as a potential prognostic indicator and interventional target to improve patients' outcomes. Indeed, many of the secondary consequences of TBI have been attributed to neuroinflammation and peripheral inflammatory changes. However, inflammatory biomarkers in blood have not yet emerged as a clinical tool for diagnosis of TBI and predicting outcome. The controlled cortical impact model of TBI in the rodent gives reliable readouts of the dynamics of post-TBI neuroinflammation. We now extend this model to include a panel of plasma cytokine biomarkers measured at different time points post-injury, to test the hypothesis that these markers can predict brain microstructural outcome as quantified by advanced diffusion-weighted magnetic resonance imaging (MRI). METHODS Fourteen 8-10-week-old male rats were randomly assigned to sham surgery (n = 6) and TBI (n = 8) treatment with a single moderate-severe controlled cortical impact. We collected blood samples for cytokine analysis at days 1, 3, 7, and 60 post-surgery, and carried out standard structural and advanced diffusion-weighted MRI at day 60. We then utilized principal component regression to build an equation predicting different aspects of microstructural changes from the plasma inflammatory marker concentrations measured at different time points. RESULTS The TBI group had elevated plasma levels of IL-1β and several neuroprotective cytokines and chemokines (IL-7, CCL3, and GM-CSF) compared to the sham group from days 3 to 60 post-injury. The plasma marker panels obtained at day 7 were significantly associated with the outcome at day 60 of the trans-hemispheric cortical map transfer process that is a frequent finding in unilateral TBI models. DISCUSSION These results confirm and extend prior studies showing that day 7 post-injury is a critical temporal window for the reorganisation process following TBI. High plasma level of IL-1β and low plasma levels of the neuroprotective IL-7, CCL3, and GM-CSF of TBI animals at day 60 were associated with greater TBI pathology.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Abdalla Z Mohamed
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia; Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia; The Centre for Advanced Imaging, The University of Queensland, Queensland, Australia.
| |
Collapse
|
8
|
Casault C, Couillard P, Kromm J, Rosenthal E, Kramer A, Brindley P. Multimodal brain monitoring following traumatic brain injury: A primer for intensive care practitioners. J Intensive Care Soc 2022; 23:191-202. [PMID: 35615230 PMCID: PMC9125434 DOI: 10.1177/1751143720980273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Traumatic brain injury (TBI) is common and potentially devastating. Traditional examination-based patient monitoring following TBI may be inadequate for frontline clinicians to reduce secondary brain injury through individualized therapy. Multimodal neurologic monitoring (MMM) offers great potential for detecting early injury and improving outcomes. By assessing cerebral oxygenation, autoregulation and metabolism, clinicians may be able to understand neurophysiology during acute brain injury, and offer therapies better suited to each patient and each stage of injury. Hence, we offer this primer on brain tissue oxygen monitoring, pressure reactivity index monitoring and cerebral microdialysis. This narrative review serves as an introductory guide to the latest clinically-relevant evidence regarding key neuromonitoring techniques.
Collapse
Affiliation(s)
- Colin Casault
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
| | - Philippe Couillard
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Julie Kromm
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Eric Rosenthal
- Department of Critical Care
Medicine, University of Alberta, Edmonton, Canada
| | - Andreas Kramer
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Peter Brindley
- Department of Neurology, Harvard
University, Boston, MA, USA
| |
Collapse
|
9
|
Fleury S, Schnitzer ME, Ledoux-Hutchinson L, Boukhatem I, Bélanger JC, Welman M, Busseuil D, Tardif JC, D’Antono B, Lordkipanidzé M. Clinical Correlates Identify ProBDNF and Thrombo-Inflammatory Markers as Key Predictors of Circulating p75NTR Extracellular Domain Levels in Older Adults. Front Aging Neurosci 2022; 14:821865. [PMID: 35264944 PMCID: PMC8899540 DOI: 10.3389/fnagi.2022.821865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The p75NTR receptor binds all neurotrophins and is mostly known for its role in neuronal survival and apoptosis. Recently, the extracellular domain (ECD) of p75NTR has been reported in plasma, its levels being dysregulated in numerous neurological diseases. However, the factors associated with p75NTR ECD levels remain unknown. We investigated clinical correlates of plasma p75NTR ECD levels in older adults without clinically manifested neurological disorders. Circulating p75NTR levels were measured by enzyme-linked immunosorbent assay in plasma obtained from participants in the BEL-AGE cohort (n = 1,280). Determinants of plasma p75NTR ECD levels were explored using linear and non-linear statistical models. Plasma p75NTR ECD levels were higher in male participants; were positively correlated with circulating concentrations of pro-brain-derived neurotrophic factor, and inflammatory markers interleukin-6 and CD40 Ligand; and were negatively correlated with the platelet activation marker P-selectin. While most individuals had p75NTR levels ranging from 43 to 358 pg/ml, high p75NTR levels reaching up to 9,000 pg/ml were detectable in a subgroup representing 15% of the individuals studied. In this cohort of older adults without clinically manifested neurological disorders, there was no association between plasma p75NTR ECD levels and cognitive performance, as assessed by the Montreal Cognitive Assessment score. The physiological relevance of high p75NTR ECD levels in plasma warrants further investigation. Further research assessing the source of circulating p75NTR is needed for a deeper understanding of the direction of effect, and to investigate whether high p75NTR ECD levels are predictive biomarkers or consequences of neuropathology.
Collapse
Affiliation(s)
- Samuel Fleury
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Mireille E. Schnitzer
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montreal, QC, Canada
| | | | - Imane Boukhatem
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Jean-Christophe Bélanger
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Mélanie Welman
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - David Busseuil
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - Jean-Claude Tardif
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Montreal Heart Institute, Montreal, QC, Canada
| | - Bianca D’Antono
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Department of Psychology, Faculty of Arts and Sciences, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Bianca D’Antono,
| | - Marie Lordkipanidzé
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
- Marie Lordkipanidzé,
| |
Collapse
|
10
|
Krishnamoorthy V, Temkin N, Barber J, Foreman B, Komisarow J, Korley FK, Laskowitz DT, Mathew JP, Hernandez A, Sampson J, James ML, Bartz R, Raghunathan K, Goldstein BA, Markowitz AJ, Vavilala MS. Association of Early Multiple Organ Dysfunction With Clinical and Functional Outcomes Over the Year Following Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study. Crit Care Med 2021; 49:1769-1778. [PMID: 33935162 PMCID: PMC8448900 DOI: 10.1097/ccm.0000000000005055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Traumatic brain injury is a leading cause of death and disability in the United States. While the impact of early multiple organ dysfunction syndrome has been studied in many critical care paradigms, the clinical impact of early multiple organ dysfunction syndrome in traumatic brain injury is poorly understood. We examined the incidence and impact of early multiple organ dysfunction syndrome on clinical, functional, and disability outcomes over the year following traumatic brain injury. DESIGN Retrospective cohort study. SETTING Patients enrolled in the Transforming Clinical Research and Knowledge in Traumatic Brain Injury study, an 18-center prospective cohort study of traumatic brain injury patients evaluated in participating level 1 trauma centers. SUBJECTS Adult (age > 17 yr) patients with moderate-severe traumatic brain injury (Glasgow Coma Scale < 13). We excluded patients with major extracranial injury (Abbreviated Injury Scale score ≥ 3). INTERVENTIONS Development of early multiple organ dysfunction syndrome, defined as a maximum modified Sequential Organ Failure Assessment score greater than 7 during the initial 72 hours following admission. MEASUREMENTS AND MAIN RESULTS The main outcomes were: hospital mortality, length of stay, 6-month functional and disability domains (Glasgow Outcome Scale-Extended and Disability Rating Scale), and 1-year mortality. Secondary outcomes included: ICU length of stay, 3-month Glasgow Outcome Scale-Extended, 3-month Disability Rating Scale, 1-year Glasgow Outcome Scale-Extended, and 1-year Disability Rating Scale. We examined 373 subjects with moderate-severe traumatic brain injury. The mean (sd) Glasgow Coma Scale in the emergency department was 5.8 (3.2), with 280 subjects (75%) classified as severe traumatic brain injury (Glasgow Coma Scale 3-8). Among subjects with moderate-severe traumatic brain injury, 252 (68%) developed early multiple organ dysfunction syndrome. Subjects that developed early multiple organ dysfunction syndrome had a 75% decreased odds of a favorable outcome (Glasgow Outcome Scale-Extended 5-8) at 6 months (adjusted odds ratio, 0.25; 95% CI, 0.12-0.51) and increased disability (higher Disability Rating Scale score) at 6 months (adjusted mean difference, 2.04; 95% CI, 0.92-3.17). Subjects that developed early multiple organ dysfunction syndrome experienced an increased hospital length of stay (adjusted mean difference, 11.4 d; 95% CI, 7.1-15.8), with a nonsignificantly decreased survival to hospital discharge (odds ratio, 0.47; 95% CI, 0.18-1.2). CONCLUSIONS Early multiple organ dysfunction following moderate-severe traumatic brain injury is common and independently impacts multiple domains (mortality, function, and disability) over the year following injury. Further research is necessary to understand underlying mechanisms, improve early recognition, and optimize management strategies.
Collapse
Affiliation(s)
- Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University, Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Department of Population Health Sciences, Duke University, Durham, NC
| | - Nancy Temkin
- Department of Neurosurgery, University of Washington, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Jason Barber
- Department of Neurosurgery, University of Washington, Seattle, WA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Fred K. Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel T. Laskowitz
- Department of Anesthesiology, Duke University, Durham, NC
- Department of Neurosurgery, Duke University, Durham, NC
- Department of Neurology, Duke University, Durham, NC
| | | | | | - John Sampson
- Department of Neurosurgery, Duke University, Durham, NC
| | - Michael L. James
- Department of Anesthesiology, Duke University, Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurology, Duke University, Durham, NC
- Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA
| | - Raquel Bartz
- Department of Anesthesiology, Duke University, Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA
| | - Karthik Raghunathan
- Department of Anesthesiology, Duke University, Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Department of Population Health Sciences, Duke University, Durham, NC
| | | | - Amy J. Markowitz
- Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
11
|
Mehboob R. Neurokinin-1 Receptor as a potential drug target for COVID-19 treatment. Biomed Pharmacother 2021; 143:112159. [PMID: 34536760 PMCID: PMC8435369 DOI: 10.1016/j.biopha.2021.112159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Novel Coronavirus infection (COVID-19) has become a pandemic in these days. It is an acute respiratory and infectious disease with no known etiology and treatment. It is continuously causing losses of precious lives and economy at a global scale on daily basis. It is the need of the hour to find more treatment strategies by either developing a drug or to boost the immune system. This opinion article aims to provide Substance P (SP) as a possible cause of the initiation of cytokine storm developed in COVID-19 infection and to suggest Neurokinin-1 Receptor (NK-1R) antagonist, Aprepitant, as a drug to be used for its treatment. This perspective will provide directions to the Biomedical scientists to explore SP and NK-1R and prepare a drug to alleviate the symptoms and cure the disease. It is very important to work on this perspective at earliest to reach to some conclusion regarding the therapeutic intervention. Clinical studies may also be conducted if proven successful. SP is a neurotransmitter and neuromodulator, released from the trigeminal nerve of brainstem as a result of nociception. It is directly related to the respiratory illness as in COVID-19 infection. It is responsible for the increased inflammation and the signature symptoms associated with this disease. It is the main switch that needs to be switched off by administering Aprepitant along with glucocorticosteroid, dexamethasone.
Collapse
Affiliation(s)
- Riffat Mehboob
- Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan; Lahore Medical Research Center, LLP, Lahore, Pakistan.
| |
Collapse
|
12
|
Potentially Severe (Moderate) Traumatic Brain Injury: A New Categorization Proposal. Crit Care Med 2021; 48:1851-1854. [PMID: 32804788 DOI: 10.1097/ccm.0000000000004575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Woodward KE, de Jesus P, Esser MJ. Neuroinflammation and Precision Medicine in Pediatric Neurocritical Care: Multi-Modal Monitoring of Immunometabolic Dysfunction. Int J Mol Sci 2020; 21:E9155. [PMID: 33271778 PMCID: PMC7730047 DOI: 10.3390/ijms21239155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
The understanding of molecular biology in neurocritical care (NCC) is expanding rapidly and recognizing the important contribution of neuroinflammation, specifically changes in immunometabolism, towards pathological disease processes encountered across all illnesses in the NCC. Additionally, the importance of individualized inflammatory responses has been emphasized, acknowledging that not all individuals have the same mechanisms contributing towards their presentation. By understanding cellular processes that drive disease, we can make better personalized therapy decisions to improve patient outcomes. While the understanding of these cellular processes is evolving, the ability to measure such cellular responses at bedside to make acute care decisions is lacking. In this overview, we review cellular mechanisms involved in pathological neuroinflammation with a focus on immunometabolic dysfunction and review non-invasive bedside tools that have the potential to measure indirect and direct markers of shifts in cellular metabolism related to neuroinflammation. These tools include near-infrared spectroscopy, transcranial doppler, elastography, electroencephalography, magnetic resonance imaging and spectroscopy, and cytokine analysis. Additionally, we review the importance of genetic testing in providing information about unique metabolic profiles to guide individualized interpretation of bedside data. Together in tandem, these modalities have the potential to provide real time information and guide more informed treatment decisions.
Collapse
Affiliation(s)
| | | | - Michael J. Esser
- Alberta Children’s Hospital, University of Calgary, Calgary, AB T3B 6A8, Canada; (K.E.W.); (P.d.J.)
| |
Collapse
|
14
|
Traumatic Brain Injury and Neuroinflammation: Review of the Main Biomarkers. ACTA BIOMEDICA SCIENTIFICA 2020. [DOI: 10.29413/abs.2020-5.5.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Chaban V, Clarke GJ, Skandsen T, Islam R, Einarsen CE, Vik A, Damås JK, Mollnes TE, Håberg AK, Pischke SE. Systemic Inflammation Persists the First Year after Mild Traumatic Brain Injury: Results from the Prospective Trondheim Mild Traumatic Brain Injury Study. J Neurotrauma 2020; 37:2120-2130. [PMID: 32326805 PMCID: PMC7502683 DOI: 10.1089/neu.2019.6963] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Innate immune activation has been attributed a key role in traumatic brain injury (TBI) and successive morbidity. In mild TBI (mTBI), however, the extent and persistence of innate immune activation are unknown. We determined plasma cytokine level changes over 12 months after an mTBI in hospitalized and non-hospitalized patients compared with community controls; and examined their associations to injury-related and demographic variables at admission. Prospectively, 207 patients presenting to the emergency department (ED) or general practitioner with clinically confirmed mTBI and 82 matched community controls were included. Plasma samples were obtained at admission, after 2 weeks, 3 months, and 12 months. Cytokine levels were analysed with a 27-plex beads-based immunoassay. Brain magnetic resonance imaging (MRI) was performed on all participants. Twelve cytokines were reliably detected. Plasma levels of interferon gamma (IFN-γ), interleukin 8 (IL-8), eotaxin, macrophage inflammatory protein-1-beta (MIP-1β), monocyte chemoattractant protein 1 (MCP-1), IL-17A, IL-9, tumor necrosis factor (TNF), and basic fibroblast growth factor (FGF-basic) were significantly increased at all time-points in patients compared with controls, whereas IFN-γ-inducing protein 10 (IP-10), platelet-derived growth factor (PDGF), and IL-1ra were not. IL-17A and FGF-basic showed significant increases in patients from admission to follow-up at 3 months, and remained increased at 12 months compared with admission. Interestingly, MRI findings were negatively associated with four cytokines: eotaxin, MIP-1β, IL-9, and IP-10, whereas age was positively associated with nine cytokines: IL-8, eotaxin, MIP-1β, MCP-1, IL-17A, IL-9, TNF, FGF-basic, and IL-1ra. TNF was also increased in those with presence of other injuries. In conclusion, mTBI activated the innate immune system consistently and this is the first study to show that several inflammatory cytokines remain increased for up to 1 year post-injury.
Collapse
Affiliation(s)
- Viktoriia Chaban
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gerard J.B. Clarke
- Department of Neuromedicine and Movement Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Cathrine E. Einarsen
- Department of Neuromedicine and Movement Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan K. Damås
- Center of Molecular Inflammation Research, Department of Clinical and Molecular Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infectious Diseases, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tom E. Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center of Molecular Inflammation Research, Department of Clinical and Molecular Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Research Laboratory, Nordland Hospital Bodø, and K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| | - Asta K. Håberg
- Department of Neuromedicine and Movement Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Soeren E. Pischke
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Clinic for Emergencies and Critical Care, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Slavoaca D, Muresanu D, Birle C, Rosu OV, Chirila I, Dobra I, Jemna N, Strilciuc S, Vos P. Biomarkers in traumatic brain injury: new concepts. Neurol Sci 2020; 41:2033-2044. [PMID: 32157587 DOI: 10.1007/s10072-019-04238-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury is a multifaceted condition that encompasses a spectrum of injuries: contusions, axonal injuries in specific brain regions, edema, and hemorrhage. Brain injury determines a broad clinical and disability spectrum due to the implication of various cellular pathways, genetic phenotypes, and environmental factors. It is challenging to predict patient outcomes, to appropriately evaluate the patients, to determine a suitable treatment strategy and rehabilitation program, and to communicate with patient relatives. Biomarkers detected from body fluids are potential evaluation tools for traumatic brain injury patients. These may serve as internal indicators of cerebral damage, delivering valuable information about the dynamic cellular, biochemical, and molecular environments. The diagnostic and prognostic value of biomarkers tested both in animal models of traumatic brain injury is still under question, despite a considerable scientific literature. Recent publications emphasize that a more realistic approach involves combining multiple types of biomarkers with other investigative tools (imaging, outcome scales, and genetic polymorphisms). Additionally, there is increasing interest in the use of biomarkers as tools for treatment monitoring and as surrogate outcome variables to facilitate the design of distinct randomized controlled trials. This review highlights the latest available evidence regarding biomarkers in adults after traumatic brain injury and discusses new approaches in the evaluation of this patient group.
Collapse
Affiliation(s)
- Dana Slavoaca
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Dafin Muresanu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.
| | - Codruta Birle
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Olivia Verisezan Rosu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Ioana Chirila
- Neurology Clinic, Cluj Emergency County Hospital, Cluj-Napoca, Romania
| | - Iulia Dobra
- Neurology Clinic, Cluj Emergency County Hospital, Cluj-Napoca, Romania
| | - Nicoleta Jemna
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Stefan Strilciuc
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania
| | - Pieter Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, The Netherlands
| |
Collapse
|
17
|
James ML, Komisarow JM, Wang H, Laskowitz DT. Therapeutic Development of Apolipoprotein E Mimetics for Acute Brain Injury: Augmenting Endogenous Responses to Reduce Secondary Injury. Neurotherapeutics 2020; 17:475-483. [PMID: 32318912 PMCID: PMC7283431 DOI: 10.1007/s13311-020-00858-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the last few decades, increasing evidence demonstrates that the neuroinflammatory response is a double-edged sword. Although overly robust inflammatory responses may exacerbate secondary tissue injury, inflammatory processes are ultimately necessary for recovery. Traditional drug discovery often relies on reductionist approaches to isolate and modulate specific intracellular pathways believed to be involved in disease pathology. However, endogenous brain proteins are often pleiotropic in order to regulate neuroinflammation and recovery mechanisms. Thus, a process of "backward translation" aims to harness the adaptive properties of endogenous proteins to promote earlier and greater recovery after acute brain injury. One such endogenous protein is apolipoprotein E (apoE), the primary apolipoprotein produced in the brain. Robust preclinical and clinical evidence demonstrates that endogenous apoE produced within the brain modulates the neuroinflammatory response of the acutely injured brain. Thus, one innovative approach to improve outcomes following acute brain injury is administration of exogenous apoE-mimetic drugs optimized to cross the blood-brain barrier. In particular, one promising apoE mimetic peptide, CN-105, has demonstrated efficacy across a wide variety of preclinical models of brain injury and safety and feasibility in early-phase clinical trials. Preclinical and clinical evidence for apoE's neuroprotective effects and downregulation of neuroinflammatory and the resulting translational therapeutic development strategy for an apoE-based therapeutic are reviewed.
Collapse
Affiliation(s)
- Michael L James
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Jordan M Komisarow
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Haichen Wang
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Daniel T Laskowitz
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
18
|
Lorente L, Martín MM, Pérez-Cejas A, González-Rivero AF, Argueso M, Ramos L, Solé-Violán J, Cáceres JJ, Jiménez A, García-Marín V. Persistently High Serum Substance P Levels and Early Mortality in Patients with Severe Traumatic Brain Injury. World Neurosurg 2019; 132:e613-e617. [DOI: 10.1016/j.wneu.2019.08.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/29/2023]
|
19
|
Lorente L, Martín MM, González-Rivero AF, Ramos L, Argueso M, Cáceres JJ, Solé-Violán J, Jiménez A, Borreguero-León JM, García-Marín V. Nonsurviving Patients with Severe Traumatic Brain Injury Have Maintained High Serum sCD40L Levels. World Neurosurg 2019; 126:e1537-e1541. [PMID: 30926559 DOI: 10.1016/j.wneu.2019.03.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Soluble cluster of differentiation 40 ligand (sCD40L) is a member of the tumor necrosis factor family with proinflamatory and procoagulant effects. A previous study found higher serum sCD40L levels at day 1 of traumatic brain injury (TBI) in nonsurviving than surviving patients. Thus the objective of this study was to compare serum sCD40L levels during the first week of a severe TBI between surviving and nonsurviving patients and to determine whether it could be used as a mortality predictor biomarker. METHODS In this multicenter study severe TBI patients (with Glasgow Coma Scale score <9) with an Injury Severity Score in noncranial item <9 were included. Serum sCD40L concentrations at days 1, 4, and 8 of TBI were determined. We performed receiver operating characteristic analyses to determine the capacity of 30-day TBI mortality prediction by serum sCD40L levels at days 1, 4, and 8 of TBI. RESULTS We found that nonsurviving (n = 34) patients in comparison with surviving (n = 90) patients had higher sCD40L levels on days 1 (P < 0.001), 4 (P = 0.004), and 8 (P < 0.001) of TBI. We also found that the areas under curve of serum sCD40L concentrations at days 1, 4, and 8 of TBI to 30-day mortality prediction were 82% (P < 0.001), 72% (P = 0.01) and 83% (P < 0.001), respectively. CONCLUSIONS The existence of higher serum sCD40L levels in nonsurviving than surviving patients during the first week of TBI and fact that serum sCD40L levels during the first week of TBI can be used as a mortality predictor biomarker are the new findings of our study.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Breña Alta, La Palma, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda, Valencia, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, CIBERES, Las Palmas de Gran Canaria, Spain
| | | | | | - Victor García-Marín
- Department of Neurosurgery, Hospital Universitario de Canarias, La Laguna, Spain
| |
Collapse
|
20
|
[Influence of massive blood transfusion and traumatic brain injury on TIMP‑1 and MMP‑9 serum levels in polytraumatized patients]. Unfallchirurg 2019; 122:967-976. [PMID: 30806727 DOI: 10.1007/s00113-019-0623-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The morbidity and mortality of polytrauma patients are substantially influenced by the extent of the posttraumatic inflammatory reaction. Studies have shown that TIMP‑1 and MMP‑9 play a major role in posttraumatic immune disorder in genome-wide mRNA microarray analyses. Furthermore, both showed differential gene expression profiles depending on the clinical parameters massive blood transfusion and traumatic brain injury. OBJECTIVE The aim of this study was to evaluate TIMP‑1 and MMP‑9 serum concentrations in polytraumatized patients depending on the clinical parameters massive blood transfusion and traumatic brain injury in the early posttraumatic phase. MATERIAL AND METHODS Polytrauma patients (≥18 years) with an "Injury Severity Score" (ISS) ≥ 16 points were enrolled in this prospective study. Serum levels of TIMP‑1 and MMP‑9 were quantified (at 0 h, 6 h, 12 h, 24 h, 48 h and 72 h) using an enzyme-linked immunosorbent assay (ELISA). Groups were divided according to the clinical parameter massive blood transfusion (≥10 red blood cell units [RBC units] in the first 24-hour posttrauma) and traumatic brain injury (CCT postive [cranial computed tomography]). RESULTS Following massive blood transfusion (n = 21; 50 ± 15.7 years; ISS 39 ± 12.8 points) patients showed overall significantly increased TIMP‑1 levels (p = 0.003) and significantly higher TIMP‑1 values after 12-72 h. Traumatic brain injury patients (n = 28; 44 ± 19 years; ISS 42 ± 10 points) showed significantly higher MMP‑9 levels (p = 0.049) in the posttraumatic period. CONCLUSION Polytraumatized patients who received massive blood transfusions following major trauma showed significantly higher TIMP‑1 levels than patients who did not receive massive transfusions. This seems to be an expression of a massively excessive inflammatory reaction and therefore represents a substantial factor in the pathogenesis of severe posttraumatic immune dysfunction in this collective. Furthermore, the significant increase in MMP‑9 with accompanying traumatic brain injury reflects the pivotal role of matrix metalloproteinases in the pathophysiology of traumatic brain injury.
Collapse
|
21
|
Lorente L, Martín MM, Ramos L, Argueso M, Cáceres JJ, Solé-Violán J, Jiménez A, Borreguero-León JM, González-Rivero AF, Orbe J, Rodríguez JA, Páramo JA. Persistently high circulating tissue inhibitor of matrix metalloproteinase-1 levels in non-survivor brain trauma injury patients. J Crit Care 2019; 51:117-121. [PMID: 30802757 DOI: 10.1016/j.jcrc.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Previously, higher circulating levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor matrix metalloproteinases (TIMP)-1 were reported in the first hours after TBI in blood samples from patients with poor prognosis. Thus, the objectives of this study were to determine whether MMP-9 and TIMP-1 levels during the first week of a severe TBI could be used as biomarker predictive of mortality. METHODS We included patients with severe TBI (defined as Glasgow Coma Scale lower than 9), and with Injury Severity Score in non-cranial aspects lower than 9. We determined serum concentrations of MMP-9 and TIMP-1 at days 1, 4 and 8 of TBI. RESULTS TIMP-1 concentrations at days 1 (p < .001), 4 (p = .001), and 8 (p = .01) of TBI were higher in non-surviving (n = 34) than in surviving (n = 90) patients. ROC curve analyses showed an area under curve of TIMP-1 concentrations at days 1, 4, and 8 of TBI to predict 30-day mortality of 78% (p < .001), 76% (p < .001) and 71% (p = .02) respectively. CONCLUSIONS The most relevant new findings of our study were that TIMP-1 levels during the first week of a severe TBI were higher in non-surviving than in surviving patients and that could be used as biomarker predictive of mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife 38010, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma 38713, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez n°17-19, Valencia 46004, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria 35016, Spain.
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, Las Palmas de Gran Canaria 35010, Spain.
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Juan M Borreguero-León
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Agustín F González-Rivero
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Josune Orbe
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| | - José A Rodríguez
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| | - José A Páramo
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII n°55, Pamplona 31008, Spain.
| |
Collapse
|