1
|
Ali SM, Adnan Y, Ahmad Z, Chawla T, Farooqui HA, Adnan Ali SM. Significant association of miRNA 34a with BRCA1 expression in pancreatic ductal adenocarcinoma: an insight on miRNA regulatory pathways in the Pakistani population. BMC Cancer 2024; 24:1543. [PMID: 39696052 DOI: 10.1186/s12885-024-13259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pancreatic Ductal Adenocarcinoma (PDAC) is among the most aggressive cancers, characterized by high mortality rates. Studies on various cancers across the globe indicate that regulatory miRNAs play a vital role in cellular signaling. However, the expression and interactions of these miRNAs in the Pakistani patients with PDAC is yet to be explored. Here, we aim to investigate a panel of four regulatory miRNAs (miRNA 34a, 30b, 142 and 137) in PDAC and their interaction with selected target proteins in the signaling pathway (KRAS, p53, BRCA1, APC). METHODS We conducted a study on 109 PDAC patients to analyze the selected miRNAs and protein targets. Formalin Fixed Paraffin Embedded (FFPE) tumor samples were obtained from the hospital's department of histopathology. After confirmation of diagnosis and appropriate tumor content, tissues were processed for RNA extraction. Based on the acceptable quality and quantity of RNA, 43 samples were proceeded for qRT-PCR. Relative expression of the miRNAs was determined through 2-[ΔΔCt] method. Further, FFPE tumor blocks were used to perform tissue sectioning followed by immunohistochemistry experiments. Stained slides were scored independently by two pathologists according to set criteria. RESULTS Expression profiles revealed that miRNA 34a, 30b, and 142 showed high expression in approximately 69-70% of cases, while miRNA 137 had a lower high expression frequency (53.4%). Among protein biomarkers, KRAS, BRCA1, and APC were predominantly expressed, with high expression levels observed in 79.1%, 69.8%, and 51.2% of cases, respectively, whereas p53 showed positive expression in only 34.9% of cases. Statistical analysis showed that expression of miRNA 34a was significantly associated with the expression of BRCA1 (p = 0.034). No significant associations were observed for KRAS, p53, or APC with the selected miRNAs. Moreover, the expression of miRNA 34a independently showed significant association with miRNA 30b (p = 0.000) and miRNA 137 (p = 0.001). None of the miRNA showed an association with the overall survival, patient demographics or the clinicopathological characteristics. CONCLUSION Our study highlights a potential bi-directional regulatory relationship between BRCA1 and miRNA 34a, suggesting that miRNA 34a may both respond to and influence BRCA1 activity within cellular signaling pathways. This complex interaction points to a layered regulatory network that could play a crucial role in tumor suppression in PDAC, underscoring the therapeutic potential of targeting this miRNA-protein crosstalk.
Collapse
Affiliation(s)
- Saleema Mehboob Ali
- Department of Surgery, Aga Khan University Hospital, P.O. Box 3500, Stadium Road, Karachi, 74800, Pakistan
| | - Yumna Adnan
- Department of Surgery, Aga Khan University Hospital, P.O. Box 3500, Stadium Road, Karachi, 74800, Pakistan
| | - Zubair Ahmad
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, P.O. Box 3500, Stadium Road, Karachi, 74800, Pakistan
- Department of Pathology, Sultan Qaboos Comprehensive Cancer Centre, Seeb, Oman
| | - Tabish Chawla
- Department of Surgery, Aga Khan University Hospital, P.O. Box 3500, Stadium Road, Karachi, 74800, Pakistan
| | - Hasnain Ahmed Farooqui
- Department of Surgery, Aga Khan University Hospital, P.O. Box 3500, Stadium Road, Karachi, 74800, Pakistan
| | - S M Adnan Ali
- Department of Surgery, Aga Khan University Hospital, P.O. Box 3500, Stadium Road, Karachi, 74800, Pakistan.
| |
Collapse
|
2
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol 2023; 39:2437-2465. [PMID: 37338772 DOI: 10.1007/s10565-023-09818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Ranking from seventh in incidence to sixth in mortality, esophageal carcinoma is considered a severe malignancy of food pipe. Later-stage diagnosis, drug resistance, and a high mortality rate contribute to its lethality. Esophageal squamous cell carcinoma and esophageal adenocarcinoma are the two main histological subtypes of esophageal carcinoma, with squamous cell carcinoma alone accounting for more than eighty percent of its cases. While genetic anomalies are well known in esophageal cancer, accountability of epigenetic deregulations is also being explored for the recent two decades. DNA methylation, histone modifications, and functional non-coding RNAs are the crucial epigenetic players involved in the modulation of different malignancies, including esophageal carcinoma. Targeting these epigenetic aberrations will provide new insights into the development of biomarker tools for risk stratification, early diagnosis, and effective therapeutic intervention. This review discusses different epigenetic alterations, emphasizing the most significant developments in esophageal cancer epigenetics and their potential implication for the detection, prognosis, and treatment of esophageal carcinoma. Further, the preclinical and clinical status of various epigenetic drugs has also been reviewed.
Collapse
Affiliation(s)
- Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India.
| | - Sandeep Goyal
- Department of Internal Medicine, Pt. B.D, Sharma University of Health Sciences, (Haryana), Rohtak, 124001, India
| | - Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Lokesh Kadian
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
4
|
Fu J, Imani S, Wu MY, Wu RC. MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers (Basel) 2023; 15:4723. [PMID: 37835417 PMCID: PMC10571940 DOI: 10.3390/cancers15194723] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA (miRNA) are small noncoding RNAs that play vital roles in post-transcriptional gene regulation by inhibiting mRNA translation or promoting mRNA degradation. The dysregulation of miRNA has been implicated in numerous human diseases, including cancers. miR-34 family members (miR-34s), including miR-34a, miR-34b, and miR-34c, have emerged as the most extensively studied tumor-suppressive miRNAs. In this comprehensive review, we aim to provide an overview of the major signaling pathways and gene networks regulated by miR-34s in various cancers and highlight the critical tumor suppressor role of miR-34s. Furthermore, we will discuss the potential of using miR-34 mimics as a novel therapeutic approach against cancer, while also addressing the challenges associated with their development and delivery. It is anticipated that gaining a deeper understanding of the functions and mechanisms of miR-34s in cancer will greatly contribute to the development of effective miR-34-based cancer therapeutics.
Collapse
Affiliation(s)
- Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310022, China
| | - Mei-Yi Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
5
|
Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, Mahmoud AMA, Raouf AA, Elballal MS, El-Dakroury WA, AbdelRazek MMM, Noshy M, El-Husseiny HM, Abulsoud AI. The interplay of signaling pathways and miRNAs in the pathogenesis and targeted therapy of esophageal cancer. Pathol Res Pract 2023; 246:154529. [PMID: 37196470 DOI: 10.1016/j.prp.2023.154529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-β signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed M M AbdelRazek
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
6
|
Han Y, Fan X, Fan L, Wu Y, Zhou Z, Wang G, Guo L, Gao W, Chen Y, Gao Q. Liujunzi decoction exerts potent antitumor activity in oesophageal squamous cell carcinoma by inhibiting miR-34a/STAT3/IL-6R feedback loop, and modifies antitumor immunity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154672. [PMID: 36701994 DOI: 10.1016/j.phymed.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Liujunzi decoction (LJZD), a traditional herbal formula and one of the most commonly used adjuvant medications for the treatment of oesophageal squamous cell carcinoma (ESCC), exerts good antitumor and immunomodulatory activity. However, its specific mechanism of action remains largely unclear. PURPOSE In order to examine the potential primary and adjuvant antitumor mechanisms of LJZD, both in vitro and in vivo. METHODS IL-6 and miR-34a inhibitors were used to activate the miR-34a/STAT3/IL-6R feedback loop to observe the effects of LJZD. A humanised mouse model with a functional human immune system was constructed to evaluate the antitumor efficacy of LJZD in vivo on xenograft tumours, which was compared to that of the positive control drug anti-PD-1 monoclonal antibodies (mAb). Finally, a co-culture system of peripheral blood mononuclear and tumour cells in vitro was used to analyse the cytotoxic activity of LJZD on T cells. RESULTS LJZD significantly interfered with IL-6-induced activation of the miR-34a/STAT3/IL-6R feedback loop in ESCC by restoring the expression of the tumour suppressor miR-34a, and inhibited the proliferation of EC109 oesophageal cancer cells in a dose-dependant manner. Furthermore, LJZD effectively suppressed oesophageal tumour growth in vivo and alleviated organ injury and visceral index. Furthermore, LJZD boosted antitumor immunity by increasing IFN-γ expression and CD8+tumour-infiltrating lymphocytes (TILs) infiltration in the peripheral blood and tumour tissues, respectively, which may be related to a decrease in PD-1, but not PD-L1 expression. Finally, we confirmed that LJZD strengthens the killing ability of T cells by suppressing PD-1 expression in a co-culture system in vitro. CONCLUSION LJZD exerts excellent antitumor effect by interfering with the miR-34a/STAT3/IL-6R feedback loop and augmenting antitumor immune responses. Which provides new insights into mechanisms for LJZD and sheds light on the multifaceted role of phytomedicine in cancer.
Collapse
Affiliation(s)
- Yicun Han
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Xiuqi Fan
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Liyan Fan
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China
| | - Yaosong Wu
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China
| | - Zhexu Zhou
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China
| | - Ge Wang
- The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Lanwei Guo
- The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Wendong Gao
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China
| | - Yulong Chen
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, China.
| | - Qilong Gao
- The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450008, China.
| |
Collapse
|
7
|
Jothimani G, Bhatiya M, Pathak S, Paul S, Banerjee A. Tumor Suppressor microRNAs in Gastrointestinal Cancers: A Mini-Review. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:5-15. [PMID: 35670340 DOI: 10.2174/2772270816666220606112727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Gastrointestinal (GI) cancer is associated with a group of cancers affecting the organs in the GI tract, with a high incidence and mortality rate. This type of cancer development involves a series of molecular events that arise by the dysregulation of gene expressions and microRNAs (miRNAs). OBJECTIVES This mini-review focuses on elucidating the mechanism of tumor suppressor miRNA-mediated oncogenic gene silencing, which may contribute to a better understanding of miRNA-mediated gene expression regulation of cell cycle, proliferation, invasion, and apoptosis in GI cancers. In this review, the biological significance of tumor suppressor miRNAs involved in gastrointestinal cancers is briefly explained. METHODS The articles were searched with the keywords 'miRNA', 'gastrointestinal cancers', 'esophageal cancer', 'gastric cancer', 'colorectal cancer', 'pancreatic cancer', 'liver cancer', and 'gall bladder cancer' from the Google Scholar and PubMed databases. A total of 71 research and review articles have been collected and referred for this study. RESULTS This review summarises recent research enhancing the effectiveness of miRNAs as novel prognostic, diagnostic, and therapeutic markers for GI cancer treatment strategies. The expression pattern of various miRNAs has been dysregulated in GI cancers, which are associated with proliferation, cell cycle regulation, apoptosis, migration, and invasion. CONCLUSION The role of tumor suppressor miRNAs in the negative regulation of oncogenic gene expression was thoroughly explained in this review. Its potential role as a microRNA therapeutic candidate is also discussed. Profiling and regulating tumor suppressor miRNA expression in gastrointestinal cancers using miRNA mimics could be used as a prognostic, diagnostic, and therapeutic marker, as well as an elucidating molecular therapeutic approach to tumor suppression.
Collapse
Affiliation(s)
- Ganesan Jothimani
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Meenu Bhatiya
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Querétaro CP 76130, Mexico
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
8
|
De Tomi E, Campagnari R, Orlandi E, Cardile A, Zanrè V, Menegazzi M, Gomez-Lira M, Gotte G. Upregulation of miR-34a-5p, miR-20a-3p and miR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int J Mol Sci 2022; 23:ijms23031647. [PMID: 35163570 PMCID: PMC8835754 DOI: 10.3390/ijms23031647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Elisa Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Alessia Cardile
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Valentina Zanrè
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
- Correspondence:
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| |
Collapse
|
9
|
|
10
|
Akhlaghipour I, Bina AR, Abbaszadegan MR, Moghbeli M. Methylation as a critical epigenetic process during tumor progressions among Iranian population: an overview. Genes Environ 2021; 43:14. [PMID: 33883026 PMCID: PMC8059047 DOI: 10.1186/s41021-021-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
Cancer is one of the main health challenges and leading causes of deaths in the world. Various environmental and genetic risk factors are associated with tumorigenesis. Epigenetic deregulations are also important risk factors during tumor progression which are reversible transcriptional alterations without any genomic changes. Various mechanisms are involved in epigenetic regulations such as DNA methylation, chromatin modifications, and noncoding RNAs. Cancer incidence and mortality have a growing trend during last decades among Iranian population which are significantly related to the late diagnosis. Therefore, it is required to prepare efficient molecular diagnostic panels for the early detection of cancer in this population. Promoter hyper methylation is frequently observed as an inhibitory molecular mechanism in various genes associated with DNA repair, cell cycle regulation, and apoptosis during tumor progression. Since aberrant promoter methylations have critical roles in early stages of neoplastic transformations, in present review we have summarized all of the aberrant methylations which have been reported during tumor progression among Iranian cancer patients. Aberrant promoter methylations are targetable and prepare novel therapeutic options for the personalized medicine in cancer patients. This review paves the way to introduce a non-invasive methylation specific panel of diagnostic markers for the early detection of cancer among Iranians.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Sun CX, Zhu F, Qi L. Demethylated miR-216a Regulates High Mobility Group Box 3 Promoting Growth of Esophageal Cancer Cells Through Wnt/β-Catenin Pathway. Front Oncol 2021; 11:622073. [PMID: 33842327 PMCID: PMC8025835 DOI: 10.3389/fonc.2021.622073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background Esophageal cancer (EC) is the eighth most common cause of cancer-associated mortality in humans. Recent studies have revealed the important roles of microRNAs (miRs) in mediating tumor initiation and progression. miR-216a has been found to be involved in the progression of EC, but the underlying mechanisms remain largely unknown. The aim of this study is to explore the mechanism of miR-216a and the downstream molecules in esophageal cancer. Materials and Methods The degree of methylation of miR-216a promoter in EC tissues and cell lines was determined with methylation specific polymerase chain reaction (MSP). The levels of miR-216a and HMGB3 in EC cells were quantified by quantitative PCR (qPCR) and Western blot (WB). EC cell lines were treated with DNA methylation inhibitor 5-aza-2’-deoxycytidine (5-AZ), miR-216a mimics, and HMGB3 siRNA to explore the effects of miR-216a and HMGB3 on the proliferation, migration, invasion, and apoptosis of cells. Dual-luciferase reporter assay was employed to verify the binding of miR-216a to the 3’UTR of HMGB2 mRNA. Results The promoter of MiR-216a was hypermethylated and the expression of miR-216a was down-regulated in EC, while HMGB3 was up-regulated. Dual luciferase reporter assay confirmed the binding of miR-216a to the 3’UTR of HMGB3 mRNA. Demethylated miR-216a and miR-216a mimics elevated miR-216a expression and down-regulated HMGB3, as well as inhibited cell proliferation, migration, and invasion. Inhibiting the expression of HMGB3 played an important role in inducing apoptosis, suppressing cell expansion, and down-regulating the activity of Wnt/β-catenin pathway. Conclusions Hypermethylation in the promoter of miR-216a upregulated HMGB3 and the Wnt/β-catenin pathway, resulting in enhanced EC progression.
Collapse
Affiliation(s)
- Cheng-Xi Sun
- Department of Clinical Laboratory, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Zhu
- Department of Thoracic Surgery, Shandong Provincial Chest Hospital, Jinan, China
| | - Lei Qi
- Department of Thoracic Surgery, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Chen YL, Liu XL, Li L. Prognostic value of low microRNA-34a expression in human gastrointestinal cancer: a systematic review and meta-analysis. BMC Cancer 2021; 21:63. [PMID: 33446130 PMCID: PMC7807881 DOI: 10.1186/s12885-020-07751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022] Open
Abstract
Background Mounting evidence shows that microRNA-34a (miR-34a) is involved in cancer prognosis. Therefore, we summarize the predictive role of miR-34a for survival in patients with gastrointestinal cancers (GICs). Methods All eligible studies were found by searching PubMed, Web of Science and EMBASE, and survival results were extracted. Then, the hazard ratio (HR) with the corresponding 95% confidence interval (CI) was calculated to evaluate the prognostic role of miR-34a in GICs. The association between miR-34a expression and clinicopathological characteristics was estimated by odds ratios (ORs) and 95% CIs. Results A total of 20 studies were included in this meta-analysis. For overall survival (OS), lower miR-34a expression could probably predict poorer outcome in GICs, with a pooled HR of 1.86 (95% CI: 1.52–2.28, P < 0.01). For disease-free survival (DFS), progression-free survival (PFS), and recurrence-free survival (RFS), lower miR-34a expression was related to worse DFS/PFS/RFS with a pooled HR of 1.86 (95% CI: 1.31–2.63, P < 0.01). A significant relation of differentiation/TNM stage/lymphatic metastasis and the expression level of miR-34a was identified. Conclusion This meta-analysis revealed that lower miR-34a expression is significantly connected with worse OS and DFS/PFS/RFS in GIC patients. In addition, the miR-34a expression level is relatively lower in patients with lymph node metastasis than in patients without lymph node metastasis, and decreased miR-34a expression levels are linked to poor tumour differentiation and late TNM stage. MiR-34a may become a new factor for the prognosis prediction and progression of GICs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07751-y.
Collapse
Affiliation(s)
- Yan-Ling Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215006, Jiangsu, China
| | - Xiao-Lin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215006, Jiangsu, China.
| | - Ling Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
13
|
Alizadeh N, Asadi M, Shanehbandi D, Zafari V, Shomali N, Asvadi T, Sepehri B. Evaluation of the Methylation of MIR129-2 Gene in Gastric Cancer. J Gastrointest Cancer 2020; 51:267-270. [PMID: 31073863 DOI: 10.1007/s12029-019-00239-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Genetic and epigenetic changes have strong role in the development of gastric cancer. The mutation of the MIR129-2 gene is one of the major causes in many cancers, especially gastric cancer. The aim of this study was to investigate the methylation changes of the MIR129-2 gene in tumor and normal tissue of patients with gastric cancer. METHOD In this study, 50 gastric cancer patients with Iranian Azari ethnic origin without any familial relations were included. Genomic DNAs was extracted from the tumoral and normal tissues. Then the promotor regions of the MIR129-2 gene were analyzed by methylation-specific PCR (MSP) to evaluate the presence or absence of methylated CpG sites. RESULTS There was a statistically significant difference in methylation level of MIR129-2 gene between tumoral and normal tissues. It was observed that 84 out of 100 CpG cites were methylated in tumoral tissues in compression to 13 out of 100 CpG cites in normal tissues. CONCLUSION MIR129-2 gene was hypermethylated in tumoral tissues, suggesting that methylation is involved in the development of gastric cancer.
Collapse
Affiliation(s)
- Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Touraj Asvadi
- Department of Surgery, Tabriz University of Medical sciences, Tabriz, Iran
| | - Bita Sepehri
- Liver and Gastrointestinal disease Research Center, Tabriz University of Medical sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Ghafouri‐Fard S, Shoorei H, Dashti S, Branicki W, Taheri M. Expression profile of lncRNAs and miRNAs in esophageal cancer: Implications in diagnosis, prognosis, and therapeutic response. J Cell Physiol 2020; 235:9269-9290. [DOI: 10.1002/jcp.29825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Soudeh Ghafouri‐Fard
- Department of Medical Genetics Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences Birjand University of Medical Sciences Birjand Iran
| | - Sepideh Dashti
- Department of Medical Genetics Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University Kraków Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Mohammad Hoseini Azar MR, Shanehbandi D, Mansouri M, Pashaei Sarand S, Asadi M, Akbari M, Sadeghzadeh M, Abolghasemi M, Poursaei E, Gasembaglou S. Altered expression levels of miR-212, miR-133b and miR-27a in tongue squamous cell carcinoma (TSCC) with clinicopathological considerations. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Wu Y, Guan S, Ge Y, Yang Y, Cao Y, Zhou J. Cigarette smoke promotes chronic obstructive pulmonary disease (COPD) through the miR-130a/Wnt1 axis. Toxicol In Vitro 2020; 65:104770. [PMID: 31935487 DOI: 10.1016/j.tiv.2020.104770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
Cigarette smoke (CS) is a crucial factor in chronic obstructive pulmonary disease (COPD). Wnt/β-catenin signaling deregulation may further contribute to COPD progression. The deregulation and dysfunction of miRNAs in COPD have been reported. Investigating the deregulated miRNAs and their potential role in COPD progression may provide novel strategies for COPD treatment. In the present study, we analyzed significantly differentially-expressed miRNAs in COPD according to GSE44531 and miR-130a was selected. We revealed the upregulation of miR-130a in COPD, both in cigarette smoke extract (CSE)-treated BEAS-2B cells and CS-exposed mice. MiR-130a negatively regulated three critical factors in Wnt/β-catenin signaling, Wnt1, β-Catenin, and LEF1. MiR-130a inhibition rescued CSE-blocked activation of Wnt/β-catenin signaling in vitro. MiR-130a targets WNT1 3'UTR to inhibit its expression. Moreover, in CSE-stimulated BEAS-2B cells, miR-130a overexpression aggravated, while miR-130a inhibition partially attenuated CSE-caused suppression on cell migration and proliferation. MiR-130a aggravates CSE-induced cellular injury in BEAS-2B cells by targeting Wnt signaling. In summary, miR-130a has a pathogenetic role in CS-induced COPD and regulates Wnt/β-catenin signaling via targeting Wnt1. Our findings indicate that miR-130a is a potential therapeutic target for the treatment of CS-induced COPD.
Collapse
Affiliation(s)
- Yudi Wu
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Shuhong Guan
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Yunqi Ge
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Yun Yang
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Yi Cao
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Jun Zhou
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
17
|
Huang F, Liu H, Lei Z, Li Z, Zhang T, Yang M, Zhou K, Sun C. Long noncoding RNA CCAT1 inhibits miR-613 to promote nonalcoholic fatty liver disease via increasing LXRα transcription. J Cell Physiol 2020; 235:9819-9833. [PMID: 32413192 DOI: 10.1002/jcp.29795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 12/30/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is regarded as a threat to public health; however, the pathologic mechanism of NAFLD is not fully understood. We attempted to identify abnormally expressed long noncoding RNA (lncRNAs) and messenger RNA that may affect the occurrence and development of NAFLD in this study. The expression of differentially expressed lncRNAs in NAFLD was determined in oleic acid (OA)-treated L02 cells, and the functions of CCAT1 in lipid droplet formation were evaluated in vitro. Differentially expressed genes (DEGs) were analyzed by microarray analysis, and DEGs related to CCTA1 were selected and verified by weighted correlation network analysis. The dynamic effects of LXRα and CCTA1 on lipid droplet formation and predicted binding was examined. The binding between miR-631 and CCAT1 and LXRα was verified. The dynamic effects of miR-613 inhibition and CCTA1 silencing on lipid droplet formation were examined. The expression and correlations of miR-631, CCAT1, and LXRα were determined in tissue samples. As the results show, CCAT1 was induced by OA and upregulated in NAFLD clinical samples. CCAT1 silencing significantly suppressed lipid droplet accumulation in vitro. LXRα was positively correlated with CCAT1. By inhibiting miR-613, CCAT1 increased the transcription of LXRα and promoted LXRα expression. The expression of LXRα was significantly increased in NAFLD tissues and was positively correlated with CCAT1. In conclusion, CCAT1 increases LXRα transcription by serving as a competing endogenous RNA for miR-613 in an LXRE-dependent manner, thereby promoting lipid droplet formation and NAFLD. CCAT1 and LXRα might be potent targets for NAFLD treatment.
Collapse
Affiliation(s)
- Feizhou Huang
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huaizheng Liu
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Lei
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenzhou Li
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Tianyi Zhang
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingshi Yang
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kefu Zhou
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuanzheng Sun
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Asadi M, Shanehbandi D, Zafari V, Khaze V, Somi MH, Hashemzadeh S. Transcript Level of MicroRNA Processing Elements in Gastric Cancer. J Gastrointest Cancer 2020; 50:855-859. [PMID: 30168106 DOI: 10.1007/s12029-018-0154-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aberrant expression of microRNAs (miRNAs) has been implicated in the etiopathogenesis and development of various cancers. Drosha and Dicer are the main components of the miRNA biosynthesis machine. Another enzyme, DGCR8, is the assistant of Drosha in the processing complex. Here, we tried to evaluate the mRNA transcript level of Drosha, Dicer, and DGCR8 genes in involved tissues from patients with gastric cancer. METHODS Fifty tumoral and their marginal tissues, as the control group, were obtained from patients with gastric cancer. After RNA extraction from tissues and cDNA synthesis, quantification of mRNA expression of Drosha, Dicer, and DGCR8 was conducted using SYBR Green master mix and real-time PCR. RESULTS It was observed that mRNA expression levels of Drosha, Dicer, and DGCR8 were significantly upregulated in tumoral tissues compared with marginal tissues. Upregulation of these genes was not correlated with clinical manifestations of the patients. CONCLUSIONS Upregulation of Drosha, Dicer, and DGCR8 plays a role in the development of cancer, probably through dysregulated the expression level of miRNAs.
Collapse
Affiliation(s)
- Milad Asadi
- Research Centers for Liver and Gastrointestinal Disease, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Pulmonary Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hosein Somi
- Research Centers for Liver and Gastrointestinal Disease, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of General and Vascular Surgery, Imam Reza Educational Hospital, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Ghaffari M, Asadi M, Shanehbandi D, Bornehdeli S, Sadeghzadeh M, Mohammad Reza Khani H, Ghasembaglou S. Aberrant Expression of miR-103, miR-184, miR-378, miR-497 and miR-506 in Tumor Tissue from Patients with Oral Squamous Cell Carcinoma Regulates the Clinical Picture of the Patients. Asian Pac J Cancer Prev 2020; 21:1311-1315. [PMID: 32458638 PMCID: PMC7541872 DOI: 10.31557/apjcp.2020.21.5.1311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/01/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the expression patterns of miR-103, miR-184, miR-378, miR497 and in squamous cell carcinoma (SCC) of the tongue and to be compared with normal peripheral tissues. METHODS Tumor and marginal tissues were obtained from 50 patients with OSCC. After RNA extraction, expression level of miR-103, miR-184, miR-378, miR497, and miR506 was estimated using SYBR green master mix and real-time quantitative PCR. RESULTS It was observed that, there was no detectable difference in expression level of miR-103 between tumoral and marginal tissues. However, expression level of miR-184, and miR-378 showed significant increase in tumor tissue samples compared to marginal tissue samples. MiR-497 and miR-506 demonstrated considerable decrease in tumoral cells in comparison with peripheral tissues. Moreover, the expression level of miRNAs was associated with clinicopathological features of the patients. CONCLUSIONS Our data indicated that miR-184, miR-378, miR-497, and miR-506 can be used as a potential diagnostic and prognostic biomarker in OSCC. Nevertheless, more studies are needed to confirm this claim. .
Collapse
Affiliation(s)
- Maryam Ghaffari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Milad Asadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Dariush Shanehbandi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soghra Bornehdeli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahsa Sadeghzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Shahram Ghasembaglou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Medical Faculty, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
20
|
Kong J, Wang W. A Systemic Review on the Regulatory Roles of miR-34a in Gastrointestinal Cancer. Onco Targets Ther 2020; 13:2855-2872. [PMID: 32308419 PMCID: PMC7138617 DOI: 10.2147/ott.s234549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding single-stranded small-molecule RNAs that regulate gene expression by repressing target messenger RNA (mRNA) translation or degrading mRNA. miR-34a is one of the most important miRNAs participating in various physiological and pathological processes. miR-34a is abnormally expressed in a variety of tumors. The roles of miR-34a in gastrointestinal cancer (GIC) draw lots of attention. Numerous studies have demonstrated that dysregulated miR-34a is closely related to the proliferation, differentiation, migration, and invasion of tumor cells, as well as the diagnosis, prognosis, treatment, and chemo-resistance of tumors. Thus, we systematically reviewed the abnormal expression and regulatory roles of miR-34a in GICs including esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), and gallbladder cancer (GBC). It may provide a profile of versatile roles of miR-34a in GICs.
Collapse
Affiliation(s)
- Jiehong Kong
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
21
|
Guan S, Wu Y, Zhang Q, Zhou J. TGF‑β1 induces CREB1‑mediated miR‑1290 upregulation to antagonize lung fibrosis via Napsin A. Int J Mol Med 2020; 46:141-148. [PMID: 32319530 PMCID: PMC7255477 DOI: 10.3892/ijmm.2020.4565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
The pathologic mechanisms of pulmonary fibrosis (PF), one of the most common chronic pulmonary diseases, remain unclear. Napsin A is an aspartic proteinase that has been regarded as a hallmark of pulmonary adenocarcinoma. The present study aimed to investigate the specific function and molecular mechanisms of Napsin A in PF from the perspective of microRNA (miRNA or miR) regulation. In the present study, it was found that miR-1290 downregulated the expression of Napsin A by binding to its 3′-UTR. Cell viability was examined by MTT assay. The protein levels of α-smooth muscle actin (α-SMA), Collagen I and Napsin A were examined by western blot analysis. The predicted targeting of Napsin A by miR-1290 was validated by luciferase reporter assay. The protein content of α-SMA was examined by immunofluorescence staining. miR-1290 was found to be upregulated in blood samples from patients with PF and in TGF-β1-stimulated A549 cells. miR-1290 was found to directly target Napsin A. miR-1290 overexpression also significantly promoted A549 cell proliferation and increased the protein levels of markers of fibrosis. Napsin A knockdown exerted effects on A549 cell proliferation and TGF-β1-induced fibrosis that were similar to those induced by miR-1290 overexpression; more importantly, Napsin A knockdown significantly reversed the effects of miR-1290 inhibition, indicating that miR-1290 promotes TGF-β1-induced fibrosis by targeting Napsin A. Moreover, TGF-β1-induced CAMP responsive element binding protein 1 (CREB1) overexpression promoted the transcription of miR-1290 in A549 cells. On the whole, the findings of the present study demonstrate that TGF-β1-induced CREB1 over-expression induces the significant upregulation of miR-1290 expression, thus aggravating TGF-β1-induced fibrotic changes in A549 cells via the miR-1290 downstream target, Napsin A.
Collapse
Affiliation(s)
- Shuhong Guan
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Yudi Wu
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Qiudi Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
22
|
Wang X, Zhao Y, Lu Q, Fei X, Lu C, Li C, Chen H. MiR-34a-5p Inhibits Proliferation, Migration, Invasion and Epithelial-mesenchymal Transition in Esophageal Squamous Cell Carcinoma by Targeting LEF1 and Inactivation of the Hippo-YAP1/TAZ Signaling Pathway. J Cancer 2020; 11:3072-3081. [PMID: 32226522 PMCID: PMC7086260 DOI: 10.7150/jca.39861] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Our previous studies reported that lymphoid enhancer-binding factor 1 (LEF1) was upregulated in esophageal squamous cell carcinoma (ESCC) and the positive expression of LEF1 was correlated with aberrant clinicopathological characteristics in ESCC patients. However, the upstream mechanism of regulating LEF1 is not clear fully. In this study, we explored the role of miR-34a-5p in ESCC and the possible regulatory mechanism. Methods: In this study, we applied western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), bioinformatics analysis, a luciferase reporter assay, and a series of functional assays to show the potential role of miR-34a-5p in regulating LEF1 in ESCC. Results: By various functional assays, we demonstrated that LEF1 promoted proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in ESCC cells. By bioinformatics analysis and luciferase reporter assay, miR-34a-5p was identified for directly targeting LEF1. Then we investigated the expression of miR-34a-5p and LEF1 in ESCC. As a result, miR-34a-5p was downregulated while LEF1 was upregulated in ESCC tissue and cell lines. Overexpression of miR-34a-5p could inhibit proliferation, migration, invasion and EMT of ESCC cells. The rescue experiment showed that re-expression of LEF1 reversed the suppressive effect caused by miR-34a-5p. At last, we found that miR-34a-5p could suppress Hippo-YAP1/TAZ signaling pathway in ESCC. Conclusion: Our results indicate miR-34a-5p inhibits proliferation, migration, invasion and EMT in ESCC by targeting LEF1 and suppressing the Hippo-YAP1/TAZ signaling pathway, which may provide a new antitumor strategy to delay ESCC progress.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Qijue Lu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chaojing Lu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chunguang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
23
|
Ostadrahimi S, Abedi Valugerdi M, Hassan M, Haddad G, Fayaz S, Parvizhamidi M, Mahdian R, Fard Esfahani P. miR-1266-5p and miR-185-5p Promote Cell Apoptosis in Human Prostate Cancer Cell Lines. Asian Pac J Cancer Prev 2018; 19:2305-2311. [PMID: 30141307 PMCID: PMC6171381 DOI: 10.22034/apjcp.2018.19.8.2305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective: Small non-coding RNA molecules are dysregulated in prostate cancer (PCa). In our previous study, downregulation of miR-1266 and miR-185 was demonstrated in PCa tissues and cell lines. The aim of the present study was to investigate whether miR-1266 and miR-185 are involved in the regulation of B-cell lymphoma (BCL) 2 and BCL2L1, respectively, and whether transfection of PCa cell lines with miR-1266 and miR-185 mimics can alter tumorigenic phenotypes. Methods: In order to investigate the regulation of BCL2 and BCL2L1 mRNA levels by miR-1266 and miR-185, respectively, a luciferase reporter assay was used. Real-time PCR was also used to analyze changes in the levels of BCL2 and BCL2L1 mRNAs in PCa cell lines following transfection with synthetic miR-1266 and miR-185. Cell apoptosis was determined by Annexin V protein expression analysis via flow cytometry. In addition to the MTT assay, a cell proliferation assay was performed. Result: A luciferase assay confirmed that the BCL2 and BCL2L1 genes may be targeted by miR-1266 and miR-185, respectively, through binding to their 3′UTR regions. Transfection of PC3 and DU145 cells with miR-1266 and miR-185 induced apoptosis and reduced proliferation, which also revealed an inverse correlation with BCL2 and BCL2L1 gene expression in the treated cells. Conclusion: Our data suggests that miR-1266 and miR-185 may be novel candidates for further research in PCa treatment through the anti-apoptotic pathway.
Collapse
Affiliation(s)
- Shiva Ostadrahimi
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.,Department of Laboratory Medicine, Department of Experimental Cancer Medicine, Karolinska Institutet Huddinge, 141 86 Stockholm, Sweden. ,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Baghbani E, Khaze V, Sadreddini S, Mokhtarzadeh A, Mansoori B, Mohammadi A, Vatankhahan V, Toosi P, Baradaran B. PTPN22 Silencing in Human Acute T-Cell Leukemia Cell Line (Jurkat Cell) and its Effect on the Expression of miR-181a and miR-181b. Adv Pharm Bull 2018; 8:277-282. [PMID: 30023329 PMCID: PMC6046418 DOI: 10.15171/apb.2018.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/12/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose: T-cell acute lymphoblastic leukemia (T-ALL) is one of the most common malignancies associated with T-lymphocytes, accounting for 10 to 15 percent of ALL cases in children and 25 percent in adults. Innovative therapeutic approaches that overcome ineffective treatments on tumor cells may be a potential source of improvement in therapeutic approaches. Suppression of gene expression at transfusion level is one of the important strategies in gene therapy. The expression of PTPN22 and miR-181 genes in all types of hematologic malignancies increases and is likely to contribute to the survival and death of cells by affecting a variety of signaling pathways. The purpose of this study was to determine the role of PTPN22 inhibition by siRNA, and alteration in miR-181a and miR-181b in Jurkat cell line. Methods: Jurkat cells were transfected with 80 pmol of siRNA to inhibit PTPN22. After that, expression of PTPN22 mRNA and transcript levels of miR-181a and miR-181b were measured with Real-time PCR after 48hrs. Results: Experiments demonstrated that siRNA transfection resulted in significant downregulation of PTPN22 mRNA after 48 hrs in 80 pmol dose of siRNA. Moreover, transcript levels of both miR-181a and miR-181b was decreased after transfection. Conclusion: PTPN22, miR-181a and miR-181b might be involved in progression of Jurkat cells and targeting these molecules by RNAi might confer promising tool in treatment of T-ALL.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Vatankhahan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Toosi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|