1
|
Doi A, Delaney C, Tanner D, Burkhart K, Bell RD. RNA exon editing: Splicing the way to treat human diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102311. [PMID: 39281698 PMCID: PMC11401238 DOI: 10.1016/j.omtn.2024.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
RNA exon editing is a therapeutic strategy for correcting disease-causing mutations by inducing trans-splicing between a synthetic RNA molecule and an endogenous pre-mRNA target, resulting in functionally restored mRNA and protein. This approach enables the replacement of exons at the kilobase scale, addresses multiple mutations with a single therapy, and maintains native gene expression without changes to DNA. For genes larger than 5 kb, RNA exon editors can be delivered in a single vector despite AAV capacity limitations because only mutated exons need to be replaced. While correcting mutations by trans-splicing has been previously demonstrated, prior attempts were hampered by low efficiency or lack of translation in preclinical models. Advances in synthetic biology, next-generation sequencing, and bioinformatics, with a deeper understanding of mechanisms controlling RNA splicing, have triggered a re-emergence of trans-splicing and the development of new RNA exon editing molecules for treating human disease, including the first application in a clinical trial (this study was registered at ClinicalTrials.gov [NCT06467344]). Here, we provide an overview of RNA splicing, the history of trans-splicing, previously reported therapeutic applications, and how modern advances are enabling the discovery of RNA exon editing molecules for genetic targets unable to be addressed by conventional gene therapy and gene editing approaches.
Collapse
Affiliation(s)
- Akiko Doi
- Ascidian Therapeutics, Boston, MA, USA
| | | | | | | | | |
Collapse
|
2
|
COL7A1 Editing via RNA Trans-Splicing in RDEB-Derived Skin Equivalents. Int J Mol Sci 2023; 24:ijms24054341. [PMID: 36901775 PMCID: PMC10002491 DOI: 10.3390/ijms24054341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule.
Collapse
|
3
|
Shababi M, Smith CE, Ricardez Hernandez SM, Marquez J, Al Rawi Z, Villalón E, Farris KD, Garro-Kacher MO, Lorson CL. Defining the optimal dose and therapeutic window in SMA with respiratory distress type I model mice, FVB/NJ- Ighmpb2 nmd-2J. Mol Ther Methods Clin Dev 2021; 23:23-32. [PMID: 34553000 PMCID: PMC8426477 DOI: 10.1016/j.omtm.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disorder that develops in infancy and arises from mutation of the immunoglobulin helicase μ-binding protein 2 (IGHMBP2) gene. Whereas IGHMBP2 is ubiquitously expressed, loss or reduction of function leads to alpha motor neuron loss and skeletal muscle atrophy. We previously developed a gene therapy strategy for SMARD1 using a single-stranded AAV9-IGHMBP2 vector and compared two different delivery methods in a validated SMARD1 mouse model. An important question in the field relates to the temporal requirements for this or any potential treatment. To examine the therapeutic window, we utilized our recently developed SMARD1 model, FVB/NJ-Ighmpb2 nmd-2J , to deliver AAV9-IGHMBP2 at four different time points starting at post-natal day 2 (P2) through P8. At each time point, significant improvements were observed in survival, weight gain, and motor function. Similarly, treatment improved important hallmarks of disease, including motor unit pathology. Whereas improvements were more pronounced in the early-treatment groups, even the later-treatment groups displayed significant phenotypic improvements. This work suggests that an effective gene therapy strategy could provide benefits to pre-symptomatic and early-symptomatic individuals, thereby expanding the potential therapeutic window for SMARD1.
Collapse
Affiliation(s)
- Monir Shababi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Caley E. Smith
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | - Jose Marquez
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zayd Al Rawi
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Eric Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - K. David Farris
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Mona O. Garro-Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Abstract
BACKGROUND RNA trans-splicing joins exons from different pre-mRNA transcripts to generate a chimeric product. Trans-splicing can also occur at the protein level, with split inteins mediating the ligation of separate gene products to generate a mature protein. SOURCES OF DATA Comprehensive literature search of published research papers and reviews using Pubmed. AREAS OF AGREEMENT Trans-splicing techniques have been used to target a wide range of diseases in both in vitro and in vivo models, resulting in RNA, protein and functional correction. AREAS OF CONTROVERSY Off-target effects can lead to therapeutically undesirable consequences. In vivo efficacy is typically low, and delivery issues remain a challenge. GROWING POINTS Trans-splicing provides a promising avenue for developing novel therapeutic approaches. However, much more research needs to be done before developing towards preclinical studies. AREAS TIMELY FOR DEVELOPING RESEARCH Increasing trans-splicing efficacy and specificity by rational design, screening and competitive inhibition of endogenous cis-splicing.
Collapse
Affiliation(s)
- Elizabeth M Hong
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Carin K Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
5
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE, Cochrane Neuromuscular Group. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2020; 1:CD006282. [PMID: 32006461 PMCID: PMC6995983 DOI: 10.1002/14651858.cd006282.pub5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a (point) mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. This is an update of a review first published in 2009 and previously updated in 2011. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA types II and III, and to assess if such therapy can be given safely. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. In October 2018, we also searched two trials registries to identify unpublished trials. SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a homozygous deletion or hemizygous deletion in combination with a point mutation in the second allele of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis. The primary outcome measure was change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full-time ventilation and adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1-replacement with viral vectors are out of the scope of this review, but a summary is given in Appendix 1. Drug treatment for SMA type I is the topic of a separate Cochrane Review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS The review authors found 10 randomised, placebo-controlled trials of treatments for SMA types II and III for inclusion in this review, with 717 participants. We added four of the trials at this update. The trials investigated creatine (55 participants), gabapentin (84 participants), hydroxyurea (57 participants), nusinersen (126 participants), olesoxime (165 participants), phenylbutyrate (107 participants), somatotropin (20 participants), thyrotropin-releasing hormone (TRH) (nine participants), valproic acid (33 participants), and combination therapy with valproic acid and acetyl-L-carnitine (ALC) (61 participants). Treatment duration was from three to 24 months. None of the studies investigated the same treatment and none was completely free of bias. All studies had adequate blinding, sequence generation and reporting of primary outcomes. Based on moderate-certainty evidence, intrathecal nusinersen improved motor function (disability) in children with SMA type II, with a 3.7-point improvement in the nusinersen group on the Hammersmith Functional Motor Scale Expanded (HFMSE; range of possible scores 0 to 66), compared to a 1.9-point decline on the HFMSE in the sham procedure group (P < 0.01; n = 126). On all motor function scales used, higher scores indicate better function. Based on moderate-certainty evidence from two studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: creatine (median change 1 higher, 95% confidence interval (CI) -1 to 2; on the Gross Motor Function Measure (GMFM), scale 0 to 264; n = 40); and combination therapy with valproic acid and carnitine (mean difference (MD) 0.64, 95% CI -1.1 to 2.38; on the Modified Hammersmith Functional Motor Scale (MHFMS), scale 0 to 40; n = 61). Based on low-certainty evidence from other single studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: gabapentin (median change 0 in the gabapentin group and -2 in the placebo group on the SMA Functional Rating Scale (SMAFRS), scale 0 to 50; n = 66); hydroxyurea (MD -1.88, 95% CI -3.89 to 0.13 on the GMFM, scale 0 to 264; n = 57), phenylbutyrate (MD -0.13, 95% CI -0.84 to 0.58 on the Hammersmith Functional Motor Scale (HFMS) scale 0 to 40; n = 90) and monotherapy of valproic acid (MD 0.06, 95% CI -1.32 to 1.44 on SMAFRS, scale 0 to 50; n = 31). Very low-certainty evidence suggested that the following interventions had little or no effect on motor function: olesoxime (MD 2, 95% -0.25 to 4.25 on the Motor Function Measure (MFM) D1 + D2, scale 0 to 75; n = 160) and somatotropin (median change at 3 months 0.25 higher, 95% CI -1 to 2.5 on the HFMSE, scale 0 to 66; n = 19). One small TRH trial did not report effects on motor function and the certainty of evidence for other outcomes from this trial were low or very low. Results of nine completed trials investigating 4-aminopyridine, acetyl-L-carnitine, CK-2127107, hydroxyurea, pyridostigmine, riluzole, RO6885247/RG7800, salbutamol and valproic acid were awaited and not available for analysis at the time of writing. Various trials and studies investigating treatment strategies other than nusinersen (e.g. SMN2-augmentation by small molecules), are currently ongoing. AUTHORS' CONCLUSIONS Nusinersen improves motor function in SMA type II, based on moderate-certainty evidence. Creatine, gabapentin, hydroxyurea, phenylbutyrate, valproic acid and the combination of valproic acid and ALC probably have no clinically important effect on motor function in SMA types II or III (or both) based on low-certainty evidence, and olesoxime and somatropin may also have little to no clinically important effect but evidence was of very low-certainty. One trial of TRH did not measure motor function.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
6
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE, Cochrane Neuromuscular Group. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2019; 12:CD006281. [PMID: 31825542 PMCID: PMC6905354 DOI: 10.1002/14651858.cd006281.pub5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a point mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. By definition, children with SMA type I are never able to sit without support and usually die or become ventilator dependent before the age of two years. There have until very recently been no drug treatments to influence the course of SMA. We undertook this updated review to evaluate new evidence on emerging treatments for SMA type I. The review was first published in 2009 and previously updated in 2011. OBJECTIVES To assess the efficacy and safety of any drug therapy designed to slow or arrest progression of spinal muscular atrophy (SMA) type I. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. We also searched two trials registries to identify unpublished trials (October 2018). SELECTION CRITERIA We sought all randomised controlled trials (RCTs) or quasi-RCTs that examined the efficacy of drug treatment for SMA type I. Included participants had to fulfil clinical criteria and have a genetically confirmed deletion or mutation of the SMN1 gene (5q11.2-13.2). The primary outcome measure was age at death or full-time ventilation. Secondary outcome measures were acquisition of motor milestones, i.e. head control, rolling, sitting or standing, motor milestone response on disability scores within one year after the onset of treatment, and adverse events and serious adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1 gene replacement with viral vectors are out of the scope of this review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS We identified two RCTs: one trial of intrathecal nusinersen in comparison to a sham (control) procedure in 121 randomised infants with SMA type I, which was newly included at this update, and one small trial comparing riluzole treatment to placebo in 10 children with SMA type I. The RCT of intrathecally-injected nusinersen was stopped early for efficacy (based on a predefined Hammersmith Infant Neurological Examination-Section 2 (HINE-2) response). At the interim analyses after 183 days of treatment, 41% (21/51) of nusinersen-treated infants showed a predefined improvement on HINE-2, compared to 0% (0/27) of participants in the control group. This trial was largely at low risk of bias. Final analyses (ranging from 6 months to 13 months of treatment), showed that fewer participants died or required full-time ventilation (defined as more than 16 hours daily for 21 days or more) in the nusinersen-treated group than the control group (hazard ratio (HR) 0.53, 95% confidence interval (CI) 0.32 to 0.89; N = 121; a 47% lower risk; moderate-certainty evidence). A proportion of infants in the nusinersen group and none of 37 infants in the control group achieved motor milestones: 37/73 nusinersen-treated infants (51%) achieved a motor milestone response on HINE-2 (risk ratio (RR) 38.51, 95% CI 2.43 to 610.14; N = 110; moderate-certainty evidence); 16/73 achieved head control (RR 16.95, 95% CI 1.04 to 274.84; moderate-certainty evidence); 6/73 achieved independent sitting (RR 6.68, 95% CI 0.39 to 115.38; moderate-certainty evidence); 7/73 achieved rolling over (RR 7.70, 95% CI 0.45 to 131.29); and 1/73 achieved standing (RR 1.54, 95% CI 0.06 to 36.92; moderate-certainty evidence). Seventy-one per cent of nusinersen-treated infants versus 3% of infants in the control group were responders on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) measure of motor disability (RR 26.36, 95% CI 3.79 to 183.18; N = 110; moderate-certainty evidence). Adverse events and serious adverse events occurred in the majority of infants but were no more frequent in the nusinersen-treated group than the control group (RR 0.99, 95% CI 0.92 to 1.05 and RR 0.70, 95% CI 0.55 to 0.89, respectively; N = 121; moderate-certainty evidence). In the riluzole trial, three of seven children treated with riluzole were still alive at the ages of 30, 48, and 64 months, whereas all three children in the placebo group died. None of the children in the riluzole or placebo group developed the ability to sit, which was the only milestone reported. There were no adverse effects. The certainty of the evidence for all measured outcomes from this study was very low, because the study was too small to detect or rule out an effect, and had serious limitations, including baseline differences. This trial was stopped prematurely because the pharmaceutical company withdrew funding. Various trials and studies investigating treatment strategies other than nusinersen, such as SMN2 augmentation by small molecules, are ongoing. AUTHORS' CONCLUSIONS Based on the very limited evidence currently available regarding drug treatments for SMA type 1, intrathecal nusinersen probably prolongs ventilation-free and overall survival in infants with SMA type I. It is also probable that a greater proportion of infants treated with nusinersen than with a sham procedure achieve motor milestones and can be classed as responders to treatment on clinical assessments (HINE-2 and CHOP INTEND). The proportion of children experiencing adverse events and serious adverse events on nusinersen is no higher with nusinersen treatment than with a sham procedure, based on evidence of moderate certainty. It is uncertain whether riluzole has any effect in patients with SMA type I, based on the limited available evidence. Future trials could provide more high-certainty, longer-term evidence to confirm this result, or focus on comparing new treatments to nusinersen or evaluate them as an add-on therapy to nusinersen.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
7
|
Shababi M, Smith CE, Kacher M, Alrawi Z, Villalon E, Davis D, Bryda EC, Lorson CL. Development of a novel severe mouse model of spinal muscular atrophy with respiratory distress type 1: FVB-nmd. Biochem Biophys Res Commun 2019; 520:341-346. [PMID: 31604525 PMCID: PMC6936219 DOI: 10.1016/j.bbrc.2019.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 11/29/2022]
Abstract
Spinal Muscular Atrophy with Respiratory Distress type 1 (SMARD1) is an autosomal recessive disease that develops early during infancy. The gene responsible for disease development is immunoglobulin helicase μ-binding protein 2 (IGHMBP2). IGHMBP2 is a ubiquitously expressed gene but its mutation results in the loss of alpha-motor neurons and subsequent muscle atrophy initially of distal muscles. The current SMARD1 mouse model arose from a spontaneous mutation originally referred to as neuromuscular degeneration (nmd). The nmd mice have the C57BL/6 genetic background and contain an A to G mutation in intron 4 of the endogenous Ighmbp2 gene. This mutation causes aberrant splicing, resulting in only 20-25% of full-length functional protein. Several congenital conditions including hydrocephalus are common in the C57BL/6 background, consistent with our previous observations when developing a gene therapy approach for SMARD1. Additionally, a modifier allele exists on chromosome 13 in nmd mice that can partially suppress the phenotype, resulting in some animals that have extended life spans (up to 200 days). To eliminate the intrinsic complications of the C57BL/6 background and the variation in survival due to the genetic modifier effect, we created a new SMARD1 mouse model that contains the same intron 4 mutation in Ighmbp2 as nmd mice but is now on a FVB congenic background. FVB-nmd are consistently more severe than the original nmd mice with respect to survival, weigh and motor function. The relatively short life span (18-21 days) of FVB-nmd mice allows us to monitor therapeutic efficacy for a variety of novel therapeutics in a timely manner without the complication of the small percentage of longer-lived animals that were observed in our colony of nmd mice.
Collapse
Affiliation(s)
- Monir Shababi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Caley E. Smith
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA,Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Mona Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Zayd Alrawi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Eric Villalon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Daniel Davis
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Elizabeth C. Bryda
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA,Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
8
|
Shababi M, Villalón E, Kaifer KA, DeMarco V, Lorson CL. A Direct Comparison of IV and ICV Delivery Methods for Gene Replacement Therapy in a Mouse Model of SMARD1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:348-360. [PMID: 30202772 PMCID: PMC6127875 DOI: 10.1016/j.omtm.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/13/2018] [Indexed: 01/22/2023]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an infantile autosomal recessive disease caused by the loss of the ubiquitously expressed IGHMBP2 gene. SMARD1 causes degeneration of alpha-motor neurons, resulting in distal muscle weakness, diaphragm paralysis, and respiratory malfunction. We have reported that delivery of a low dose of AAV9-IGHMBP2 to the CNS results in a significant rescue of the SMARD1 mouse model (nmd). To examine how a delivery route can impact efficacy, a direct comparison of intravenous (IV) and intracerebroventricular (ICV) delivery of AAV9-IGHMBP2 was performed. Using a low-dose, both IV and ICV delivery routes led to a significant extension in survival and increased body weight. Conversely, only ICV-treated animals demonstrated improvements in the hindlimb muscle, neuromuscular junction, and motor function. The hindlimb phenotype of IV-treated mice resembled the untreated nmd mice. We investigated whether the increased survival of IV-treated nmd mice was the result of a positive impact on the cardiac function. Our results revealed that cardiac function and pathology were similarly improved in IV- and ICV-treated mice. We concluded that while IV delivery of a low dose does not improve the hindlimb phenotype and motor function, partial restoration of cardiac performance is sufficient to significantly extend survival.
Collapse
Affiliation(s)
- Monir Shababi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Eric Villalón
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Kevin A Kaifer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Vince DeMarco
- Department of Medicine, Division of Endocrinology, Diabetes and Cardiovascular Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Davidsson M, Díaz-Fernández P, Torroba M, Schwich OD, Aldrin-Kirk P, Quintino L, Heuer A, Wang G, Lundberg C, Björklund T. Molecular barcoding of viral vectors enables mapping and optimization of mRNA trans-splicing. RNA (NEW YORK, N.Y.) 2018; 24:673-687. [PMID: 29386333 PMCID: PMC5900565 DOI: 10.1261/rna.063925.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/25/2018] [Indexed: 05/04/2023]
Abstract
Genome editing has proven to be highly potent in the generation of functional gene knockouts in dividing cells. In the CNS however, efficient technologies to repair sequences are yet to materialize. Reprogramming on the mRNA level is an attractive alternative as it provides means to perform in situ editing of coding sequences without nuclease dependency. Furthermore, de novo sequences can be inserted without the requirement of homologous recombination. Such reprogramming would enable efficient editing in quiescent cells (e.g., neurons) with an attractive safety profile for translational therapies. In this study, we applied a novel molecular-barcoded screening assay to investigate RNA trans-splicing in mammalian neurons. Through three alternative screening systems in cell culture and in vivo, we demonstrate that factors determining trans-splicing are reproducible regardless of the screening system. With this screening, we have located the most permissive trans-splicing sequences targeting an intron in the Synapsin I gene. Using viral vectors, we were able to splice full-length fluorophores into the mRNA while retaining very low off-target expression. Furthermore, this approach also showed evidence of functionality in the mouse striatum. However, in its current form, the trans-splicing events are stochastic and the overall activity lower than would be required for therapies targeting loss-of-function mutations. Nevertheless, the herein described barcode-based screening assay provides a unique possibility to screen and map large libraries in single animals or cell assays with very high precision.
Collapse
Affiliation(s)
- Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Paula Díaz-Fernández
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Marcos Torroba
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Oliver D Schwich
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Patrick Aldrin-Kirk
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Luis Quintino
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Andreas Heuer
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Gang Wang
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Cecilia Lundberg
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
10
|
Rindt H, Tom CM, Lorson CL, Mattis VB. Optimization of trans-Splicing for Huntington's Disease RNA Therapy. Front Neurosci 2017; 11:544. [PMID: 29066943 PMCID: PMC5641306 DOI: 10.3389/fnins.2017.00544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by a polyglutamine (polyQ) expansion in exon 1 of the Huntingtin (HTT) gene. We have previously demonstrated that spliceosome-mediated trans-splicing is a viable molecular strategy to specifically reduce and repair mutant HTT (mtHTT). Here, the targeted tethering efficacy of the pre-mRNA trans-splicing modules (PTM) in HTT was optimized. Various PTMs that targeted the 3′ end of HTT intron 1 or the intron 1 branch point were shown trans-splice into an HTT mini-gene, as well as the endogenous HTT pre-mRNA. PTMs that specifically target the endogenous intron 1 branch point increased the trans-splicing efficacy from 1–5 to 10–15%. Furthermore, lentiviral expression of PTMs in a human HD patient iPSC-derived neural culture significantly reversed two previously established polyQ-length dependent phenotypes. These results suggest that pre-mRNA repair of mtHTT could hold therapeutic benefit and it demonstrates an alternative platform to correct the mRNA product produced by the mtHTT allele in the context of HD.
Collapse
Affiliation(s)
- Hansjörg Rindt
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Colton M Tom
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Virginia B Mattis
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, United States
| |
Collapse
|
11
|
Berger A, Maire S, Gaillard MC, Sahel JA, Hantraye P, Bemelmans AP. mRNA trans-splicing in gene therapy for genetic diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:487-98. [PMID: 27018401 PMCID: PMC5071737 DOI: 10.1002/wrna.1347] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/27/2016] [Accepted: 02/22/2016] [Indexed: 11/12/2022]
Abstract
Spliceosome-mediated RNA trans-splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post-transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre-mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans-splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans-splicing, review the different strategies that are under evaluation to lead to efficient trans-splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487-498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Adeline Berger
- Centre de recherche Institut de la Vision, Sorbonne Universités, Université Pierre et Marie Curie UM80, Paris, France
| | - Séverine Maire
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - José-Alain Sahel
- Centre de recherche Institut de la Vision, Sorbonne Universités, Université Pierre et Marie Curie UM80, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Institute of Ophthalmology, University College of London, London, UK
| | - Philippe Hantraye
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| |
Collapse
|
12
|
Rescue of a Mouse Model of Spinal Muscular Atrophy With Respiratory Distress Type 1 by AAV9-IGHMBP2 Is Dose Dependent. Mol Ther 2016; 24:855-66. [PMID: 26860981 DOI: 10.1038/mt.2016.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/17/2016] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disease occurring during childhood. The gene responsible for disease development is a ubiquitously expressed protein, IGHMBP2. Mutations in IGHMBP2 result in the loss of α-motor neurons leading to muscle atrophy in the distal limbs accompanied by respiratory complications. Although genetically and clinically distinct, proximal SMA is also caused by the loss of a ubiquitously expressed gene (SMN). Significant preclinical success has been achieved in proximal SMA using viral-based gene replacement strategies. We leveraged the technologies employed in SMA to demonstrate gene replacement efficacy in an SMARD1 animal model. Intracerebroventricular (ICV) injection of single-stranded AAV9 expressing the full-length cDNA of IGHMBP2 in a low dose led to a significant level of rescue in treated SMARD1 animals. Consistent with drastically increased survival, weight gain, and strength, the rescued animals demonstrated a significant improvement in muscle, NMJ, motor neurons, and axonal pathology. In addition, increased levels of IGHMBP2 in lumbar motor neurons verified the efficacy of the virus to transduce the target tissues. Our results indicate that AAV9-based gene replacement is a viable strategy for SMARD1, although dosing effects and potential negative impacts of high dose and ICV injection should be thoroughly investigated.
Collapse
|
13
|
Zhou J, Liao J, Zheng X, Shen H. Chimeric RNAs as potential biomarkers for tumor diagnosis. BMB Rep 2014; 45:133-40. [PMID: 22449698 DOI: 10.5483/bmbrep.2012.45.3.133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cancers claim millions of lives each year. Early detection that can enable a higher chance of cure is of paramount importance to cancer patients. However, diagnostic tools for many forms of tumors have been lacking. Over the last few years, studies of chimeric RNAs as biomarkers have emerged. Numerous reports using bioinformatics and screening methodologies have described more than 30,000 expressed sequence tags (EST) or cDNA sequences as putative chimeric RNAs. While cancer cells have been well known to contain fusion genes derived from chromosomal translocations, rearrangements or deletions, recent studies suggest that trans-splicing in cells may be another source of chimeric RNA production. Unlike cis-splicing, trans-splicing takes place between two pre-mRNA molecules, which are in most cases derived from two different genes, generating a chimeric non-co-linear RNA. It is possible that trans-splicing occurs in normal cells at high frequencies but the resulting chimeric RNAs exist only at low levels. However the levels of certain RNA chimeras may be elevated in cancers, leading to the formation of fusion genes. In light of the fact that chimeric RNAs have been shown to be overrepresented in various tumors, studies of the mechanisms that produce chimeric RNAs and identification of signature RNA chimeras as biomarkers present an opportunity for the development of diagnoses for early tumor detection.
Collapse
Affiliation(s)
- Jianhua Zhou
- Nantong University, Nantong, JiangSu, P. R. China
| | | | | | | |
Collapse
|
14
|
Douglas AGL, Wood MJA. Splicing therapy for neuromuscular disease. Mol Cell Neurosci 2013; 56:169-85. [PMID: 23631896 PMCID: PMC3793868 DOI: 10.1016/j.mcn.2013.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are two of the most common inherited neuromuscular diseases in humans. Both conditions are fatal and no clinically available treatments are able to significantly alter disease course in either case. However, by manipulation of pre-mRNA splicing using antisense oligonucleotides, defective transcripts from the DMD gene and from the SMN2 gene in SMA can be modified to once again produce protein and restore function. A large number of in vitro and in vivo studies have validated the applicability of this approach and an increasing number of preliminary clinical trials have either been completed or are under way. Several different oligonucleotide chemistries can be used for this purpose and various strategies are being developed to facilitate increased delivery efficiency and prolonged therapeutic effect. As these novel therapeutic compounds start to enter the clinical arena, attention must also be drawn to the question of how best to facilitate the clinical development of such personalised genetic therapies and how best to implement their provision.
Collapse
Affiliation(s)
- Andrew G L Douglas
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | | |
Collapse
|
15
|
Lorson MA, Lorson CL. SMN-inducing compounds for the treatment of spinal muscular atrophy. Future Med Chem 2012; 4:2067-84. [PMID: 23157239 PMCID: PMC3589915 DOI: 10.4155/fmc.12.131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. A neurodegenerative disease, it is caused by loss of SMN1, although low, but essential, levels of SMN protein are produced by the nearly identical gene SMN2. While no effective treatment or therapy currently exists, a new wave of therapeutics has rapidly progressed from cell-based and preclinical animal models to the point where clinical trials have initiated for SMA-specific compounds. There are several reasons why SMA has moved relatively rapidly towards novel therapeutics, including: SMA is monogenic; the molecular understanding of SMN gene regulation has been building for nearly 20 years; and all SMA patients retain one or more copies of SMN2 that produces low levels of full-length, fully functional SMN protein. This review primarily focuses upon the biology behind the disease and examines SMN1- and SMN2-targeted therapeutics.
Collapse
Affiliation(s)
- Monique A Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, Room 440C, University of Missouri, MO 65211 USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, Room 471G, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology & Immunology, University of Missouri, MO, USA
| |
Collapse
|
16
|
Donnelly EM, Boulis NM. Update on gene and stem cell therapy approaches for spinal muscular atrophy. Expert Opin Biol Ther 2012; 12:1463-71. [PMID: 22849423 DOI: 10.1517/14712598.2012.711306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is the leading genetic cause of pediatric death to which at present there is no effective therapeutic. The genetic defect is well characterized as a mutation in exon 7 of the survival of motor neuron (SMN) gene. The current gene therapy approach focuses on two main methodologies, the replacement of SMN1 or augmentation of SMN2 readthrough. The most promising of the current work focuses on the delivery of SMN via AAV9 vectors via intravenous delivery. AREAS COVERED In the review the authors examine the current research in the field of stem cell and gene therapy approaches for SMA. Also focusing on delivery methods, timing of administration and general caveats that must be considered with translational work for SMA. EXPERT OPINION Gene therapy currently offers the most promising avenue of research for a successful therapeutic for SMA. There are many important practical and ethical considerations which must be carefully considered when dealing with clinical trial in infants such as the invasiveness of the surgery, the correct patient cohort and the potential risks.
Collapse
|
17
|
Abstract
Spliceosome-mediated RNA trans-splicing (SMaRT) is an RNA-based technology to reprogram genes for diagnostic and therapeutic purposes. For the correction of genetic diseases, SMaRT offers several advantages over traditional gene-replacement strategies. SMaRT protocols have recently been used for in vitro phenotypic correction of a variety of genetic disorders, ranging from epidermolysis bullosa to neurodegenerative diseases. In vivo studies are currently bringing trans-splicing RNA therapy toward clinical application. In this review, we summarize the progress made toward the medical use of SMaRT and provide an outlook on its upcoming applications.
Collapse
|
18
|
Zhou J, Zheng X, Shen H. Targeting RNA-splicing for SMA treatment. Mol Cells 2012; 33:223-8. [PMID: 22382684 PMCID: PMC3887702 DOI: 10.1007/s10059-012-0005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022] Open
Abstract
The central dogma of DNA-RNA-protein was established more than 40 years ago. However, important biological processes have been identified since the central dogma was developed. For example, methylation is important in the regulation of transcription. In contrast, proteins, are more complex due to modifications such as phosphorylation, glycosylation, ubiquitination, or cleavage. RNA is the mediator between DNA and protein, but it can also be modulated at several levels. Among the most profound discoveries of RNA regulation is RNA splicing. It has been estimated that 80% of pre-mRNA undergo alternative splicing, which exponentially increases biological information flow in cellular processes. However, an increased number of regulated steps inevitably accompanies an increased number of errors. Abnormal splicing is often found in cells, resulting in protein dysfunction that causes disease. Splicing of the survival motor neuron (SMN) gene has been extensively studied during the last two decades. Accumulating knowledge on SMN splicing has led to speculation and search for spinal muscular atrophy (SMA) treatment by stimulating the inclusion of exon 7 into SMN mRNA. This mini-review summaries the latest progress on SMN splicing research as a potential treatment for SMA disease.
Collapse
Affiliation(s)
| | - Xuexiu Zheng
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| | - Haihong Shen
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| |
Collapse
|