1
|
Dhungel J, Shyaula SL, Faizan M, Rathnayaka RK, Agrawal M. Computer-aided drug design approach for alkaloids isolated from Stephania glandulifera Miers as potential acetylcholinesterase inhibitors. J Biomol Struct Dyn 2025:1-14. [PMID: 40053458 DOI: 10.1080/07391102.2025.2474054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/15/2024] [Indexed: 03/09/2025]
Abstract
Considering the medicinal importance of alkaloids from Stephania glandulifera Miers, five major compounds (stepharine, stepharanine, stepholidine, palmatine and tetrahydropalmatine) from the plant were analyzed for their acetylcholinesterase activity using molecular docking, molecular dynamics simulations and in silico pharmacokinetics. As acetylcholinesterase has been significantly studied for their role in Alzheimer's disease, the enzyme from Torpedo californica (PDB ID: 1QTI) was taken as a receptor protein. AutoDock Vina was used to study the docking affinities during the initial screening of compounds where, stepharine showed promising binding energy (-10.3 kcal/mol) forming crucial interactions with active site residues (His 440, Tyr 121, and Trp 84). Molecular dynamics simulations were performed for 200 ns to analyze the stability of the docked complex. The study of trajectories obtained after simulation showed stepharine with a strong binding affinity and stability with AChE. Moreover, drug likeness and ADMET analysis conducted via Swiss ADME and pKCSM affirmed stepharine's favorable pharmacological properties. Overall, this research highlights stepharine as a potent acetylcholinesterase inhibitor which could be further developed as potential drug against Alzheimer's disease.
Collapse
Affiliation(s)
- Jhalnath Dhungel
- Nepomics Biotech Pvt. Ltd., Kathmandu, Nepal
- Department of Biotechnology, National College, Tribhuvan University, Nayabazar, Nepal
| | - Sajan L Shyaula
- Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal
| | - Mishal Faizan
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Rajitha Kalum Rathnayaka
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| |
Collapse
|
2
|
Pereira ME, Lima LS, Souza JV, de Souza da Costa N, da Silva JF, Guiloski IC, Irioda AC, Oliveira CS. Evaluation of the Neuroprotective Effect of Organic Selenium Compounds: An in Vitro Model of Alzheimer's Disease. Biol Trace Elem Res 2024; 202:2954-2965. [PMID: 37803188 DOI: 10.1007/s12011-023-03893-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Selenium (Se) is an essential trace element for human health and plays an important role in the development and maintenance of central nervous system functions. Se deficiency has been associated with cognitive decline and increased oxidative stress. The increase in oxidative stress is one of the hypotheses for the emergence and worsening of neurodegenerative diseases, such as Alzheimer's disease (AD). To investigate the neuroprotective effects of organic Se compounds in human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons-like. The SH-SY5Y cells were differentiated into cholinergic neuron-like with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). AD was mimicked exposing the cells to okadaic acid (OA) and beta-amyloid protein (Aβ). The neuroprotective effect of organic Se compounds, selenomethionine (SeMet) and Ebselen, was evaluated through cell viability tests, acetylcholinesterase and antioxidant enzyme activities, and detection of reactive oxygen species (ROS). None of the SeMet concentrations tested protected against the toxic effect of OA + Aβ. On the other hand, previous exposure to 0.1 and 1 µM Ebselen protected cells from the toxic effect of OA + Aβ. Cell differentiation induced by RA and BDNF exposure was effective, showing characteristics of neuronal cells, and pointing to a promising model of AD. Ebselen showed a protective effect, but more studies are needed to identify the mechanism of action.
Collapse
Affiliation(s)
- Meire Ellen Pereira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Luiza Siqueira Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Júlia Vicentin Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nayara de Souza da Costa
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Juliana Ferreira da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Cláudia Sirlene Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Garcia Ratés S, García‐Ayllón M, Falgàs N, Brangman SA, Esiri MM, Coen CW, Greenfield SA. Evidence for a novel neuronal mechanism driving Alzheimer's disease, upstream of amyloid. Alzheimers Dement 2024; 20:5027-5034. [PMID: 38780014 PMCID: PMC11247685 DOI: 10.1002/alz.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
This perspective offers an alternative to the amyloid hypothesis in the etiology of Alzheimer's disease (AD). We review evidence for a novel signaling mechanism based on a little-known peptide, T14. T14 could drive neurodegeneration as an aberrantly activated process of plasticity selective to interconnecting subcortical nuclei, the isodendritic core, where cell loss starts at the pre-symptomatic stages of the disease. Each of these cell groups has the capacity to form T14, which can stimulate production of p-Tau and β-amyloid, suggestive of an upstream driver of neurodegeneration. Moreover, results in an animal AD model show that antagonism of T14 with a cyclated variant, NBP14, prevents formation of β-amyloid, and restores cognitive function to that of wild-type counterparts. Any diagnostic and/or therapeutic strategy based on T14-NBP14 awaits validation in clinical trials. However, an understanding of this novel signaling system could bring much-needed fresh insights into the progression of cell loss underlying AD. HIGHLIGHTS: The possible primary mechanism of neurodegeneration upstream of amyloid. Primary involvement of selectively vulnerable subcortical nuclei, isodendritic core. Bioactive peptide T14 trophic in development but toxic in context of mature brain. Potential for early-stage biomarker to detect Alzheimer's disease. Effective therapeutic halting neurodegeneration, validated already in 5XFAD mice.
Collapse
Affiliation(s)
| | - María‐Salud García‐Ayllón
- Unidad de InvestigaciónHospital General Universitario de Elche, FISABIOElcheSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d'AlacantSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Neus Falgàs
- Alzheimer's disease and other cognitive disorders UnitHospital Clínic de Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Sharon A. Brangman
- Department of GeriatricsUpstate Center of Excellence for Alzheimer's DiseaseSUNY Upstate Medical University 750 East Adams StreetSyracuseNew YorkUSA
| | - Margaret M Esiri
- Neuropathology DepartmentJohn Radcliffe Hospital, West WingOxford UniversityOxfordUK
| | - Clive W. Coen
- Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | |
Collapse
|
4
|
Identification of a Novel Wnt Antagonist Based Therapeutic and Diagnostic Target for Alzheimer's Disease Using a Stem Cell-Derived Model. Bioengineering (Basel) 2023; 10:bioengineering10020192. [PMID: 36829686 PMCID: PMC9952699 DOI: 10.3390/bioengineering10020192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 02/05/2023] Open
Abstract
Currently, all the existing treatments for Alzheimer's disease (AD) fail to stall progression due to longer duration of time between onset of the symptoms and diagnosis of the disease, raising the necessity of effective diagnostics and novel treatment. Specific molecular regulation of the onset and progression of disease is not yet elucidated. This warranted investigation of the role of Wnt signaling regulators which are thought to be involved in neurogenesis. The AD model was established using amyloid beta (Aβ) in human mesenchymal stem cells derived from amniotic membranes which were differentiated into neuronal cell types. In vivo studies were carried out with Aβ or a Wnt antagonist, AD201, belonging to the sFRP family. We further created an AD201-knockdown in vitro model to determine the role of Wnt antagonism. BACE1 upregulation, ChAT and α7nAChR downregulation with synapse and functionality loss with increases in ROS confirmed the neurodegeneration. Reduced β-catenin and increased AD201 expression indicated Wnt/canonical pathway inhibition. Similar results were exhibited in the in vivo study along with AD-associated behavioural and molecular changes. AD201-knockdown rescued neurons from Aβ-induced toxicity. We demonstrated for the first time a role of AD201 in Alzheimer's disease manifestation, which indicates a promising disease target and biomarker.
Collapse
|
5
|
Presenilin 1 Modulates Acetylcholinesterase Trafficking and Maturation. Int J Mol Sci 2023; 24:ijms24021437. [PMID: 36674948 PMCID: PMC9864477 DOI: 10.3390/ijms24021437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
In Alzheimer's disease (AD), the reduction in acetylcholinesterase (AChE) enzymatic activity is not paralleled with changes in its protein levels, suggesting the presence of a considerable enzymatically inactive pool in the brain. In the present study, we validated previous findings, and, since inactive forms could result from post-translational modifications, we analyzed the glycosylation of AChE by lectin binding in brain samples from sporadic and familial AD (sAD and fAD). Most of the enzymatically active AChE was bound to lectins Canavalia ensiformis (Con A) and Lens culinaris agglutinin (LCA) that recognize terminal mannoses, whereas Western blot assays showed a very low percentage of AChE protein being recognized by the lectin. This indicates that active and inactive forms of AChE vary in their glycosylation pattern, particularly in the presence of terminal mannoses in active ones. Moreover, sAD subjects showed reduced binding to terminal mannoses compared to non-demented controls, while, for fAD patients that carry mutations in the PSEN1 gene, the binding was higher. The role of presenilin-1 (PS1) in modulating AChE glycosylation was then studied in a cellular model that overexpresses PS1 (CHO-PS1). In CHO-PS1 cells, binding to LCA indicates that AChE displays more terminal mannoses in oligosaccharides with a fucosylated core. Immunocytochemical assays also demonstrated increased presence of AChE in the trans-Golgi. Moreover, AChE enzymatic activity was higher in plasmatic membrane of CHO-PS1 cells. Thus, our results indicate that PS1 modulates trafficking and maturation of AChE in Golgi regions favoring the presence of active forms in the membrane.
Collapse
|
6
|
Proceedings of workshop: "Neuroglycoproteins in health and disease", INNOGLY cost action. Glycoconj J 2022; 39:579-586. [PMID: 36001187 PMCID: PMC9399589 DOI: 10.1007/s10719-022-10078-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.
Collapse
|
7
|
Qiao Y, Zhang K, Zhang Z, Zhang C, Sun Y, Feng Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res Int 2022; 158:111575. [PMID: 35840260 DOI: 10.1016/j.foodres.2022.111575] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Yan Sun
- Heilongjiang Tobacco Industry Co., Ltd. Harbin Cigarette Factory, Harbin 150027, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| |
Collapse
|
8
|
Işık M, Beydemir Ş. AChE mRNA expression as a possible novel biomarker for the diagnosis of coronary artery disease and Alzheimer's disease, and its association with oxidative stress. Arch Physiol Biochem 2022; 128:352-359. [PMID: 31726885 DOI: 10.1080/13813455.2019.1683584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oxidative metabolic reactions and their by products have played a role in coronary artery disease (CAD) and Alzheimer's disease (AD) pathogenesis. This study was carried out on 28 patients with AD, 21 patients with CAD, and 28 healthy as control. Oxidative stress biomarkers and acetylcholinesterase (AChE) activity were assayed in plasma. mRNA expression of AChE was investigated in leukocytes of patients with CAD and AD. Thus, Alzheimer's and coronary artery patients were observed that the protein carbonyl levels and mRNA expression of AChE were increased (p<.05, p<.01, respectively). The plasma total thiol levels were decreased compared to the control group (p<.05). There was a significant relationship between amyloid β (Aβ) accumulation and oxidative stress, cholinergic gene expression. AChE gene expression and protein oxidation were increased in patients with AD and CAD. These results suggest that increased release of AChE from cells produces neurotoxic β-amyloid plaques and may cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
9
|
Teniou S, Bensegueni A, Hybertson BM, Gao B, Bose SK, McCord JM, Chovelon B, Bensouici C, Boumendjel A, Hininger-Favier I. Biodriven investigation of the wild edible mushroom Pleurotus eryngii revealing unique properties as functional food. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
10
|
Activation of GPR55 attenuates cognitive impairment, oxidative stress, neuroinflammation, and synaptic dysfunction in a streptozotocin-induced Alzheimer's mouse model. Pharmacol Biochem Behav 2022; 214:173340. [DOI: 10.1016/j.pbb.2022.173340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
|
11
|
Viayna E, Coquelle N, Cieslikiewicz-Bouet M, Cisternas P, Oliva CA, Sánchez-López E, Ettcheto M, Bartolini M, De Simone A, Ricchini M, Rendina M, Pons M, Firuzi O, Pérez B, Saso L, Andrisano V, Nachon F, Brazzolotto X, García ML, Camins A, Silman I, Jean L, Inestrosa NC, Colletier JP, Renard PY, Muñoz-Torrero D. Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. J Med Chem 2020; 64:812-839. [PMID: 33356266 DOI: 10.1021/acs.jmedchem.0c01775] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aβ42/Aβ40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.
Collapse
Affiliation(s)
- Elisabet Viayna
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Nicolas Coquelle
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS UMR 5075, F-38054 Grenoble, France.,Large Scale Structures Group, Institut Laue-Langevin, F-38042 Grenoble Cedex 9, France
| | | | - Pedro Cisternas
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili, E-43201 Reus, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, I-10125 Torino, Italy
| | - Mattia Ricchini
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Marisa Rendina
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Mégane Pons
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, PO Box 3288, 71345 Shiraz, Iran
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, I-47921 Rimini, Italy
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées BP73, 91993 Brétigny sur Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées BP73, 91993 Brétigny sur Orge, France
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ludovic Jean
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 6200000 Punta Arenas, Chile
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS UMR 5075, F-38054 Grenoble, France
| | - Pierre-Yves Renard
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| |
Collapse
|
12
|
The NMJ as a model synapse: New perspectives on formation, synaptic transmission and maintenance: Acetylcholinesterase at the neuromuscular junction. Neurosci Lett 2020; 735:135157. [PMID: 32540360 DOI: 10.1016/j.neulet.2020.135157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
Abstract
Acetylcholinesterase (AChE) is an essential enzymatic component of the neuromuscular junction where it is responsible for terminating neurotransmission by the cholinergic motor neurons. The enzyme at the neuromuscular junction (NMJ) is contributed primarily by the skeletal muscle where it is produced at higher levels in the post-synaptic region of the fibers. The major form of AChE at the NMJ is a large asymmetric form consisting of three tetramers covalently attached to a three-stranded collagen-like tail which is responsible for anchoring it to the synaptic basal lamina. Its location and expression is regulated to a large extent by the motor neurons and occurs at the transcriptional, translational and post-translational levels. While its expression can be quite rapid in tissue cultured cells, its half-life in vivo appears to be quite long, about three weeks, although more rapidly turning over pools have been described. Finally the essential nature of this enzyme is underscored by the fact that no naturally occurring null mutations of the catalytic subunit have been described in higher organisms and the few dozen humans carrying mutations in the collagen tail responsible for anchoring the enzyme at the NMJ are severely affected.
Collapse
|
13
|
Meden A, Knez D, Malikowska-Racia N, Brazzolotto X, Nachon F, Svete J, Sałat K, Grošelj U, Gobec S. Structure-activity relationship study of tryptophan-based butyrylcholinesterase inhibitors. Eur J Med Chem 2020; 208:112766. [PMID: 32919297 DOI: 10.1016/j.ejmech.2020.112766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
A series of tryptophan-based selective nanomolar butyrylcholinesterase (BChE) inhibitors was designed and synthesized. Compounds were optimized in terms of potency, selectivity, and synthetic accessibility. The crystal structure of the inhibitor 18 in complex with BChE revealed the molecular basis for its low nanomolar inhibition (IC50 = 2.8 nM). The favourable in vitro results enabled a first-in-animal in vivo efficacy and safety trial, which demonstrated a positive impact on fear-motivated and spatial long-term memory retrieval without any concomitant adverse motor effects. Altogether, this research culminated in a handful of new lead compounds with promising potential for symptomatic treatment of patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Anže Meden
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Jurij Svete
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna Pot 113, SI-1000, Ljubljana, Slovenia
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| | - Uroš Grošelj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna Pot 113, SI-1000, Ljubljana, Slovenia.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Kong XP, Liu EY, Chen ZC, Xu ML, Yu AX, Wu QY, Xia YJ, Duan R, Dong TT, Tsim KW. Synergistic Inhibition of Acetylcholinesterase by Alkaloids Derived from Stephaniae Tetrandrae Radix, Coptidis Rhizoma and Phellodendri Chinensis Cortex. Molecules 2019; 24:molecules24244567. [PMID: 31847089 PMCID: PMC6943709 DOI: 10.3390/molecules24244567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Alkaloids having acetylcholinesterase (AChE) inhibitory activity are commonly found in traditional Chinese medicine (TCM); for example, berberine from Coptis chinensis, galantamine from Lycoris radiata, and huperzine A from Huperzia serrata. In practice of TCM, Stephaniae Tetrandrae Radix (STR) is often combined with Coptidis Rhizoma (CR) or Phellodendri Chinensis Cortex (PCC) as paired herbs during clinical application. Fangchinoline from STR and coptisine and/or berberine from CR and/or PCC are active alkaloids in inhibiting AChE. The traditional usage of paired herbs suggests the synergistic effect of fangchinoline–coptisine or fangchinoline–berberine pairing in AChE inhibition. HPLC was applied to identify the main components in herbal extracts of STR, CR, and PCC, and the AChE inhibition of their main components was determined by Ellman assay. The synergism of herb combination and active component combination was calculated by median-effect principle. Molecular docking was applied to investigate the underlying binding mechanisms of the active components with the AChE protein. It was found that fangchinoline showed AChE inhibitory potency; furthermore, fangchinoline–coptisine/berberine pairs (at ratios of 1:5, 1:2, 1:1, and 2:1) synergistically inhibited AChE; the combination index (CI) at different ratios was less than one when Fa = 0.5, suggesting synergistic inhibition of AChE. Furthermore, the molecular docking simulation supported this enzymatic inhibition. Therefore, fangchinoline–coptisine/berberine pairs, or their parental herbal mixtures, may potentially be developed as a possible therapeutic strategy for Alzheimer’s patients.
Collapse
Affiliation(s)
- Xiang-Peng Kong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong 030619, China
| | - Etta Y.L. Liu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhi-Cong Chen
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Miranda Li Xu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Anna X.D. Yu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qi-Yun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ying-Jie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina T.X. Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Correspondence: (T.T.X.D.); (K.W.K.T.); Tel.: +86-755-8671-5683 (T.T.X.D.); +852-2358-7332 (K.W.K.T.)
| | - Karl W.K. Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Correspondence: (T.T.X.D.); (K.W.K.T.); Tel.: +86-755-8671-5683 (T.T.X.D.); +852-2358-7332 (K.W.K.T.)
| |
Collapse
|
15
|
Hu YT, Chen XL, Huang SH, Zhu QB, Yu SY, Shen Y, Sluiter A, Verhaagen J, Zhao J, Swaab D, Bao AM. Early growth response-1 regulates acetylcholinesterase and its relation with the course of Alzheimer's disease. Brain Pathol 2019; 29:502-512. [PMID: 30511454 DOI: 10.1111/bpa.12688] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/28/2018] [Indexed: 01/15/2023] Open
Abstract
Our previous studies showed that the transcription factor early growth response-1 (EGR1) may play a role in keeping the brain cholinergic function intact in the preclinical stages of Alzheimer's disease (AD). In order to elucidate the mechanisms involved, we first performed data mining on our previous microarray study on postmortem human prefrontal cortex (PFC) for the changes in the expression of EGR1 and acetylcholinesterase (AChE) and the relationship between them during the course of AD. The study contained 49 patients, ranging from non-demented controls (Braak stage 0) to late AD patients (Braak stage VI). We found EGR1-mRNA was high in early AD and decreased in late AD stages, while AChE-mRNA was stable in preclinical AD and slightly decreased in late AD stages. A significant positive correlation was found between the mRNA levels of these two molecules. In addition, we studied the relationship between EGR1 and AChE mRNA levels in the frontal cortex of 3-12-months old triple-transgenic AD (3xTg-AD) mice. EGR1- and AChE-mRNA were lower in 3xTg-AD mice compared with wild-type (WT) mice. A significant positive correlation between these two molecules was present in the entire group and in each age group of either WT or 3xTg-AD mice. Subsequently, AChE expression was determined following up- or down-regulating EGR1 in cell lines and the EGR1 levels were found to regulate AChE at both the mRNA and protein levels. Dual-luciferase assay and electrophoretic mobility shift assay in the EGR1-overexpressing cells were performed to determine the functionally effective binding sites of the EGR1 on the AChE gene promoter. We conclude that the EGR1 can upregulate AChE expression by a direct effect on its gene promoter, which may contribute significantly to the changes in cholinergic function in the course of AD. The 3xTg-AD mouse model only reflects later stage AD.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xin-Lu Chen
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Shu-Han Huang
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qiong-Bin Zhu
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Si-Yang Yu
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yi Shen
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Arja Sluiter
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Juan Zhao
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Dick Swaab
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Ai-Min Bao
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
16
|
Campanari ML, Navarrete F, Ginsberg SD, Manzanares J, Sáez-Valero J, García-Ayllón MS. Increased Expression of Readthrough Acetylcholinesterase Variants in the Brains of Alzheimer's Disease Patients. J Alzheimers Dis 2018; 53:831-41. [PMID: 27258420 DOI: 10.3233/jad-160220] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is characterized by a decrease in the enzymatic activity of the enzyme acetylcholinesterase (AChE). AChE is expressed as multiple splice variants, which may serve both cholinergic degradative functions and non-cholinergic functions unrelated with their capacity to hydrolyze acetylcholine. We have recently demonstrated that a prominent pool of enzymatically inactive AChE protein exists in the AD brain. In this study, we analyzed protein and transcript levels of individual AChE variants in human frontal cortex from AD patients by western blot analysis using specific anti-AChE antibodies and by quantitative real-time PCR (qRT-PCR). We found similar protein and mRNA levels of the major cholinergic "tailed"-variant (AChE-T) and the anchoring subunit, proline-rich membrane anchor (PRiMA-1) in frontal cortex obtained from AD patients and non-demented controls. Interestingly, we found an increase in the protein and transcript levels of the non-cholinergic "readthrough" AChE (AChE-R) variants in AD patients compared to controls. Similar increases were detected by western blot using an antibody raised against the specific N-terminal domain, exclusive of alternative N-extended variants of AChE (N-AChE). In accordance with a subset of AChE-R monomers that display amphiphilic properties that are upregulated in the AD brain, we demonstrate that the increase of N-AChE species is due, at least in part, to N-AChE-R variants. In conclusion, we demonstrate selective alterations in specific AChE variants in AD cortex, with no correlation in enzymatic activity. Therefore, differential expression of AChE variants in AD may reflect changes in the pathophysiological role of AChE, independent of cholinergic impairment or its role in degrading acetylcholine.
Collapse
Affiliation(s)
- Maria-Letizia Campanari
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Francisco Navarrete
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Departments of Psychiatry and Neuroscience & Physiology, New York University Langone Medical Center, Orangeburg, NY, USA
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain
| |
Collapse
|
17
|
Rotundo RL. Biogenesis, assembly and trafficking of acetylcholinesterase. J Neurochem 2017; 142 Suppl 2:52-58. [PMID: 28326552 PMCID: PMC5550332 DOI: 10.1111/jnc.13982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE) is expressed as several homomeric and heterooligomeric forms in a wide variety of tissues such as neurons in the central and peripheral nervous systems and their targets including skeletal muscle, endocrine and exocrine glands. In addition, glycolipid-anchored forms are expressed in erythropoietic and lymphopoietic cells. While transcriptional and post-transcriptional regulation is important for determining which AChE oligomeric forms are expressed in a given tissue, translational and post-translational regulatory mechanisms at the level of protein folding, assembly and sorting play equally important roles in assuring that the AChE molecules reach their intended sites on the cell surface in the appropriate numbers. This brief review will focus on the latter events in the cell with the goal of providing novel therapeutic interventional strategies for the treatment of organophosphate and carbamate pesticide and nerve agent exposure. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Richard L Rotundo
- Department of Cell Biology and Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
18
|
Abarova S, Koynova R, Tancheva L, Tenchov B. A novel DSC approach for evaluating protectant drugs efficacy against dementia. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2934-2941. [PMID: 28778589 DOI: 10.1016/j.bbadis.2017.07.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
Differential scanning calorimetry was applied to evaluate the efficacy of preventive treatments with biologically active compounds of plant origin against neurodegenerative disorder in mice. As we reported recently, large differences exist between the heat capacity profiles of water-soluble brain proteome fractions from healthy animals and from animals with scopolamine-induced dementia: the profiles for healthy animals displayed well expressed exothermic event peaking at 40-45°C, by few degrees above body temperature, but still preceding in temperature the proteome endothermic denaturational transitions; the low-temperature exotherm was completely abolished by the scopolamine treatment. Here we explored this signature difference in the heat capacity profiles to assess the efficacy of preventive treatments with protectant drugs anticipated to slow down or block progression of dementia (myrtenal, ellagic acid, lipoic acid and their combinations, including also ascorbic acid). We found that these neuroprotectants counteract the scopolamine effect and partially or completely preserve the 'healthy' thermogram, and specifically the low-temperature exotherm. These results well correlate with the changes in the cognitive functions of the animals assessed using the Step Through Test for learning and memory. The exothermic event is deemed to be associated with a reversible process of fibrillization and/or aggregation of specific water-soluble brain protein fractions preceding their denaturation. Most importantly, the results demonstrate that the effect of scopolamine and its prevention by protectant substances are clearly displayed in the heat capacity profiles of the brain proteome, thus identifying DSC as a powerful method in drug testing and discovery.
Collapse
Affiliation(s)
- Silviya Abarova
- Department of Medical Physics and Biophysics, Medical University - Sofia, Sofia, Bulgaria
| | | | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Boris Tenchov
- Department of Medical Physics and Biophysics, Medical University - Sofia, Sofia, Bulgaria.
| |
Collapse
|
19
|
Garcimartín A, López-Oliva ME, González MP, Sánchez-Muniz FJ, Benedí J. Hydrogen peroxide modifies both activity and isoforms of acetylcholinesterase in human neuroblastoma SH-SY5Y cells. Redox Biol 2017; 12:719-726. [PMID: 28411556 PMCID: PMC5390663 DOI: 10.1016/j.redox.2017.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/12/2017] [Accepted: 04/02/2017] [Indexed: 12/04/2022] Open
Abstract
The involvement of cholinergic system and the reactive oxygen species (ROS) in the pathogenesis of some degenerative diseases has been widely reported; however, the specific impact of hydrogen peroxide (H2O2) on the acetylcholinesterase (AChE) activity as well as AChE isoform levels has not been clearly established. Hence, the purpose of present study is to clarify whether H2O2 alters these parameters. Human neuroblastoma SH-SY5Y cells were treated with H2O2 (1–1000 µM) for 24 h and AChE activity and AChE and cytochrome c levels were evaluated. AChE activity was strongly increased from 1 µM to 1000 µM of H2O2. The results of the kinetic study showed that H2O2 affected Vmax but not Km; and also that H2O2 changed the sigmoid kinetic observed in control samples to hyperbolic kinetic. Thus, results suggest that H2O2 acts as an allosteric activators. In addition, H2O2, (100–1000 µM) reduced the total AChE content and modified its isoform profile (mainly 50-, 70-, and 132-kDa)·H2O2 from 100 µM to 1000 µM induced cytochrome c release confirming cell death by apoptosis. All these results together suggest: a) the involvement of oxidative stress in the imbalance of AChE; and b) treatment with antioxidant agents may be a suitable strategy to protect cholinergic system alterations promoted by oxidative stress. H2O2 impact on AChE structure from SH-SY5Y cells, acting as an allosteric effector. H2O2 decreased AChE levels and changed AChE isoform profile from SH-SY5Y cells. Oxidative stress could promote disturbances in cholinergic system.
Collapse
Affiliation(s)
- Alba Garcimartín
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| | - M Elvira López-Oliva
- Sección Departamental de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - M Pilar González
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Departamento de Nutrición y Bromatología I, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Soodi M, Saeidnia S, Sharifzadeh M, Hajimehdipoor H, Dashti A, Sepand MR, Moradi S. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease. Metab Brain Dis 2016; 31:395-404. [PMID: 26638718 DOI: 10.1007/s11011-015-9773-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.
Collapse
Affiliation(s)
- Maliheh Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Al Ahmad street, Tehran, Iran.
| | - Soodabeh Saeidnia
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Hajimehdipoor
- Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Dashti
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Al Ahmad street, Tehran, Iran
| | - Mohammad Reza Sepand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Moradi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Al Ahmad street, Tehran, Iran
| |
Collapse
|
21
|
Ruiz CA, Rossi SG, Rotundo RL. Rescue and Stabilization of Acetylcholinesterase in Skeletal Muscle by N-terminal Peptides Derived from the Noncatalytic Subunits. J Biol Chem 2015; 290:20774-20781. [PMID: 26139603 PMCID: PMC4543640 DOI: 10.1074/jbc.m115.653741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/29/2015] [Indexed: 11/06/2022] Open
Abstract
The vast majority of newly synthesized acetylcholinesterase (AChE) molecules do not assemble into catalytically active oligomeric forms and are rapidly degraded intracellularly by the endoplasmic reticulum-associated protein degradation pathway. We have previously shown that AChE in skeletal muscle is regulated in part post-translationally by the availability of the noncatalytic subunit collagen Q, and others have shown that expression of a 17-amino acid N-terminal proline-rich attachment domain of collagen Q is sufficient to promote AChE tetramerization in cells producing AChE. In this study we show that muscle cells, or cell lines expressing AChE catalytic subunits, incubated with synthetic proline-rich attachment domain peptides containing the endoplasmic reticulum retrieval sequence KDEL take up and retrogradely transport them to the endoplasmic reticulum network where they induce assembly of AChE tetramers. The peptides act to enhance AChE folding thereby rescuing them from reticulum degradation. This enhanced folding efficiency occurs in the presence of inhibitors of protein synthesis and in turn increases total cell-associated AChE activity and active tetramer secretion. Pulse-chase studies of isotopically labeled AChE molecules show that the enzyme is rescued from intracellular degradation. These studies provide a mechanistic explanation for the large scale intracellular degradation of AChE previously observed and indicate that simple peptides alone can increase the production and secretion of this critical synaptic enzyme in muscle tissue.
Collapse
Affiliation(s)
- Carlos A Ruiz
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Susana G Rossi
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Richard L Rotundo
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida 33136; Department of Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136.
| |
Collapse
|
22
|
Affiliation(s)
- Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Department of Humana Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel,
| |
Collapse
|