1
|
Tóth D, Simon G, Reglődi D. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Sudden Infant Death Syndrome: A Potential Model for Investigation. Int J Mol Sci 2023; 24:15063. [PMID: 37894743 PMCID: PMC10606572 DOI: 10.3390/ijms242015063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Sudden infant death syndrome (SIDS) represents a significant cause of post-neonatal mortality, yet its underlying mechanisms remain unclear. The triple-risk model of SIDS proposes that intrinsic vulnerability, exogenous triggers, and a critical developmental period are required for SIDS to occur. Although case-control studies have identified potential risk factors, no in vivo model fully reflects the complexities observed in human studies. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide with diverse physiological functions, including metabolic and thermal regulation, cardiovascular adaptation, breathing control, stress responses, sleep-wake regulation and immunohomeostasis, has been subject to early animal studies, which revealed that the absence of PACAP or its specific receptor (PAC1 receptor: PAC1R) correlates with increased neonatal mortality similar to the susceptible period for SIDS in humans. Recent human investigations have further implicated PACAP and PAC1R genes as plausible contributors to the pathomechanism of SIDS. This mini-review comprehensively synthesizes all PACAP-related research from the perspective of SIDS and proposes that PACAP deficiency might offer a promising avenue for studying SIDS.
Collapse
Affiliation(s)
- Dénes Tóth
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Gábor Simon
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Dóra Reglődi
- Department of Anatomy, HUN-REG-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| |
Collapse
|
2
|
Tubulin Cytoskeleton in Neurodegenerative Diseases–not Only Primary Tubulinopathies. Cell Mol Neurobiol 2022:10.1007/s10571-022-01304-6. [DOI: 10.1007/s10571-022-01304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
AbstractNeurodegenerative diseases represent a large group of disorders characterized by gradual loss of neurons and functions of the central nervous systems. Their course is usually severe, leading to high morbidity and subsequent inability of patients to independent functioning. Vast majority of neurodegenerative diseases is currently untreatable, and only some symptomatic drugs are available which efficacy is usually very limited. To develop novel therapies for this group of diseases, it is crucial to understand their pathogenesis and to recognize factors which can influence the disease course. One of cellular structures which dysfunction appears to be relatively poorly understood in the light of neurodegenerative diseases is tubulin cytoskeleton. On the other hand, its changes, both structural and functional, can considerably influence cell physiology, leading to pathological processes occurring also in neurons. In this review, we summarize and discuss dysfunctions of tubulin cytoskeleton in various neurodegenerative diseases different than primary tubulinopathies (caused by mutations in genes encoding the components of the tubulin cytoskeleton), especially Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, prion diseases, and neuronopathic mucopolysaccharidoses. It is also proposed that correction of these disorders might attenuate the progress of specific diseases, thus, finding newly recognized molecular targets for potential drugs might become possible.
Collapse
|
3
|
Koppan M, Nagy Z, Bosnyak I, Reglodi D. Female reproductive functions of the neuropeptide PACAP. Front Endocrinol (Lausanne) 2022; 13:982551. [PMID: 36204113 PMCID: PMC9531758 DOI: 10.3389/fendo.2022.982551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/28/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide originally isolated as a hypothalamic peptide. It has a widespread distribution in the body and has a diverse spectrum of actions. Among other processes, PACAP has been shown to be involved in reproduction. In this review we summarize findings related to the entire spectrum of female reproduction. PACAP is a regulatory factor in gonadal hormone production, influences follicular development and plays a role in fertilization and embryonic/placental development. Furthermore, PACAP is involved in hormonal changes during and after birth and affects maternal behavior. Although most data come from cell cultures and animal experiments, increasing number of evidence suggests that similar effects of PACAP can be found in humans. Among other instances, PACAP levels show changes in the serum during pregnancy and birth. PACAP is also present in the human follicular and amniotic fluids and in the milk. Levels of PACAP in follicular fluid correlate with the number of retrieved oocytes in hyperstimulated women. Human milk contains very high levels of PACAP compared to plasma levels, with colostrum showing the highest concentration, remaining steady thereafter for the first 7 months of lactation. All these data imply that PACAP has important functions in reproduction both under physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Zsuzsanna Nagy
- Department of Physiology, University of Pecs Medical School, Pécs, Hungary
| | - Inez Bosnyak
- Department of Anatomy, ELKH-PTE PACAP Research Group and Szentagothai Research Center, University of Pecs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, ELKH-PTE PACAP Research Group and Szentagothai Research Center, University of Pecs Medical School, Pécs, Hungary
| |
Collapse
|
4
|
Fulop DB, Humli V, Szepesy J, Ott V, Reglodi D, Gaszner B, Nemeth A, Szirmai A, Tamas L, Hashimoto H, Zelles T, Tamas A. Hearing impairment and associated morphological changes in pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Sci Rep 2019; 9:14598. [PMID: 31601840 PMCID: PMC6787024 DOI: 10.1038/s41598-019-50775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a regulatory and cytoprotective neuropeptide, its deficiency implies accelerated aging in mice. It is present in the auditory system having antiapoptotic effects. Expression of Ca2+-binding proteins and its PAC1 receptor differs in the inner ear of PACAP-deficient (KO) and wild-type (WT) mice. Our aim was to elucidate the functional role of PACAP in the auditory system. Auditory brainstem response (ABR) tests found higher hearing thresholds in KO mice at click and low frequency burst stimuli. Hearing impairment at higher frequencies showed as reduced ABR wave amplitudes and latencies in KO animals. Increase in neuronal activity, demonstrated by c-Fos immunolabeling, was lower in KO mice after noise exposure in the ventral and dorsal cochlear nuclei. Noise induced neuronal activation was similar in further relay nuclei of the auditory pathway of WT and KO mice. Based on the similar inflammatory and angiogenic protein profile data from cochlear duct lysates, neither inflammation nor disturbed angiogenesis, as potential pathological components in sensorineural hearing losses, seem to be involved in the pathomechanism of the presented functional and morphological changes in PACAP KO mice. The hearing impairment is probably concomitant with the markedly accelerated aging processes in these animals.
Collapse
Affiliation(s)
- Daniel Balazs Fulop
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Viktoria Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Virag Ott
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Adrienn Nemeth
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.,Department of Otorhinolaryngology, University of Pecs Medical School, Pecs, Hungary
| | - Agnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Laszlo Tamas
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary. .,Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.
| |
Collapse
|
5
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
6
|
Abstract
Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.
Collapse
|
7
|
Reglodi D, Jungling A, Longuespée R, Kriegsmann J, Casadonte R, Kriegsmann M, Juhasz T, Bardosi S, Tamas A, Fulop BD, Kovacs K, Nagy Z, Sparks J, Miseta A, Mazzucchelli G, Hashimoto H, Bardosi A. Accelerated pre-senile systemic amyloidosis in PACAP knockout mice - a protective role of PACAP in age-related degenerative processes. J Pathol 2018; 245:478-490. [PMID: 29774542 PMCID: PMC6055756 DOI: 10.1002/path.5100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/10/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022]
Abstract
Dysregulation of neuropeptides may play an important role in aging‐induced impairments. Among them, pituitary adenylate cyclase‐activating polypeptide (PACAP) is a potent cytoprotective peptide that provides an endogenous control against a variety of tissue‐damaging stimuli. We hypothesized that the progressive decline of PACAP throughout life and the well‐known general cytoprotective effects of PACAP lead to age‐related pathophysiological changes in PACAP deficiency, supported by the increased vulnerability to various stressors of animals partially or totally lacking PACAP. Using young and aging CD1 PACAP knockout (KO) and wild type (WT) mice, we demonstrated pre‐senile amyloidosis in young PACAP KO animals and showed that senile amyloidosis appeared accelerated, more generalized, more severe, and affected more individuals. Histopathology showed age‐related systemic amyloidosis with mainly kidney, spleen, liver, skin, thyroid, intestinal, tracheal, and esophageal involvement. Mass spectrometry‐based proteomic analysis, reconfirmed with immunohistochemistry, revealed that apolipoprotein‐AIV was the main amyloid protein in the deposits together with several accompanying proteins. Although the local amyloidogenic protein expression was disturbed in KO animals, no difference was found in laboratory lipid parameters, suggesting a complex pathway leading to increased age‐related degeneration with amyloid deposits in the absence of PACAP. In spite of no marked inflammatory histological changes or blood test parameters, we detected a disturbed cytokine profile that possibly creates a pro‐inflammatory milieu favoring amyloid deposition. In summary, here we describe accelerated systemic senile amyloidosis in PACAP gene‐deficient mice, which might indicate an early aging phenomenon in this mouse strain. Thus, PACAP KO mice could serve as a model of accelerated aging with human relevance. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Adel Jungling
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Rémi Longuespée
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Joerg Kriegsmann
- Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany.,Proteopath GmbH, Trier, Germany
| | | | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary
| | - Sebastian Bardosi
- Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Balazs Daniel Fulop
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pécs, Hungary
| | - Zsuzsanna Nagy
- Second Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Jason Sparks
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine and Szentagothai Research Centre, University of Pecs Medical School, Pécs, Hungary
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry (LSM) - MolSys, Department of Chemistry, University of Liège, Belgium
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | - Attila Bardosi
- Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| |
Collapse
|
8
|
Rivnyak A, Kiss P, Tamas A, Balogh D, Reglodi D. Review on PACAP-Induced Transcriptomic and Proteomic Changes in Neuronal Development and Repair. Int J Mol Sci 2018; 19:ijms19041020. [PMID: 29596316 PMCID: PMC5979407 DOI: 10.3390/ijms19041020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread occurrence and diverse biological effects. Among its several different effects, of special importance is the action of PACAP on neuronal proliferation, differentiation and migration, and neuroprotection. The neuroprotective mechanism of PACAP is both direct and indirect, via neuronal and non-neuronal cells. Several research groups have performed transcriptomic and proteomic analysis on PACAP-mediated genes and proteins. Hundreds of proteins have been described as being involved in the PACAP-mediated neuroprotection. In the present review we summarize the few currently available transcriptomic data potentially leading to the proteomic changes in neuronal development and protection. Proteomic studies focusing on the neuroprotective role of PACAP are also reviewed and discussed in light of the most intriguing and promising effect of this neuropeptide, which may possibly have future therapeutic potential.
Collapse
Affiliation(s)
- Adam Rivnyak
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Peter Kiss
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Dorottya Balogh
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| |
Collapse
|
9
|
Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 2017; 155:120-148. [DOI: 10.1016/j.pneurobio.2015.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 10/08/2015] [Accepted: 10/26/2015] [Indexed: 02/04/2023]
|
10
|
Maasz G, Schmidt J, Avar P, Mark L. Automated SPE and nanoLC–MS analysis of somatostatin. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1315722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gabor Maasz
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecology, Tihany, Hungary
| | - Janos Schmidt
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - Peter Avar
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - Laszlo Mark
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary
- Imaging Center for Life and Material Sciences, University of Pecs, Pecs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pecs, Pecs, Hungary
| |
Collapse
|
11
|
Maasz G, Zrinyi Z, Reglodi D, Petrovics D, Rivnyak A, Kiss T, Jungling A, Tamas A, Pirger Z. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models. Dis Model Mech 2016; 10:127-139. [PMID: 28067625 PMCID: PMC5312006 DOI: 10.1242/dmm.027185] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. Summary: PACAP has a neuroprotective effect in different toxin-induced rat and snail parkinsonian models, acting partially through the same mechanisms.
Collapse
Affiliation(s)
- Gabor Maasz
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary.,Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary
| | - Zita Zrinyi
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Dora Petrovics
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary
| | - Adam Rivnyak
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Tibor Kiss
- Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| | - Adel Jungling
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Zsolt Pirger
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| |
Collapse
|
12
|
Sandor B, Fintor K, Felszeghy S, Juhasz T, Reglodi D, Mark L, Kiss P, Jungling A, Fulop BD, Nagy AD, Hashimoto H, Zakany R, Nagy A, Tamas A. Structural and morphometric comparison of the molar teeth in pre-eruptive developmental stage of PACAP-deficient and wild-type mice. J Mol Neurosci 2014; 54:331-41. [PMID: 25112419 DOI: 10.1007/s12031-014-0392-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/24/2014] [Indexed: 12/14/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide with widespread distribution. It plays pivotal role in neuronal development. PACAP-immunoreactive fibers have been found in the tooth pulp, and recently, it has been shown that PACAP may also play a role in the regeneration of the periodontium after luxation injuries. However, there is no data about the effect of endogenous PACAP on tooth development. Ectodermal organogenesis including tooth development is regulated by different members of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), hedgehog (HH), and Wnt families. There is also a growing evidence to support the hypothesis that PACAP interacts with sonic hedgehog (SHH) receptor (PTCH1) and its downstream target (Gli1) suggesting its role in tooth development. Therefore, our aim was to study molar tooth development in mice lacking endogenous PACAP. In this study morphometric, immunohistochemical and structural comparison of molar teeth in pre-eruptive developmental stage was performed on histological sections of 7-day-old wild-type and PACAP-deficient mice. Further structural analysis was carried out with Raman microscope. The morphometric comparison of the 7-day-old samples revealed that the dentin was significantly thinner in the molars of PACAP-deficient mice compared to wild-type animals. Raman spectra of the enamel in wild-type mice demonstrated higher diversity in secondary structure of enamel proteins. In the dentin of PACAP-deficient mice higher intracrystalline disordering in the hydroxyapatite molecular structure was found. We also obtained altered SHH, PTCH1 and Gli1 expression level in secretory ameloblasts of PACAP-deficient mice compared to wild-type littermates suggesting that PACAP might play an important role in molar tooth development and matrix mineralization involving influence on SHH signaling cascade.
Collapse
Affiliation(s)
- B Sandor
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Banki E, Pakai E, Gaszner B, Zsiboras C, Czett A, Bhuddi PRP, Hashimoto H, Toth G, Tamas A, Reglodi D, Garami A. Characterization of the thermoregulatory response to pituitary adenylate cyclase-activating polypeptide in rodents. J Mol Neurosci 2014; 54:543-54. [PMID: 24994541 DOI: 10.1007/s12031-014-0361-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/23/2014] [Indexed: 12/19/2022]
Abstract
Administration of the long form (38 amino acids) of pituitary adenylate cyclase-activating polypeptide (PACAP38) into the central nervous system causes hyperthermia, suggesting that PACAP38 plays a role in the regulation of deep body temperature (T b). In this study, we investigated the thermoregulatory role of PACAP38 in details. First, we infused PACAP38 intracerebroventricularly to rats and measured their T b and autonomic thermoeffector responses. We found that central PACAP38 infusion caused dose-dependent hyperthermia, which was brought about by increased thermogenesis and tail skin vasoconstriction. Compared to intracerebroventricular administration, systemic (intravenous) infusion of the same dose of PACAP38 caused significantly smaller hyperthermia, indicating a central site of action. We then investigated the thermoregulatory phenotype of mice lacking the Pacap gene (Pacap (-/-)). Freely moving Pacap (-/-) mice had higher locomotor activity throughout the day and elevated deep T b during the light phase. When the Pacap (-/-) mice were loosely restrained, their metabolic rate and T b were lower compared to their wild-type littermates. We conclude that PACAP38 causes hyperthermia via activation of the autonomic cold-defense thermoeffectors through central targets. Pacap (-/-) mice express hyperkinesis, which is presumably a compensatory mechanism, because under restrained conditions, these mice are hypometabolic and hypothermic compared to controls.
Collapse
Affiliation(s)
- Eszter Banki
- Department of Anatomy PTE-MTA "Lendulet" PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|