1
|
Ma L, Liu C, Song R, Qian Y, Zhang F. Telomere Length and Oxidative Damage in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. J Integr Neurosci 2025; 24:24948. [PMID: 39862003 DOI: 10.31083/jin24948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial. The aim of this study was to determine the associations of ASD with TL and oxidative indicators by performing a meta-analysis of all published evidence. METHODS The PubMed and Embase databases were searched for articles published up to April, 2024. The effect size was expressed as standardized mean difference (SMD) and 95% confidence interval (CI) via Stata 15.0 software. RESULTS Thirty-nine studies were included. Pooled results showed that compared with controls, children and adolescents with ASD were associated with significantly shorter TL (SMD = -0.48; 95% CI = -0.66- -0.29; p < 0.001; particularly in males), lower total antioxidant capacity (TAC: SMD = -1.15; 95% CI = -2.01- -0.30; p = 0.008), and higher oxidative DNA (8-hydroxy-2'-deoxyguanosine, 8-OHdG: SMD = 0.63; 95% CI = 0.03-1.23; p = 0.039), lipid (hexanolyl-lysine, HEL: SMD = 0.37; 95% CI = 0.13-0.62; p = 0.003), and protein (3-nitrotyrosine, 3-NT: SMD = 0.86; 95% CI = 0.21-1.51; p = 0.01; dityrosine, DT: SMD = 0.66; 95% CI = 0.521-0.80; p < 0.01) damage. There were no significant differences between ASD and controls in 8-isoprostane and oxidative stress index after publication bias correction, and in N-formylkynurenine during overall meta-analysis. CONCLUSIONS TL, 8-OHdG, TAC, HEL, 3-NT, and DT represent potential biomarkers for prediction of ASD in children and adolescents.
Collapse
Affiliation(s)
- Leping Ma
- Department of Child Health, Shaoxing Keqiao Maternal and Child Health Care Hospital, 312030 Shaoxing, Zhejiang, China
| | - Cui Liu
- Department of Pediatrics, Qingdao Huangdao District Central Hospital, 266555 Qingdao, Shandong, China
| | - Ran Song
- Department of Pediatrics, Zaozhuang Shanting District People's Hospital, 277200 Zaozhuang, Shandong, China
| | - Yeping Qian
- Department of Child Health, Shaoxing Keqiao Maternal and Child Health Care Hospital, 312030 Shaoxing, Zhejiang, China
| | - Feng Zhang
- Department of Child Health, Qingdao Huangdao District Central Hospital, 266555 Qingdao, Shandong, China
| |
Collapse
|
2
|
Kang N, Sargsyan S, Chough I, Petrick L, Liao J, Chen W, Pavlovic N, Lurmann FW, Martinez MP, McConnell R, Xiang AH, Chen Z. Dysregulated metabolic pathways associated with air pollution exposure and the risk of autism: Evidence from epidemiological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124729. [PMID: 39147228 PMCID: PMC11902886 DOI: 10.1016/j.envpol.2024.124729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder with symptoms that range from social and communication impairments to restricted interests and repetitive behavior and is the 4th most disabling condition for children aged 5-14. Risk factors of ASD are not fully understood. Environmental risk factors are believed to play a significant role in the ASD epidemic. Research focusing on air pollution exposure as an early-life risk factor of autism is growing, with numerous studies finding associations of traffic and industrial emissions with an increased risk of ASD. One of the possible mechanisms linking autism and air pollution exposure is metabolic dysfunction. However, there were no consensus about the key metabolic pathways and corresponding metabolite signatures in mothers and children that are altered by air pollution exposure and cause the ASD. Therefore, we performed a review of published papers examining the metabolomic signatures and metabolic pathways that are associated with either air pollution exposure or ASD risk in human studies. In conclusion, we found that dysregulated lipid, fatty acid, amino acid, neurotransmitter, and microbiome metabolisms are associated with both short-term and long-term air pollution exposure and the risk of ASD. These dysregulated metabolisms may provide insights into ASD etiology related to air pollution exposure, particularly during the perinatal period in which neurodevelopment is highly susceptible to damage from oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ni Kang
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Suzan Sargsyan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ino Chough
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Wu Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Wang F, Yao Z, Jin T, Mao B, Shao S, Shao C. Research progress on Helicobacter pylori infection related neurological diseases. Ageing Res Rev 2024; 99:102399. [PMID: 38955263 DOI: 10.1016/j.arr.2024.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Helicobacter pylori, a type of gram-negative bacterium, infects roughly half of the global population. It is strongly associated with gastrointestinal disorders like gastric cancer, peptic ulcers, and chronic gastritis. Moreover, numerous studies have linked this bacterium to various extra-gastric conditions, including hematologic, cardiovascular, and neurological issues. Specifically, research has shown that Helicobacter pylori interacts with the brain through the microbiota-gut-brain axis, thereby increasing the risk of neurological disorders. The inflammatory mediators released by Helicobacter pylori-induced chronic gastritis may disrupt the function of the blood-brain barrier by interfering with the transmission or direct action of neurotransmitters. This article examines the correlation between Helicobacter pylori and a range of conditions, such as hyperhomocysteinemia, schizophrenia, Alzheimer's disease, Parkinson's disease, ischemic stroke, multiple sclerosis, migraine, and Guillain-Barré syndrome.
Collapse
Affiliation(s)
- Fan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Zhendong Yao
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Tao Jin
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Boneng Mao
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China.
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China; Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| | - Chen Shao
- Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Frye RE, Rincon N, McCarty PJ, Brister D, Scheck AC, Rossignol DA. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol Dis 2024; 197:106520. [PMID: 38703861 DOI: 10.1016/j.nbd.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Southwest Autism Research and Resource Center, Phoenix, AZ, USA; Rossignol Medical Center, Phoenix, AZ, USA.
| | | | - Patrick J McCarty
- Tulane University School of Medicine, New Orleans, LA 70113, United States of America.
| | | | - Adrienne C Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States of America.
| | - Daniel A Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Rossignol Medical Center, Aliso Viejo, CA, USA
| |
Collapse
|
5
|
Wang Z, Zhang B, Mu C, Qiao D, Chen H, Zhao Y, Cui H, Zhang R, Li S. Androgen levels in autism spectrum disorders: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1371148. [PMID: 38779452 PMCID: PMC11109388 DOI: 10.3389/fendo.2024.1371148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Background Accumulating evidence suggests that the autism spectrum disorder (ASD) population exhibits altered hormone levels, including androgens. However, studies on the regulation of androgens, such as testosterone and dehydroepiandrosterone (DHEA), in relation to sex differences in individuals with ASD are limited and inconsistent. We conducted the systematic review with meta-analysis to quantitatively summarise the blood, urine, or saliva androgen data between individuals with ASD and controls. Methods A systematic search was conducted for eligible studies published before 16 January 2023 in six international and two Chinese databases. We computed summary statistics with a random-effects model. Publication bias was assessed using funnel plots and heterogeneity using I2 statistics. Subgroup analysis was performed by age, sex, sample source, and measurement method to explain the heterogeneity. Results 17 case-control studies (individuals with ASD, 825; controls, 669) were assessed. Androgen levels were significantly higher in individuals with ASD than that in controls (SMD: 0.27, 95% CI: 0.06-0.48, P=0.01). Subgroup analysis showed significantly elevated levels of urinary total testosterone, urinary DHEA, and free testosterone in individuals with ASD. DHEA level was also significantly elevated in males with ASD. Conclusion Androgen levels, especially free testosterone, may be elevated in individuals with ASD and DHEA levels may be specifically elevated in males.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Bohan Zhang
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Chenyu Mu
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Dan Qiao
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Huan Chen
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Yan Zhao
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Rong Zhang
- Neuroscience Research Institute, Key Laboratory for Neuroscience, Ministry of Education of China, Peking University, Beijing, China
- Key Laboratory for Neuroscience, National Committee of Health, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Autism Research Center of Peking University Health Science Center, Beijing, China
| | - Sha Li
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
6
|
Dufault RJ, Adler KM, Carpenter DO, Gilbert SG, Crider RA. Nutritional epigenetics education improves diet and attitude of parents of children with autism or attention deficit/hyperactivity disorder. World J Psychiatry 2024; 14:159-178. [PMID: 38327893 PMCID: PMC10845225 DOI: 10.5498/wjp.v14.i1.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Unhealthy maternal diet leads to heavy metal exposures from the consumption of ultra-processed foods that may impact gene behavior across generations, creating conditions for the neurodevelopmental disorders known as autism and attention deficit/hyperactivity disorder (ADHD). Children with these disorders have difficulty metabolizing and excreting heavy metals from their bloodstream, and the severity of their symptoms correlates with the heavy metal levels measured in their blood. Psychiatrists may play a key role in helping parents reduce their ultra-processed food and dietary heavy metal intake by providing access to effective nutritional epigenetics education. AIM To test the efficacy of nutritional epigenetics instruction in reducing parental ultra-processed food intake. METHODS The study utilized a semi-randomized test and control group pretest-posttest pilot study design with participants recruited from parents having a learning-disabled child with autism or ADHD. Twenty-two parents who met the inclusion criteria were randomly selected to serve in the test (n = 11) or control (n = 11) group. The test group participated in the six-week online nutritional epigenetics tutorial, while the control group did not. The efficacy of the nutritional epigenetics instruction was determined by measuring changes in parent diet and attitude using data derived from an online diet survey administered to the participants during the pre and post intervention periods. Diet intake scores were derived for both ultra-processed and whole/organic foods. Paired sample t-tests were conducted to determine any differences in mean diet scores within each group. RESULTS There was a significant difference in the diet scores of the test group between the pre- and post-intervention periods. The parents in the test group significantly reduced their intake of ultra-processed foods with a pre-intervention diet score of 70 (mean = 5.385, SD = 2.534) and a post-intervention diet score of 113 (mean = 8.692, SD = 1.750) and the paired t-test analysis showing a significance of P < 0.001. The test group also significantly increased their consumption of whole and/or organic foods with a pre-intervention diet score of 100 (mean = 5.882, SD = 2.472) and post-intervention diet score of 121 (mean = 7.118, SD = 2.390) and the paired t-test analysis showing a significance of P < 0.05. CONCLUSION Here we show nutritional epigenetics education can be used to reduce ultra-processed food intake and improve attitude among parents having learning-disabled children with autism or ADHD.
Collapse
Affiliation(s)
- Renee J Dufault
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| | - Katherine M Adler
- Department of Health Sciences, University of New Haven, West Haven, CT 06516, United States
| | - David O Carpenter
- Institute for Health and the Environment, School of Public Health, State University of New York, Albany, NY 12222, United States
| | - Steven G Gilbert
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Research, Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Raquel A Crider
- Department of Statistics, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| |
Collapse
|
7
|
Lee HHC, Sahin M. Rodent Models for ASD Biomarker Development. ADVANCES IN NEUROBIOLOGY 2024; 40:189-218. [PMID: 39562446 DOI: 10.1007/978-3-031-69491-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Advances in molecular biology and genetics are increasingly revealing the complex etiology of autism spectrum disorder (ASD). In parallel, a number of biochemical, anatomical, and electrophysiological measures are emerging as potential disease-relevant biomarkers that could inform the diagnosis and clinical management of ASD. Rodent ASD models play a key role in ASD research as essential experimental tools. Nevertheless, there are challenges and limitations to the validity and translational value of rodent models, including genetic relevance and cognitive performance differences between humans and rodents. In this chapter, we begin with a brief history of autism research, followed by prominent examples of disease-relevant mouse models enabled by current knowledge of genetics, molecular biology, and bioinformatics. These ASD-associated rodent models enable quantifiable biomarker development. Finally, we discuss the prospects of ASD biomarker development.
Collapse
Affiliation(s)
- Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Maier S, Nickel K, Lange T, Oeltzschner G, Dacko M, Endres D, Runge K, Schumann A, Domschke K, Rousos M, Tebartz van Elst L. Increased cerebral lactate levels in adults with autism spectrum disorders compared to non-autistic controls: a magnetic resonance spectroscopy study. Mol Autism 2023; 14:44. [PMID: 37978557 PMCID: PMC10655272 DOI: 10.1186/s13229-023-00577-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) encompasses a heterogeneous group with varied phenotypes and etiologies. Identifying pathogenic subgroups could facilitate targeted treatments. One promising avenue is investigating energy metabolism, as mitochondrial dysfunction has been implicated in a subgroup of ASD. Lactate, an indicator of energy metabolic anomalies, may serve as a potential biomarker for this subgroup. This study aimed to examine cerebral lactate (Lac+) levels in high-functioning adults with ASD, hypothesizing elevated mean Lac+ concentrations in contrast to neurotypical controls (NTCs). MATERIALS AND METHODS Magnetic resonance spectroscopy (MRS) was used to study cerebral Lac+ in 71 adults with ASD and NTC, focusing on the posterior cingulate cortex (PCC). After quality control, 64 ASD and 58 NTC participants remained. Lac+ levels two standard deviations above the mean of the control group were considered elevated. RESULTS Mean PCC Lac+ levels were significantly higher in the ASD group than in the NTC group (p = 0.028; Cohen's d = 0.404), and 9.4% of the ASD group had elevated levels as compared to 0% of the NTCs (p = 0.029). No significant correlation was found between blood serum lactate levels and MRS-derived Lac+ levels. LIMITATIONS A cautious interpretation of our results is warranted due to a p value of 0.028. In addition, a higher than anticipated proportion of data sets had to be excluded due to poor spectral quality. CONCLUSION This study confirms the presence of elevated cerebral Lac+ levels in a subgroup of adults with ASD, suggesting the potential of lactate as a biomarker for mitochondrial dysfunction in a subgroup of ASD. The lower-than-expected prevalence (20% was expected) and moderate increase require further investigation to elucidate the underlying mechanisms and relationships with mitochondrial function.
Collapse
Affiliation(s)
- Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany.
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Thomas Lange
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael Dacko
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Anke Schumann
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Michalis Rousos
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| |
Collapse
|
9
|
Sarigul N, Bozatli L, Kurultak I, Korkmaz F. Using urine FTIR spectra to screen autism spectrum disorder. Sci Rep 2023; 13:19466. [PMID: 37945643 PMCID: PMC10636094 DOI: 10.1038/s41598-023-46507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder caused by multiple factors, lacking clear biomarkers. Diagnosing ASD still relies on behavioural and developmental signs and usually requires lengthy observation periods, all of which are demanding for both clinicians and parents. Although many studies have revealed valuable knowledge in this field, no clearly defined, practical, and widely acceptable diagnostic tool exists. In this study, 26 children with ASD (ASD+), aged 3-5 years, and 26 sex and age-matched controls are studied to investigate the diagnostic potential of the Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The urine FTIR spectrum results show a downward trend in the 3000-2600/cm region for ASD+ children when compared to the typically developing (TD) children of the same age. The average area of this region is 25% less in ASD+ level 3 children, 29% less in ASD+ level 2 children, and 16% less in ASD+ level 1 children compared to that of the TD children. Principal component analysis was applied to the two groups using the entire spectrum window and five peaks were identified for further analysis. The correlation between the peaks and natural urine components is validated by artificial urine solutions. Less-than-normal levels of uric acid, phosphate groups, and ammonium ([Formula: see text]) can be listed as probable causes. This study shows that ATR-FTIR can serve as a practical and non-invasive method to screen ASD using the high-frequency region of the urine spectrum.
Collapse
Affiliation(s)
- Neslihan Sarigul
- Institute of Nuclear Science, Hacettepe University, Ankara, Turkey.
| | - Leyla Bozatli
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ilhan Kurultak
- Department of Nephrology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Filiz Korkmaz
- Biophysics Laboratory, Faculty of Engineering, Atilim University, Ankara, Turkey
| |
Collapse
|
10
|
Kaupper CS, Blaauwendraad SM, Cecil CAM, Mulder RH, Gaillard R, Goncalves R, Borggraefe I, Koletzko B, Jaddoe VWV. Cord Blood Metabolite Profiles and Their Association with Autistic Traits in Childhood. Metabolites 2023; 13:1140. [PMID: 37999236 PMCID: PMC10672851 DOI: 10.3390/metabo13111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a diverse neurodevelopmental condition. Gene-environmental interactions in early stages of life might alter metabolic pathways, possibly contributing to ASD pathophysiology. Metabolomics may serve as a tool to identify underlying metabolic mechanisms contributing to ASD phenotype and could help to unravel its complex etiology. In a population-based, prospective cohort study among 783 mother-child pairs, cord blood serum concentrations of amino acids, non-esterified fatty acids, phospholipids, and carnitines were obtained using liquid chromatography coupled with tandem mass spectrometry. Autistic traits were measured at the children's ages of 6 (n = 716) and 13 (n = 648) years using the parent-reported Social Responsiveness Scale. Lower cord blood concentrations of SM.C.39.2 and NEFA16:1/16:0 were associated with higher autistic traits among 6-year-old children, adjusted for sex and age at outcome. After more stringent adjustment for confounders, no significant associations of cord blood metabolites and autistic traits at ages 6 and 13 were detected. Differences in lipid metabolism (SM and NEFA) might be involved in ASD-related pathways and are worth further investigation.
Collapse
Affiliation(s)
- Christin S. Kaupper
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Sophia M. Blaauwendraad
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Rosa H. Mulder
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Romy Goncalves
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Comprehensive Epilepsy Center for Children and Adolescents, Dr. von Hauner Children’s Hospital, LMU University Hospitals, LMU—Ludwig-Maximilians Universität, 80337 Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU University Hospitals, LMU—Ludwig-Maximilians Universität, 80337 Munich, Germany
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
11
|
Nickel K, Menke M, Endres D, Runge K, Tucci S, Schumann A, Domschke K, Tebartz van Elst L, Maier S. Altered markers of mitochondrial function in adults with autism spectrum disorder. Autism Res 2023; 16:2125-2138. [PMID: 37715660 DOI: 10.1002/aur.3029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Previous research suggests potential mitochondrial dysfunction and changes in fatty acid metabolism in a subgroup of individuals with autism spectrum disorder (ASD), indicated by higher lactate, pyruvate levels, and mitochondrial disorder prevalence. This study aimed to further investigate potential mitochondrial dysfunction in ASD by assessing blood metabolite levels linked to mitochondrial metabolism. Blood levels of creatine kinase (CK), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate, pyruvate, free and total carnitine, as well as acylcarnitines were obtained in 73 adults with ASD (47 males, 26 females) and compared with those of 71 neurotypical controls (NTC) (44 males, 27 females). Correlations between blood parameters and psychometric ASD symptom scores were also explored. Lower CK (pcorr = 0.045) levels were found exclusively in males with ASD compared to NTC, with no such variation in females. ALT and AST levels did not differ significantly between both groups. After correction for antipsychotic and antidepressant medication, CK remained significant. ASD participants had lower serum lactate levels (pcorr = 0.036) compared to NTC, but pyruvate and carnitine concentrations showed no significant difference. ASD subjects had significantly increased levels of certain acylcarnitines, with a decrease in tetradecadienoyl-carnitine (C14:2), and certain acylcarnitines correlated significantly with autistic symptom scores. We found reduced serum lactate levels in ASD, in contrast to previous studies suggesting elevated lactate or pyruvate. This difference may reflect the focus of our study on high-functioning adults with ASD, who are likely to have fewer secondary genetic conditions associated with mitochondrial dysfunction. Our findings of significantly altered acylcarnitine levels in ASD support the hypothesis of altered fatty acid metabolism in a subset of ASD patients.
Collapse
Affiliation(s)
- Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mia Menke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sara Tucci
- Pharmacy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Anke Schumann
- Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Dufault RJ, Crider RA, Deth RC, Schnoll R, Gilbert SG, Lukiw WJ, Hitt AL. Higher rates of autism and attention deficit/hyperactivity disorder in American children: Are food quality issues impacting epigenetic inheritance? World J Clin Pediatr 2023; 12:25-37. [PMID: 37034430 PMCID: PMC10075020 DOI: 10.5409/wjcp.v12.i2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
In the United States, schools offer special education services to children who are diagnosed with a learning or neurodevelopmental disorder and have difficulty meeting their learning goals. Pediatricians may play a key role in helping children access special education services. The number of children ages 6-21 in the United States receiving special education services increased 10.4% from 2006 to 2021. Children receiving special education services under the autism category increased 242% during the same period. The demand for special education services for children under the developmental delay and other health impaired categories increased by 184% and 83% respectively. Although student enrollment in American schools has remained stable since 2006, the percentage distribution of children receiving special education services nearly tripled for the autism category and quadrupled for the developmental delay category by 2021. Allowable heavy metal residues remain persistent in the American food supply due to food ingredient manufacturing processes. Numerous clinical trial data indicate heavy metal exposures and poor diet are the primary epigenetic factors responsible for the autism and attention deficit hyperactivity disorder epidemics. Dietary heavy metal exposures, especially inorganic mercury and lead may impact gene behavior across generations. In 2021, the United States Congress found heavy metal residues problematic in the American food supply but took no legislative action. Mandatory health warning labels on select foods may be the only way to reduce dietary heavy metal exposures and improve child learning across generations.
Collapse
Affiliation(s)
- Renee J Dufault
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
| | - Raquel A Crider
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Roseanne Schnoll
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Health and Nutrition Sciences, Brooklyn College of CUNY, Brooklyn, NY 11210, United States
| | - Steven G Gilbert
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Research, Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Amanda L Hitt
- Food Integrity Campaign, Government Accountability Project, Columbia, WA 20006, United States
- Department of Legal, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| |
Collapse
|
13
|
Dhanasekara CS, Ancona D, Cortes L, Hu A, Rimu AH, Robohm-Leavitt C, Payne D, Wakefield SM, Mastergeorge AM, Kahathuduwa CN. Association Between Autism Spectrum Disorders and Cardiometabolic Diseases: A Systematic Review and Meta-analysis. JAMA Pediatr 2023; 177:248-257. [PMID: 36716018 PMCID: PMC9887535 DOI: 10.1001/jamapediatrics.2022.5629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 01/31/2023]
Abstract
Importance Although the increased risk of obesity among individuals with autism has been well established, evidence on the association between autism, cardiometabolic disorders, and obesity remains inconclusive. Objective To examine the association between autism spectrum disorders and cardiometabolic diseases in a systematic review and meta-analysis. Data Sources PubMed, Scopus, Web of Science, ProQuest, Embase, and Ovid databases were searched from inception through July 31, 2022, without restrictions on date of publication or language. Study Selection Observational or baseline data of interventional studies reporting the prevalence of cardiometabolic risk factors (ie, diabetes, hypertension, dyslipidemia, atherosclerotic macrovascular disease) among children and/or adults with autism and matched with participants without autism were included. Data Extraction and Synthesis Screening, data extraction, and quality assessment were performed independently by at least 2 researchers. DerSimonian-Laird random-effects meta-analyses were performed using the meta package in R. Main Outcomes and Measures Relative risks (RRs) of diabetes, hypertension, dyslipidemia, and atherosclerotic macrovascular disease among individuals with autism were the primary outcomes. Secondary outcomes included the RR of type 1 and type 2 diabetes, heart disease, stroke, and peripheral vascular disease. Results A total of 34 studies were evaluated and included 276 173 participants with autism and 7 733 306 participants without autism (mean [range] age, 31.2 [3.8-72.8] years; pooled proportion [range] of female individuals, 47% [0-66%]). Autism was associated with greater risks of developing diabetes overall (RR, 1.57; 95% CI, 1.23-2.01; 20 studies), type 1 diabetes (RR, 1.64; 95% CI, 1.06-2.54; 6 studies), and type 2 diabetes (RR, 2.47; 95% CI, 1.30-4.70; 3 studies). Autism was also associated with increased risks of dyslipidemia (RR, 1.69; 95% CI, 1.20-2.40; 7 studies) and heart disease (RR, 1.46; 95% CI, 1.42-1.50; 3 studies). Yet, there was no significantly associated increased risk of hypertension and stroke with autism (RR, 1.22; 95% CI, 0.98-1.52; 12 studies; and RR, 1.19; 95% CI, 0.63-2.24; 4 studies, respectively). Meta-regression analyses revealed that children with autism were at a greater associated risk of developing diabetes and hypertension compared with adults. High between-study heterogeneity was a concern for several meta-analyses. Conclusions and Relevance Results suggest that the associated increased risk of cardiometabolic diseases should prompt clinicians to vigilantly monitor individuals with autism for potential contributors, signs of cardiometabolic disease, and their complications.
Collapse
Affiliation(s)
- Chathurika S. Dhanasekara
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Dominic Ancona
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
| | - Leticia Cortes
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
| | - Amy Hu
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
| | - Afrina H. Rimu
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Christina Robohm-Leavitt
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
| | - Drew Payne
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Sarah M. Wakefield
- Department of Psychiatry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Ann M. Mastergeorge
- Department of Human Development and Family Sciences, College of Human Sciences, Texas Tech University, Lubbock
| | - Chanaka N. Kahathuduwa
- Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock
- Department of Psychiatry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| |
Collapse
|
14
|
He Q, Wang Y, Liu Z, Xia J, Yin H, Qiu Z, Wang H, Xu W, Xu Z, Xie J. Analysis of salivary steroid hormones in boys with autism spectrum disorder. BMC Psychiatry 2023; 23:105. [PMID: 36788524 PMCID: PMC9926760 DOI: 10.1186/s12888-023-04586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) is a neurodevelopmental disorder with high incidence rate and difficult diagnosis. The purpose of this study was to explore whether salivary cortisol, dehydroepiandrosterone (DHEA) and pregnenolone can be used as biomarkers of ASD children. METHODS The saliva samples of 55 boys with ASD were collected as the experimental group, and the saliva samples of 24 neurotypical boys were collected as the control group. The Child Behavior Checklist (CBCL), Autism Behavior Checklist (ABC), Social Responsiveness Scale (SRS), Repetitive Behavior Scale (RBS) were used to assess the severity of symptoms in boys with ASD. Cortisol, DHEA and pregnenolone concentrations in saliva were measured using an ABSSCIEX QTRAP® 6500 + LC/MS/MS system. SPSS 23.0 was used for statistical analysis. Comparisons between the two groups which conform to normal distribution were performed by T-test, and those which don't conform to normal distribution were performed by Mann-Whitney U test. Correlation analysis between two variables was performed using Spearman's correlation analysis. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the discriminatory sensitivity of each hormone between ASD and normal control groups. Logistic regression models were used to analyze whether DHEA and salivary pregnenolone can be used as a biomarker of ASD. RESULTS There were no significant differences in age, and weight between the ASD group and the normal control group. The ABC, SRS, RBS and CBCL scale scores in the ASD group were significantly higher than those in the normal control group. The salivary DHEA and pregnenolone concentrations in the ASD group were significantly higher than those in the normal control group, but there was no significant difference in cortisol. Spearman's correlation analysis showed that only pregnenolone associated with ABC. Logistic regression model analysis suggested that pregnenolone in saliva was an independent predictor of ASD. ROC analysis found that pregnenolone had good discrimination sensitivity between ASD and normal controls. CONCLUSION Gave salivary preoperative a space for utilization as biomarker as number of cases are limited to this high expectation.
Collapse
Affiliation(s)
- Qing He
- grid.410578.f0000 0001 1114 4286Department of Pediatrics, School of Clinical Medicine, Southwest Medical University, Luzhou, 646000 China ,Guangyuan Central Hospital, Guangyuan, 628000 China
| | - Ying Wang
- Deyang Jingyang Maternal and Child Health Care and Family Planning Service Center, Deyang, 618000 China
| | - Zhichao Liu
- grid.460068.c0000 0004 1757 9645Chengdu Third People’s Hospital, Qinglong Street, Qingyang District, Chengdu, 610031 Sichuan China
| | - Jinrong Xia
- grid.460068.c0000 0004 1757 9645Chengdu Third People’s Hospital, Qinglong Street, Qingyang District, Chengdu, 610031 Sichuan China
| | - Heng Yin
- grid.460068.c0000 0004 1757 9645Chengdu Third People’s Hospital, Qinglong Street, Qingyang District, Chengdu, 610031 Sichuan China
| | - Zhongqing Qiu
- grid.460068.c0000 0004 1757 9645Chengdu Third People’s Hospital, Qinglong Street, Qingyang District, Chengdu, 610031 Sichuan China
| | - Hui Wang
- grid.460068.c0000 0004 1757 9645Chengdu Third People’s Hospital, Qinglong Street, Qingyang District, Chengdu, 610031 Sichuan China
| | - Wenming Xu
- grid.461863.e0000 0004 1757 9397West China Second University Hospital, Sichuan University, Chengdu, 610041 China
| | - Zhe Xu
- Guangyuan Central Hospital, Guangyuan, 628000 China
| | - Jiang Xie
- Department of Pediatrics, School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China. .,Chengdu Third People's Hospital, Qinglong Street, Qingyang District, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
15
|
Thomson S, Drummond K, O'Hely M, Symeonides C, Chandran C, Mansell T, Saffery R, Sly P, Mueller J, Vuillermin P, Ponsonby AL. Increased maternal non-oxidative energy metabolism mediates association between prenatal di-(2-ethylhexyl) phthalate (DEHP) exposure and offspring autism spectrum disorder symptoms in early life: A birth cohort study. ENVIRONMENT INTERNATIONAL 2023; 171:107678. [PMID: 36516674 DOI: 10.1016/j.envint.2022.107678] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Prenatal phthalate exposure has previously been linked to the development of autism spectrum disorder (ASD). However, the underlying biological mechanisms remain unclear. We investigated whether maternal and child central carbon metabolism is involved as part of the Barwon Infant Study (BIS), a population-based birth cohort of 1,074 Australian children. We estimated phthalate daily intakes using third-trimester urinary phthalate metabolite concentrations and other relevant indices. The metabolome of maternal serum in the third trimester, cord serum at birth and child plasma at 1 year were measured by nuclear magnetic resonance. We used the Small Molecule Pathway Database and principal component analysis to construct composite metabolite scores reflecting metabolic pathways. ASD symptoms at 2 and 4 years were measured in 596 and 674 children by subscales of the Child Behavior Checklist and the Strengths and Difficulties Questionnaire, respectively. Multivariable linear regression analyses demonstrated (i) prospective associations between higher prenatal di-(2-ethylhexyl) phthalate (DEHP) levels and upregulation of maternal non-oxidative energy metabolism pathways, and (ii) prospective associations between upregulation of these pathways and increased offspring ASD symptoms at 2 and 4 years of age. Counterfactual mediation analyses indicated that part of the mechanism by which higher prenatal DEHP exposure influences the development of ASD symptoms in early childhood is through a maternal metabolic shift in pregnancy towards non-oxidative energy pathways, which are inefficient compared to oxidative metabolism. These results highlight the importance of the prenatal period and suggest that further investigation of maternal energy metabolism as a molecular mediator of the adverse impact of prenatal environmental exposures such as phthalates is warranted.
Collapse
Affiliation(s)
- Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Martin O'Hely
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Chitra Chandran
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Peter Sly
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia; Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia.
| |
Collapse
|
16
|
HASSAN MH, SHEHATA GA, AHMED AE, EL-SAWY SA, TOHAMY AM, SAKHR HM, BAKRI AH, ABDELLATI F H, AMEEN HH, ABDALLAH AA, RASHWAN NI. Vitamin D3 status and polymorphisms of vitamin D receptor genes among cohort of Egyptian children with autism. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2023. [DOI: 10.23736/s0393-3660.22.04776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Erdogan MA, Bozkurt MF, Erbas O. Effects of prenatal testosterone exposure on the development of autism-like behaviours in offspring of Wistar rats. Int J Dev Neurosci 2022; 83:201-215. [PMID: 36573444 DOI: 10.1002/jdn.10248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A neurodevelopmental disease, autism spectrum disorder (ASD) occurs in males three times more commonly than girls. Higher prenatal testosterone exposure may result in autistic-like behaviour in boys, according to earlier research. It is unclear how fetal testosterone affects the development of autism. In this study, we tested the hypothesis that prenatal testosterone exposure in an animal model may result in autistic behaviours by modifying serotonin, dopamine, IGF-1 and oxytocin levels. MATERIALS AND METHODS Group 1 (control, n = 6) and Group 2 (testosterone undecanoate, n = 6) of female rats were randomly assigned. For 2-3 days during the oestrus cycle, female rats were housed with a reproductive male (three females/one male). On the 10th day of gestation, rats in Group 1 received 1 ml/kg% 0.9 NaCl saline, whereas rats in Group 2 received 250 mg/kg testosterone undecanoate. Until weaning on postnatal day 21 (P21), the mothers were permitted to care for their pups. On P21, 40 littermates-10 male and female for control and 10 male and female from mothers that exposed to testosterone-were arbitrarily split up and housed. On P50, these mature rats were tested for their behaviour. The rats were then sacrificed. The brain tissue was subjected to histological examinations as well as biochemical tests for homovanillic acid (HVA), 5-Hydroxyindoleacetic acid (5-HIAA), oxytocin and insulin-like growth factor-1 (IGF-1). RESULTS The groups differed significantly in the behavioural examinations (three-chamber social test, passive avoidance learning analysis, open field test), with the testosterone-exposed groups exhibiting autistic symptoms to a higher extent. When compared with the control groups, testosterone exposure caused significant histological changes in the hippocampus CA1 and CA3 areas, including gliosis and cell death of neurons. In the testosterone-exposed groups, HVA, 5-HIAA and IGF-1 tissue expressions in the brain elevated, whereas oxytocin levels reduced. These findings point to a potential connection between neurodevelopmental disorders like ASD and exposure to testosterone during gestation. CONCLUSION Overall, we revealed that prenatal testosterone exposure led to autistic traits by elevating serotonin, dopamine and IGF-1 levels while lowering oxytocin levels.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Mehmet Fatih Bozkurt
- Department of Pathology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| |
Collapse
|
18
|
Gao J, Zou J, Yang L, Zhao J, Wang L, Liu T, Fan X. Alteration of peripheral cortisol and autism spectrum disorder: A meta-analysis. Front Psychiatry 2022; 13:928188. [PMID: 35911217 PMCID: PMC9334910 DOI: 10.3389/fpsyt.2022.928188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cortisol is the main HPA axis hormone secreted by the adrenal cortex, and influences metabolism, cognition, and behavior. Recently, a plethora of studies have tried to confirm the correlation between peripheral cortisol and autism spectrum disorder (ASD). However, the results were controversial. We assessed the effects of peripheral cortisol on ASD in this study. The included studies were identified according to the inclusion and exclusion criteria. The pooled Hedges' g and its 95% confidence interval were selected to evaluate the association between peripheral cortisol and ASD. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also undertaken based on the obtained information. There were a total of twelve studies with 375 ASD patients and 335 controls included in our meta-analysis. Obvious heterogeneity across studies was found in the overall analysis. Peripheral cortisol levels were significantly elevated in ASD patients compared with controls in the absence of obvious heterogeneity. A single study did not influence the overall comparison results. Meta-regression analyses revealed that age and gender of the included subjects, sample size, and publication year did not moderate effects on the present results. These findings may provide us some targeted strategies to the diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | | | | | | | | | | | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
19
|
NMR-Based Metabolomics of Rat Hippocampus, Serum, and Urine in Two Models of Autism. Mol Neurobiol 2022; 59:5452-5475. [PMID: 35715683 DOI: 10.1007/s12035-022-02912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
Abstract
Autism spectrum disorders (ASDs) are increasingly diagnosed as developmental disabilities of unclear etiology related to genetic, epigenetic, or environmental factors. The diagnosis of ASD in children is based on the recognition of typical behavioral symptoms, while no reliable biomarkers are available. Rats in whom ASD-like symptoms are due to maternal administration of the teratogenic drugs valproate or thalidomide on critical day 11 of pregnancy are widely used models in autism research. The present studies, aimed at detecting changes in the levels of hydrophilic and hydrophobic metabolites, were carried out on 1-month-old rats belonging to the abovementioned two ASD models and on a control group. Analysis of both hydrophilic and hydrophobic metabolite levels gives a broader view of possible mechanisms involved in the pathogenesis of autism. Hippocampal proton magnetic resonance (MRS) spectroscopy and ex vivo nuclear magnetic resonance (NMR) analysis of serum and urine samples were used. The results were analyzed using advanced statistical tests. Both the results of our present MRS studies of the hippocampus and of the NMR studies of body fluids in both ASD models, particularly from the THAL model, appeared to be consistent with previously published NMR results of hippocampal homogenates and data from the literature on autistic children. We detected symptoms of disturbances in neurotransmitter metabolism, energy deficit, and oxidative stress, as well as intestinal malfunction, which shed light on the pathogenesis of ASD and could be used for diagnostic purposes. These results confirm the usefulness of the noninvasive techniques used in ASD studies.
Collapse
|
20
|
Yang R, Zhang G, Shen Y, Ou J, Liu Y, Huang L, Zeng Y, Lin J, Liu R, Wu R, Xia K, Zhang F, Zhao J. Odor identification impairment in autism spectrum disorder might be associated with mitochondrial dysfunction. Asian J Psychiatr 2022; 72:103072. [PMID: 35334286 DOI: 10.1016/j.ajp.2022.103072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Deficits in olfactory function in autism spectrum disorder (ASD) have already been reported. However, the results of previous studies are not consistent, and the pathophysiological mechanisms of olfactory dysfunction in ASD are not clear. Fifty-three male ASD children or teenagers aged 9-16 years were recruited for the study. The identification and discrimination portion of the Sniffin' Sticks test (SST) was used to assess the olfactory function of the enrolled subjects. The severity of ASD core symptoms and the intelligence quotient (IQ) of participants were assessed. In addition, to explore the potential mechanism underlying olfactory dysfunction, a series of plasma biochemical indicators of oxidative stress, mitochondrial function and inflammation were measured. The mean raw scores on the SST identification and discrimination test of the study subjects were significantly lower than those of typically developing subjects reported in normative data studies. After adjusting for IQ, the odor identification score was not significantly associated with any ASD symptoms. Odor identification was found to be significantly associated with the ratio of L-lactate (L)/pyruvate (P) but not with other measured indicators. The current study validates the impairment of odor identification and discrimination in Chinese ASD children. Odor identification dysfunction may be an independent clinical symptom of ASD. The plasma L/P ratio was found to be significantly associated with odor identification performance, which suggests that mitochondrial dysfunction may be a potential mechanism underlying odor identification impairment in ASD.
Collapse
Affiliation(s)
- Rushi Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ge Zhang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yidong Shen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Jianjun Ou
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Yanan Liu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lian Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ying Zeng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingjing Lin
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruiting Liu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Renrong Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Fengyu Zhang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; The Global Clinical and Translational Research Institute, Bethesda, MD 20814, USA
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Slama S, Bahia W, Soltani I, Gaddour N, Ferchichi S. Risk factors in autism spectrum disorder: A Tunisian case-control study. Saudi J Biol Sci 2022; 29:2749-2755. [PMID: 35531179 PMCID: PMC9072901 DOI: 10.1016/j.sjbs.2021.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental condition that causes disability in social interaction, communication, and restrictive and repetitive behaviors. Common environmental factors like prenatal, perinatal, and/or postnatal factors play a key role in ASD etiologies. Moreover, specific metabolic disorders can be associated with ASD. Subjects and methods We performed a retrospective case-control study in child psychiatry clinics, involving 51 children with ASD and 40 typical development controls (TDC). Results We found a correlation between children being breastfed for less than 6 months, having fathers more than 40 years old at childbirth in ASD compared to TDC group. Our study also associated low blood cholesterol and low erythrocyte magnesium levels with increased risk for ASD. Conclusion Findings support the implication of total cholesterol (TC) and erythrocyte magnesium level in defining autism outcome.
Collapse
Affiliation(s)
- Senda Slama
- Research Unit of Clinical and Molecular Biology, UR17ES29, Department of clinic biology A, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Wael Bahia
- Research Unit of Clinical and Molecular Biology, UR17ES29, Department of clinic biology A, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Ismael Soltani
- Research Unit of Clinical and Molecular Biology, UR17ES29, Department of clinic biology A, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Naoufel Gaddour
- Department of Psychiatry, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Salima Ferchichi
- Research Unit of Clinical and Molecular Biology, UR17ES29, Department of clinic biology A, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| |
Collapse
|
22
|
Rong P, Zhao S, Fu Q, Chen M, Yang L, Song Y, Zhang X, Ma R. Case report: One child with an autism spectrum disorder who had chronically elevated serum levels of CK and CK-MB. Front Psychiatry 2022; 13:995237. [PMID: 36147964 PMCID: PMC9485572 DOI: 10.3389/fpsyt.2022.995237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Some patients with autism spectrum disorder (ASD) exhibit elevated serum creatine kinase levels, which are believed to be associated with mitochondrial dysfunction. Although a few articles have reported this situation in the past and the increase mostly ranges from 100 to 300 U/L, there is a paucity of previous study focusing on the serum creatine kinase MB isoenzyme. This article discusses a 5-year-old girl with ASD, whose serum creatine kinase and creatine kinase MB isoenzyme have been rising for nearly 2 years, fluctuating at 584-993 and 111-625 U/L respectively. Except for behavioral and language symptoms associated with ASD, the child appears normal in other aspects. The child's laboratory tests showed no abnormality, except that the serum levels of lactic acid was slightly higher than normal (1.89 mmol/L, normal 1.33-1.78 mmol/L). The child was prescribed with a traditional Chinese medicine during the process and the serum creatine kinase MB isoenzyme level decreased dramatically to 111 U/L after the treatment. This study firstly recorded the serum creatine kinase levels and the MB isoenzyme in patients with autism spectrum disorder for nearly 2 years, indicating that patients with ASD may experience long-term increases in serum creatine kinase and creatine kinase MB isoenzyme, and that the traditional Chinese medicine decoction Xinfukang can temporarily reduce the serum creatine kinase MB isoenzyme level in patients. Nevertheless, the effect is not sustained. Therefore, it is of great importance to conduct long-term longitudinal studies so as to elucidate the potential mechanism responsible for long-term elevation of serum creatine kinase level.
Collapse
Affiliation(s)
- Ping Rong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shuyi Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qianfang Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Libin Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yifei Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xilian Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Rong Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
23
|
Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X, Cao X, Shen L. Oxidative Stress in Autism Spectrum Disorder-Current Progress of Mechanisms and Biomarkers. Front Psychiatry 2022; 13:813304. [PMID: 35299821 PMCID: PMC8921264 DOI: 10.3389/fpsyt.2022.813304] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been diagnosed in an increasing number of children around the world. Existing data suggest that early diagnosis and intervention can improve ASD outcomes. However, the causes of ASD remain complex and unclear, and there are currently no clinical biomarkers for autism spectrum disorder. More mechanisms and biomarkers of autism have been found with the development of advanced technology such as mass spectrometry. Many recent studies have found a link between ASD and elevated oxidative stress, which may play a role in its development. ASD is caused by oxidative stress in several ways, including protein post-translational changes (e.g., carbonylation), abnormal metabolism (e.g., lipid peroxidation), and toxic buildup [e.g., reactive oxygen species (ROS)]. To detect elevated oxidative stress in ASD, various biomarkers have been developed and employed. This article summarizes recent studies about the mechanisms and biomarkers of oxidative stress. Potential biomarkers identified in this study could be used for early diagnosis and evaluation of ASD intervention, as well as to inform and target ASD pharmacological or nutritional treatment interventions.
Collapse
Affiliation(s)
- Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, China
| |
Collapse
|
24
|
Shumakova AA, Shipelin VA, Leontyeva EV, Gmoshinski IV. Effect of Resveratrol, L-Carnitine, and Aromatic Amino Acid Supplements on the Trace Element Content in the Organs of Mice with Dietary-Induced Obesity. Biol Trace Elem Res 2022; 200:281-297. [PMID: 33624220 DOI: 10.1007/s12011-021-02642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/14/2021] [Indexed: 11/30/2022]
Abstract
Given environmental contamination with toxic metals, diets that promote the elimination of these metals from the body of individuals, including those suffering from obesity, are urgently needed. The aim of this study was to determine the effects of supplementation with resveratrol (Res), L-carnitine (L-Car), tyrosine (Tyr), and tryptophan (Trp) on the content of trace elements in the organs of mice. DBA/2J mice and DBCB tetrahybrid mice received diets high in carbohydrate and fat supplemented with Res, L-Car, Tyr, or Trp for 65 days. In the liver, kidneys, and brain, the contents of 18 elements, including Al, As, Cu, Fe, Mn, Pb, Se, and Zn, were determined by inductively coupled plasma mass spectrometry. Res, L-Car, Tyr, and Trp had minimal or no effect on the essential elements (Fe, Mg, Cu, Zn, Se) in all organs studied. The Mn content notably increased in the organs of mice consuming L-Car and Trp. Mn accumulation was stimulated by Res in organs exclusively in DBCB mice and by Tyr exclusively in livers and brains of DBA/2J mice. Al levels were significantly reduced by L-Car and Trp in all organs of the mice, by Res in only DBCB mice, and by Tyr in only kidneys and livers of DBA/2J mice. In addition, L-Car and Trp decreased Pb accumulation in most organs of mice. Res and Tyr also inhibited Pb accumulation in some cases. Thus, the studied supplements affected the metabolism of trace elements, which may contribute to dietary treatments for obese individuals.
Collapse
Affiliation(s)
- Antonina A Shumakova
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ust'insky proezd 2/14, Moscow, 109240, Russia
| | - Vladimir A Shipelin
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ust'insky proezd 2/14, Moscow, 109240, Russia
- Plekhanov Russian University of Economics, Moscow, 115093, Russia
| | - E V Leontyeva
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ust'insky proezd 2/14, Moscow, 109240, Russia
| | - Ivan V Gmoshinski
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ust'insky proezd 2/14, Moscow, 109240, Russia.
| |
Collapse
|
25
|
Wang N, Zhao Y, Gao J. Association Between Peripheral Blood Levels of Vitamin A and Autism Spectrum Disorder in Children: A Meta-Analysis. Front Psychiatry 2021; 12:742937. [PMID: 34658977 PMCID: PMC8515042 DOI: 10.3389/fpsyt.2021.742937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Vitamin A is an essential fat-soluble micronutrient that plays important roles in a surprisingly wide variety of biological processes from early growth and development to brain maintenance. Numerous clinical studies have been conducted to explore the relationship between peripheral vitamin A levels and autism spectrum disorder (ASD), but the results of these studies are controversial. Therefore, we assessed the association between peripheral vitamin A levels and ASD in the present meta-analysis. Relevant records were retrieved through the Embase, Web of Knowledge and PubMed databases up to 13 November 2020. Reference lists were also searched and analyzed. Hedges' g with its corresponding 95% confidence interval (CI) was used to assess the association between peripheral vitamin A levels and ASD. A fixed or random effects model was selected according to a heterogeneity test in overall and subgroup analyses. Five records (six studies) with 935 ASD children and 516 healthy children were included in the present study. Significantly decreased peripheral vitamin A concentrations were observed in ASD children compared with healthy children (Hedges' g = -0.600, 95% CI -1.153 to -0.048, P = 0.033). A similar result was also obtained after removing the studies identified by Galbraith plots. In addition, no obvious publication bias was found in the meta-analysis. The findings of our meta-analysis suggested decreased peripheral vitamin A levels in ASD children compared with healthy children. Further investigations into the effects of vitamin A on the development of ASD are warranted.
Collapse
Affiliation(s)
- Ni Wang
- Nursing Office of Beijing Road Medical District, General Hospital of Xinjiang Military Region, Wulumuqi, China
| | | | - Junwei Gao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
26
|
Dufault RJ, Wolle MM, Kingston HMS, Gilbert SG, Murray JA. Connecting inorganic mercury and lead measurements in blood to dietary sources of exposure that may impact child development. World J Methodol 2021; 11:144-159. [PMID: 34322366 PMCID: PMC8299913 DOI: 10.5662/wjm.v11.i4.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Pre-natal and post-natal chemical exposures and co-exposures from a variety of sources including contaminated air, water, soil, and food are common and associated with poorer birth and child health outcomes. Poor diet is a contributing factor in the development of child behavioral disorders. Child behavior and learning can be adversely impacted when gene expression is altered by dietary transcription factors such as zinc insufficiency or deficiency or by exposure to toxic substances permitted in our food supply such as mercury, lead, or organophosphate pesticide residue. Children with autism spectrum disorder and attention deficit hyperactivity disorders exhibit decreased or impaired PON1 gene activity which is needed by the body to metabolize and excrete neurotoxic organophosphate pesticides. In this current review we present an updated macroepigenetic model that explains how dietary inorganic mercury and lead exposures from unhealthy diet may lead to elevated blood mercury and/or lead levels and the development of symptoms associated with the autism and attention deficit-hyperactivity disorders. PON1 gene activity may be suppressed by inadequate dietary calcium, selenium, and fatty acid intake or exposures to lead or mercury. The model may assist clinicians in diagnosing and treating the symptoms associated with these childhood neurodevelopmental disorders. Recommendations for future research are provided based on the updated model and review of recently published literature.
Collapse
Affiliation(s)
- Renee J Dufault
- Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
| | - Mesay M Wolle
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| | - H M Skip Kingston
- Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| | - Steven G Gilbert
- Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
27
|
Modafferi S, Zhong X, Kleensang A, Murata Y, Fagiani F, Pamies D, Hogberg HT, Calabrese V, Lachman H, Hartung T, Smirnova L. Gene-Environment Interactions in Developmental Neurotoxicity: a Case Study of Synergy between Chlorpyrifos and CHD8 Knockout in Human BrainSpheres. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77001. [PMID: 34259569 PMCID: PMC8278985 DOI: 10.1289/ehp8580] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a major public health concern caused by complex genetic and environmental components. Mechanisms of gene-environment (G × E ) interactions and reliable biomarkers associated with ASD are mostly unknown or controversial. Induced pluripotent stem cells (iPSCs) from patients or with clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9)-introduced mutations in candidate ASD genes provide an opportunity to study (G × E ) interactions. OBJECTIVES In this study, we aimed to identify a potential synergy between mutation in the high-risk autism gene encoding chromodomain helicase DNA binding protein 8 (CHD8) and environmental exposure to an organophosphate pesticide (chlorpyrifos; CPF) in an iPSC-derived human three-dimensional (3D) brain model. METHODS This study employed human iPSC-derived 3D brain organoids (BrainSpheres) carrying a heterozygote CRISPR/Cas9-introduced inactivating mutation in CHD8 and exposed to CPF or its oxon-metabolite (CPO). Neural differentiation, viability, oxidative stress, and neurite outgrowth were assessed, and levels of main neurotransmitters and selected metabolites were validated against human data on ASD metabolic derangements. RESULTS Expression of CHD8 protein was significantly lower in CHD8 heterozygous knockout (C H D 8 + / - ) BrainSpheres compared with C H D 8 + / + ones. Exposure to CPF/CPO treatment further reduced CHD8 protein levels, showing the potential (G × E ) interaction synergy. A novel approach for validation of the model was chosen: from the literature, we identified a panel of metabolic biomarkers in patients and assessed them by targeted metabolomics in vitro. A synergistic effect was observed on the cholinergic system, S-adenosylmethionine, S-adenosylhomocysteine, lactic acid, tryptophan, kynurenic acid, and α -hydroxyglutaric acid levels. Neurite outgrowth was perturbed by CPF/CPO exposure. Heterozygous knockout of CHD8 in BrainSpheres led to an imbalance of excitatory/inhibitory neurotransmitters and lower levels of dopamine. DISCUSSION This study pioneered (G × E ) interaction in iPSC-derived organoids. The experimental strategy enables biomonitoring and environmental risk assessment for ASD. Our findings reflected some metabolic perturbations and disruption of neurotransmitter systems involved in ASD. The increased susceptibility of CHD 8 + / - BrainSpheres to chemical insult establishes a possibly broader role of (G × E ) interaction in ASD. https://doi.org/10.1289/EHP8580.
Collapse
Affiliation(s)
- Sergio Modafferi
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Xiali Zhong
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Andre Kleensang
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yohei Murata
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Research Center, Nihon Nohyaku Co. Ltd., Osaka, Japan
| | - Francesca Fagiani
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
- Istituto Universitario di Studi Superiori (Scuola Universitaria Superiore IUSS) Pavia, Pavia, Italy
| | - David Pamies
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Herbert Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- University of Konstanz, Konstanz, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Talvio K, Kanninen KM, White AR, Koistinaho J, Castrén ML. Increased iron content in the heart of the Fmr1 knockout mouse. Biometals 2021; 34:947-954. [PMID: 34089433 PMCID: PMC8313461 DOI: 10.1007/s10534-021-00320-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/24/2021] [Indexed: 11/12/2022]
Abstract
Trace elements have important functions in several processes involved in cellular homeostasis and survival. Dysfunctional metal ion homeostasis can make an important impact on cellular defence mechanisms. We assessed the concentrations of 23 trace minerals in different tissues (brain, spleen, heart and liver) of Fmr1 knockout (KO) mice that display the main phenotype of Fragile X syndrome (FXS), an intellectual disability syndrome and the best-known monogenic model of autism spectrum disorder (ASD). Altogether, seven minerals—Cu, Fe, K, Mg, Mn, Na, and P—were above the detection limit with the analysis revealing increased iron content in the heart of Fmr1 KO mice. In addition, levels of iron were higher in the cerebellum of the transgenic mouse when compared to wild type controls. These results implicate a role for dysregulated iron homeostasis in FXS tissues and suggest that defective iron-related mechanisms contribute to increased tissue vulnerability in FXS.
Collapse
Affiliation(s)
- Karo Talvio
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, 00290, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anthony R White
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia.,Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maija L Castrén
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, 00290, Helsinki, Finland.
| |
Collapse
|
29
|
Esposito CM, Buoli M, Ciappolino V, Agostoni C, Brambilla P. The Role of Cholesterol and Fatty Acids in the Etiology and Diagnosis of Autism Spectrum Disorders. Int J Mol Sci 2021; 22:ijms22073550. [PMID: 33805572 PMCID: PMC8036564 DOI: 10.3390/ijms22073550] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders whose pathogenesis seems to be related to an imbalance of excitatory and inhibitory synapses, which leads to disrupted connectivity during brain development. Among the various biomarkers that have been evaluated in the last years, metabolic factors represent a bridge between genetic vulnerability and environmental aspects. In particular, cholesterol homeostasis and circulating fatty acids seem to be involved in the pathogenesis of ASDs, both through the contribute in the stabilization of cell membranes and the modulation of inflammatory factors. The purpose of the present review is to summarize the available data about the role of cholesterol and fatty acids, mainly long-chain ones, in the onset of ASDs. A bibliographic research on the main databases was performed and 36 studies were included in our review. Most of the studies document a correlation between ASDs and hypocholesterolemia, while the results concerning circulating fatty acids are less univocal. Even though further studies are necessary to confirm the available data, the metabolic biomarkers open to new treatment options such as the modulation of the lipid pattern through the diet.
Collapse
Affiliation(s)
- Cecilia Maria Esposito
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; (C.M.E.); (M.B.); (V.C.); (P.B.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; (C.M.E.); (M.B.); (V.C.); (P.B.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; (C.M.E.); (M.B.); (V.C.); (P.B.)
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; (C.M.E.); (M.B.); (V.C.); (P.B.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
30
|
Potential Role of L-Carnitine in Autism Spectrum Disorder. J Clin Med 2021; 10:jcm10061202. [PMID: 33805796 PMCID: PMC8000371 DOI: 10.3390/jcm10061202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
L-carnitine plays an important role in the functioning of the central nervous system, and especially in the mitochondrial metabolism of fatty acids. Altered carnitine metabolism, abnormal fatty acid metabolism in patients with autism spectrum disorder (ASD) has been documented. ASD is a complex heterogeneous neurodevelopmental condition that is usually diagnosed in early childhood. Patients with ASD require careful classification as this heterogeneous clinical category may include patients with an intellectual disability or high functioning, epilepsy, language impairments, or associated Mendelian genetic conditions. L-carnitine participates in the long-chain oxidation of fatty acids in the brain, stimulates acetylcholine synthesis (donor of the acyl groups), stimulates expression of growth-associated protein-43, prevents cell apoptosis and neuron damage and stimulates neurotransmission. Determination of L-carnitine in serum/plasma and analysis of acylcarnitines in a dried blood spot may be useful in ASD diagnosis and treatment. Changes in the acylcarnitine profiles may indicate potential mitochondrial dysfunctions and abnormal fatty acid metabolism in ASD children. L-carnitine deficiency or deregulation of L-carnitine metabolism in ASD is accompanied by disturbances of other metabolic pathways, e.g., Krebs cycle, the activity of respiratory chain complexes, indicative of mitochondrial dysfunction. Supplementation of L-carnitine may be beneficial to alleviate behavioral and cognitive symptoms in ASD patients.
Collapse
|
31
|
Indika NLR, Deutz NEP, Engelen MPKJ, Peiris H, Wijetunge S, Perera R. Sulfur amino acid metabolism and related metabotypes of autism spectrum disorder: A review of biochemical evidence for a hypothesis. Biochimie 2021; 184:143-157. [PMID: 33675854 DOI: 10.1016/j.biochi.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
There are multiple lines of evidence for an impaired sulfur amino acid (SAA) metabolism in autism spectrum disorder (ASD). For instance, the concentrations of methionine, cysteine and S-adenosylmethionine (SAM) in body fluids of individuals with ASD is significantly lower while the concentration of S-adenosylhomocysteine (SAH) is significantly higher as compared to healthy individuals. Reduced methionine and SAM may reflect impaired remethylation pathway whereas increased SAH may reflect reduced S-adenosylhomocysteine hydrolase activity in the catabolic direction. Reduced SAM/SAH ratio reflects an impaired methylation capacity. We hypothesize multiple mechanisms to explain how the interplay of oxidative stress, neuroinflammation, mercury exposure, maternal use of valproate, altered gut microbiome and certain genetic variants may lead to these SAA metabotypes. Furthermore, we also propose a number of mechanisms to explain the metabolic consequences of abnormal SAA metabotypes. For instance in the brain, reduced SAM/SAH ratio will result in melatonin deficiency and hypomethylation of a number of biomolecules such as DNA, RNA and histones. In addition to previously proposed mechanisms, we propose that impaired activity of "radical SAM" enzymes will result in reduced endogenous lipoic acid synthesis, reduced molybdenum cofactor synthesis and impaired porphyrin metabolism leading to mitochondrial dysfunction, porphyrinuria and impaired sulfation capacity. Furthermore depletion of SAM may also lead to the disturbed mTOR signaling pathway in a subgroup of ASD. The proposed "SAM-depletion hypothesis" is an inclusive model to explain the relationship between heterogeneous risk factors and metabotypes observed in a subset of children with ASD.
Collapse
Affiliation(s)
- Neluwa-Liyanage R Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Marielle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Hemantha Peiris
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Swarna Wijetunge
- Child and Adolescent Mental Health Service, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka
| | - Rasika Perera
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
32
|
Needham BD, Adame MD, Serena G, Rose DR, Preston GM, Conrad MC, Campbell AS, Donabedian DH, Fasano A, Ashwood P, Mazmanian SK. Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder. Biol Psychiatry 2021; 89:451-462. [PMID: 33342544 PMCID: PMC7867605 DOI: 10.1016/j.biopsych.2020.09.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition with hallmark behavioral manifestations including impaired social communication and restricted repetitive behavior. In addition, many affected individuals display metabolic imbalances, immune dysregulation, gastrointestinal dysfunction, and altered gut microbiome compositions. METHODS We sought to better understand nonbehavioral features of ASD by determining molecular signatures in peripheral tissues through mass spectrometry methods (ultrahigh performance liquid chromatography-tandem mass spectrometry) with broad panels of identified metabolites. Herein, we compared the global metabolome of 231 plasma and 97 fecal samples from a large cohort of children with ASD and typically developing control children. RESULTS Differences in amino acid, lipid, and xenobiotic metabolism distinguished ASD and typically developing samples. Our results implicated oxidative stress and mitochondrial dysfunction, hormone level elevations, lipid profile changes, and altered levels of phenolic microbial metabolites. We also revealed correlations between specific metabolite profiles and clinical behavior scores. Furthermore, a summary of metabolites modestly associated with gastrointestinal dysfunction in ASD is provided, and a pilot study of metabolites that can be transferred via fecal microbial transplant into mice is identified. CONCLUSIONS These findings support a connection between metabolism, gastrointestinal physiology, and complex behavioral traits and may advance discovery and development of molecular biomarkers for ASD.
Collapse
Affiliation(s)
- Brittany D. Needham
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mark D. Adame
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, 02114, USA
| | - Destanie R. Rose
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA,The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | | | | | | | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, 02114, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA,The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Sarkis K. Mazmanian
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
33
|
Khalid M, Hassani S, Abdollahi M. Metal-induced oxidative stress: an evidence-based update of advantages and disadvantages. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Shen L, Liu X, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: Current progress. Clin Chim Acta 2020; 502:41-54. [DOI: 10.1016/j.cca.2019.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
35
|
Hassan MH, Awadalla EA, Ali RA, Fouad SS, Abdel-Kahaar E. Thiamine deficiency and oxidative stress induced by prolonged metronidazole therapy can explain its side effects of neurotoxicity and infertility in experimental animals: Effect of grapefruit co-therapy. Hum Exp Toxicol 2020; 39:834-847. [PMID: 31997653 DOI: 10.1177/0960327119867755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We aimed to explore the possible neurotoxicity and infertility mechanisms of prolonged metronidazole (MTZ) use and the effects of antioxidant grapefruit (GP) co-therapy on MTZ-induced complications. Sixty male albino Wistar rats were divided into four groups (n = 15 each). Group I (control group) received 1% dimethyl sulfoxide (27 ml/ kg/day), group II (MTZ group) received MTZ (400 mg/kg/day), group III (MTZ + GP) received MTZ (400 mg/kg/ day) plus GP juice (27 ml/kg/ day) and group IV (GP group) received GP juice (27 ml/kg) for 60 days. Semen analyses were performed. Free testosterone, gonadotrophin (follicle-stimulating hormone (FSH) and luteinizing hormone) and thiamine levels were measured. Samples of cerebellar, testicular and epididymal tissues were used for both colorimetric assays of oxidative stress markers and histopathological examinations. Significant decreases in the sperm count, percent total sperm motility, serum thiamine levels, free testosterone levels and FSH levels were observed in the MTZ and MTZ + GP groups (p < 0.05 for all parameters). Significantly higher oxidative stress levels (p < 0.05) were observed in the cerebellar and testicular tissue homogenates of these groups than in those of the control group, and associated disruptions in the cerebellar, testicular and epididymal structures were apparent compared to those of the control group. Although the GP group showed a significantly higher sperm count and significantly lower oxidative stress than the control group (p < 0.05), with histological similarity to the control group, the GP group exhibited significantly higher prolactin levels and lower free testosterone and FSH levels than the control group (p < 0.05). Oxidative stress and decreased thiamine levels could explain the MTZ-induced neurotoxicity and infertility side effects that aggravated by GP co-administration.
Collapse
Affiliation(s)
- M H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - E A Awadalla
- Zoology Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - R A Ali
- Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - S S Fouad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - E Abdel-Kahaar
- Department of Medical Pharmacology, Faculty of Medicine, South Valley University, Qena, Egypt.,Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| |
Collapse
|
36
|
Saleem TH, Shehata GA, Toghan R, Sakhr HM, Bakri AH, Desoky T, Hamdan FRA, Mohamed NF, Hassan MH. Assessments of Amino Acids, Ammonia and Oxidative Stress Among Cohort of Egyptian Autistic Children: Correlations with Electroencephalogram and Disease Severity. Neuropsychiatr Dis Treat 2020; 16:11-24. [PMID: 32021195 PMCID: PMC6954634 DOI: 10.2147/ndt.s233105] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The current study aimed to assess the profiles of plasma amino acids, serum ammonia and oxidative stress status among autistic children in terms of electroencephalogram findings and clinical severity among the cohort of autistic Egyptian children. PATIENTS AND METHODS The present study included 118 Egyptian children categorized into 54 children with autism who were comparable with 64 healthy controls. Clinical assessments of cases were performed using CARS in addition to EEG records. Plasma amino acids were measured using high-performance liquid chromatography (HPLC), while, serum ammonia and oxidative stress markers were measured using colorimetric methods for all included children. RESULTS The overall results revealed that 37.04% of cases had abnormal EEG findings. Amino acid profile in autistic children showed statistically significant lower levels of aspartic acid, glycine, β-alanine, tryptophan, lysine and proline amino acids with significantly higher asparagine amino acid derivative levels among autistic patients versus the control group (p˂0.05). There were significantly higher serum ammonia levels with significantly higher total oxidant status (TOS) and oxidative stress index (OSI) values among the included autistic children vs controls (p˂0.05). There were significantly negative correlations between CARS with aspartic acid (r=-0.269, P=0.049), arginine (r= - 0.286, p= 0.036), and TAS (r= -0.341, p= 0.012), and significantly positive correlations between CARS with TOS (r=0.360, p= 0.007) and OSI (r= 0.338, p= 0.013). CONCLUSION Dysregulated amino acid metabolism, high ammonia and oxidative stress were prevalent among autistic children and should be considered in autism management. Still EEG records were inconclusive among autistic children, although may be helpful in assessment autism severity.
Collapse
Affiliation(s)
- Tahia H Saleem
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ghaydaa Ahmed Shehata
- Department of Neuropsychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rana Toghan
- Department of Medical Physiology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Hala M Sakhr
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Ali Helmi Bakri
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Tarek Desoky
- Department of Neuropsychiatry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Fatma Rabea A Hamdan
- Department of Medical Physiology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Nesma Foaud Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
37
|
Malaguarnera M, Cauli O. Effects of l-Carnitine in Patients with Autism Spectrum Disorders: Review of Clinical Studies. Molecules 2019; 24:molecules24234262. [PMID: 31766743 PMCID: PMC6930613 DOI: 10.3390/molecules24234262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022] Open
Abstract
Carnitine is an amino acid derivative, which plays several important roles in human physiology, in the central nervous system, and for mitochondrial metabolism, in particular. Altered carnitine metabolic routes have been associated with a subgroup of patients with autism spectrum disorders (ASD) and could add to the pathophysiology associated with these disorders. We review the current evidence about the clinical effects of carnitine administration in ASD in both non-syndromic forms and ASD associated with genetic disorders. Two randomized clinical trials and one open-label prospective trial suggest that carnitine administration could be useful for treating symptoms in non-syndromic ASD. The effect of carnitine administration in ASD associated with genetic disorders is not conclusive because of a lack of clinical trials and objectives in ASD evaluation, but beneficial effects have also been reported for other comorbid disorders, such as intellectual disability and muscular strength. Side effects observed with a dose of 200 mg/kg/day consisted of gastro-intestinal symptoms and a strong, heavy skin odor. Doses of about 50–100 mg/kg/day are generally well tolerated. Further clinical trials with the identification of the subgroup of ASD patients that would benefit from carnitine administration are warranted.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Research Center “The Great Senescence”, University of Catania, 95100 Catania, Italy;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
38
|
Strunecka A, Strunecky O. Chronic Fluoride Exposure and the Risk of Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3431. [PMID: 31527457 PMCID: PMC6765894 DOI: 10.3390/ijerph16183431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022]
Abstract
The continuous rise of autism spectrum disorder (ASD) prevalent in the past few decades is causing an increase in public health and socioeconomic concern. A consensus suggests the involvement of both genetic and environmental factors in the ASD etiopathogenesis. Fluoride (F) is rarely recognized among the environmental risk factors of ASD, since the neurotoxic effects of F are not generally accepted. Our review aims to provide evidence of F neurotoxicity. We assess the risk of chronic F exposure in the ASD etiopathology and investigate the role of metabolic and mitochondrial dysfunction, oxidative stress and inflammation, immunoexcitotoxicity, and decreased melatonin levels. These symptoms have been observed both after chronic F exposure as well as in ASD. Moreover, we show that F in synergistic interactions with aluminum's free metal cation (Al3+) can reinforce the pathological symptoms of ASD. This reinforcement takes place at concentrations several times lower than when acting alone. A high ASD prevalence has been reported from countries with water fluoridation as well as from endemic fluorosis areas. We suggest focusing the ASD prevention on the reduction of the F and Al3+ burdens from daily life.
Collapse
Affiliation(s)
- Anna Strunecka
- The Institute of Technology and Business, Okružní 517/10, 370 01 České Budějovice, Czech Republic.
| | - Otakar Strunecky
- The Institute of Technology and Business, Okružní 517/10, 370 01 České Budějovice, Czech Republic.
| |
Collapse
|
39
|
Guevara-Campos J, González-Guevara L, Guevara-González J, Cauli O. First Case Report of Primary Carnitine Deficiency Manifested as Intellectual Disability and Autism Spectrum Disorder. Brain Sci 2019; 9:brainsci9060137. [PMID: 31200524 PMCID: PMC6628273 DOI: 10.3390/brainsci9060137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Systemic primary carnitine deficiency (PCD) is a genetic disorder caused by decreased or absent organic cation transporter type 2 (OCTN2) carnitine transporter activity, resulting in low serum carnitine levels and decreased carnitine accumulation inside cells. In early life, PCD is usually diagnosed as a metabolic decompensation, presenting as hypoketotic hypoglycemia, Reye syndrome, or sudden infant death; in childhood, PCD presents with skeletal or cardiac myopathy. However, the clinical presentation of PCD characterized by autism spectrum disorder (ASD) with intellectual disability (ID) has seldom been reported in the literature. In this report, we describe the clinical features of a seven-year-old girl diagnosed with PCD who presented atypical features of the disease, including a developmental delay involving language skills, concentration, and attention span, as well as autistic features and brain alterations apparent in magnetic resonance imaging. We aim to highlight the difficulties related to the diagnostic and therapeutic approaches used to diagnose such patients. The case reported here presented typical signs of PCD, including frequent episodes of hypoglycemia, generalized muscle weakness, decreased muscle mass, and physical growth deficits. A molecular genetic study confirmed the definitive diagnosis of the disease (c.1345T>G (p.Y449D)) in gene SLC22A5, located in exon 8. PCD can be accompanied by less common clinical signs, which may delay its diagnosis because the resulting global clinical picture can closely resemble other metabolic disorders. In this case, the patient was prescribed a carnitine-enriched diet, as well as oral carnitine at a dose of 100 mg/kg/day. PCD has a better prognosis if it is diagnosed and treated early; however, a high level of clinical suspicion is required for its timely and accurate diagnosis.
Collapse
Affiliation(s)
- José Guevara-Campos
- "Felipe Guevara Rojas" Hospital, Pediatrics Service, University of Oriente, El Tigre-Anzoátegui 6034, Venezuela.
| | - Lucía González-Guevara
- "Felipe Guevara Rojas" Hospital, Epilepsy and Encephalography Unit, El Tigre-Anzoátegui 6034, Venezuela.
| | | | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|