1
|
de Pádua AC, Alves da Cruz SA, Dos Santos Heringer L, Pires GN, Raquita DADS, Dos Santos Tavares J, Rodrigues PS, Miranda de Sá AB, de Barros CM, Seabra SH, Mendonça HR, DaMatta RA, Espírito-Santo S. The protective effect of Fingolimod upon visual behavior in a demyelination animal model is associated with synaptopathy prevention. Neurotoxicology 2025; 108:113-122. [PMID: 40086762 DOI: 10.1016/j.neuro.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS that causes motor, cognitive, and sensory dysfunctions, with visual disorder being one of the most prevalent. Synaptopathy has been recognized as one of the predominant pathogenic components of MS. We previous characterized inhibition of synaptopathy in the visual thalamus using the cuprizone-induced demyelination MS animal model. However, investigations about potential treatments to prevent synaptopathy have received little attention. Fingolimod is one of the most widely used and effective immunomodulators for controlling inflammatory relapses in MS, but few studies in MS animal models have tested its effect on synaptopathy. Given that none of these investigations used the cuprizone-induced demyelination model, our study investigated the preventive effect of Fingolimod on cuprizone-induced synaptopathy. Using Western blotting for synaptophysin, PSD-95, and gephyrin, as well as ultrastructural analysis, we demonstrated that daily intraperitoneal injections of Fingolimod (1 mg/Kg) protect against the increase of inhibitory synapses in cuprizone-treated mice. Fingolimod also prevented reduction of ARC immunolabeling, a sensor of neuronal activity, in cuprizone animals. Finally, through the visual Cliff test, Fingolimod was able to protect cuprizone animals against visual dysfunction. On the other hand, through immunostaining for CNPase, GFAP and IBA-1 we observed that Fingolimod failed to prevent demyelination and glial reactivity in the cuprizone animals. Taken together, the data indicate the potential of preventive treatment with Fingolimod against synaptopathy and visual dysfunction associated with inflammatory demyelination.
Collapse
Affiliation(s)
- Ana Carolina de Pádua
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Saulo Augusto Alves da Cruz
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Luiza Dos Santos Heringer
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Greice Nascimento Pires
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Areias da Silva Raquita
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Jéssica Dos Santos Tavares
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Pedro Souto Rodrigues
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Ana Beatriz Miranda de Sá
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Cintia Monteiro de Barros
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Sérgio Henrique Seabra
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Henrique Rocha Mendonça
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Sheila Espírito-Santo
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.
| |
Collapse
|
2
|
Rizoli C, Dos Santos NM, Maróstica Júnior MR, da Cruz-Höfling MA, Mendonça MCP, de Jesus MB. The therapeutic potential of reduced graphene oxide in attenuating cuprizone-induced demyelination in mice. NANOTECHNOLOGY 2024; 36:025102. [PMID: 39389086 DOI: 10.1088/1361-6528/ad857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Reduced graphene oxide (rGO) has unique physicochemical properties that make it suitable for therapeutic applications in neurodegenerative scenarios. This study investigates the therapeutic potential of rGO in a cuprizone-induced demyelination model in mice through histomorphological techniques and analysis of biochemical parameters. We demonstrate that daily intraperitoneal administration of rGO (1 mg ml-1) for 21 days tends to reduce demyelination in theCorpus callosumby decreasing glial cell recruitment during the repair mechanism. Additionally, rGO interferes with oxidative stress markers in the brain and liver indicating potential neuroprotective effects in the central nervous system. No significant damage to vital organs was observed, suggesting that multiple doses could be used safely. However, further long-term investigations are needed to understand rGO distribution, metabolism, routes of action and associated challenges in central neurodegenerative therapies. Overall, these findings contribute to the comprehension of rGO effectsin vivo, paving the way for possible future clinical research.
Collapse
Affiliation(s)
- Cintia Rizoli
- Departmento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Marcelo Bispo de Jesus
- Departmento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
3
|
Maktabi B, Collins A, Safee R, Bouyer J, Wisner AS, Williams FE, Schiefer IT. Zebrafish as a Model for Multiple Sclerosis. Biomedicines 2024; 12:2354. [PMID: 39457666 PMCID: PMC11504653 DOI: 10.3390/biomedicines12102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Zebrafish have become a key model organism in neuroscience research because of their unique advantages. Their genetic, anatomical, and physiological similarities to humans, coupled with their rapid development and transparent embryos, make them an excellent tool for investigating various aspects of neurobiology. They have specifically emerged as a valuable and versatile model organism in biomedical research, including the study of neurological disorders such as multiple sclerosis. Multiple sclerosis is a chronic autoimmune disease known to cause damage to the myelin sheath that protects the nerves in the brain and spinal cord. Objective: This review emphasizes the importance of continued research in both in vitro and in vivo models to advance our understanding of MS and develop effective treatments, ultimately improving the quality of life for those affected by this debilitating disease. Conclusions: Recent studies show the significance of zebrafish as a model organism for investigating demyelination and remyelination processes, providing new insights into MS pathology and potential therapies.
Collapse
Affiliation(s)
- Briana Maktabi
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Abigail Collins
- Center for Drug Design and Development 3, University of Toledo, Toledo, OH 43614, USA
| | - Raihaanah Safee
- Department of Pharmacy Practice, University of Toledo, Toledo, OH 43614, USA
| | - Jada Bouyer
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Alexander S. Wisner
- Center for Drug Design and Development 3, University of Toledo, Toledo, OH 43614, USA
| | - Frederick E. Williams
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Isaac T. Schiefer
- Department of Pharmacy Practice, University of Toledo, Toledo, OH 43614, USA
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
4
|
Lindsay SL, McCanney GA, Zhan J, Scheld M, Smith RS, Goodyear CS, Yates EA, Kipp M, Turnbull JE, Barnett SC. Low sulfated heparan sulfate mimetic differentially affects repair in immune-mediated and toxin-induced experimental models of demyelination. Glia 2023; 71:1683-1698. [PMID: 36945189 PMCID: PMC10952530 DOI: 10.1002/glia.24363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.
Collapse
Affiliation(s)
- Susan L. Lindsay
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - George A. McCanney
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Jiangshan Zhan
- Institute of AnatomyUniversity of RostockGertrudenstrasse 918057RostockGermany
| | - Miriam Scheld
- Institute of Neuroanatomy, Faculty of MedicineRWTH Aachen University52074AachenGermany
| | - Rebecca Sherrard Smith
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Carl S. Goodyear
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Edwin A. Yates
- Institute of Systems, Molecules and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
| | - Markus Kipp
- Institute of AnatomyUniversity of RostockGertrudenstrasse 918057RostockGermany
| | - Jeremy E. Turnbull
- Institute of Systems, Molecules and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
- Centre for GlycosciencesKeele UniversityKeeleST5 5BGUK
| | - Susan C. Barnett
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| |
Collapse
|
5
|
Clawson ED, Radecki DZ, Samanta J. Immunofluorescence assay for demyelination, remyelination, and proliferation in an acute cuprizone mouse model. STAR Protoc 2023; 4:102072. [PMID: 36853716 PMCID: PMC9918794 DOI: 10.1016/j.xpro.2023.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Here, we present a protocol to assess demyelination in the corpus callosum of an acute cuprizone mouse model, which is routinely used to induce demyelination for studying myelin regeneration in the rodent brain. We describe the tracing of neural stem cells via intraperitoneal injection of tamoxifen into adult Gli1CreERT2;Ai9 mice and the induction of demyelination with cuprizone diet. We also detail EdU administration, cryosectioning of the mouse brain, EdU labeling, and immunofluorescence staining to examine proliferation and myelination. For complete details on the use and execution of this protocol, please refer to Radecki et al. (2020).1.
Collapse
Affiliation(s)
- Elizabeth D Clawson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Daniel Z Radecki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayshree Samanta
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Ibrahim Fouad G, Mabrouk M, El-Sayed SAM, Rizk MZ, Beherei HH. Neurotherapeutic efficacy of loaded sulforaphane on iron oxide nanoparticles against cuprizone-induced neurotoxicity: role of MMP-9 and S100β. Toxicol Mech Methods 2023:1-17. [PMID: 36775846 DOI: 10.1080/15376516.2023.2177219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cuprizone (CUP) induces neurotoxicity and demyelination in animal models by provoking the activation of glial cells and the generation of reactive oxygen species (ROS). Sulforaphane (SF) is a phytochemical that exhibits a neuroprotective potential. In this study, we investigated the neurotherapeutic and pro-remyelinating activities of SF and SF-loaded within iron oxide nanoparticles (IONP-SF) in CUP-exposed rats. Magnetite iron oxide nanoparticles (IONPs) were prepared using the hydrothermal method that was further loaded with SF (IONP-SF). The loading of SF within the magnetite nanoparticles was assessed using FTIR, TEM, DLS, Zetasizer, and XPS. For the in vivo investigations, adult male Wistar rats (n = 40) were administrated either on a regular diet or a diet with CUP (0.2%) for 5 weeks. The rats were divided into four groups: negative control, CUP-induced, CUP + SF, and CUP + IONP-SF. CUP-exposed brains exhibited a marked elevation in lipid peroxidation, along with a significant decrease in the activities of glutathione peroxidase (GPx), and catalase (CAT). In addition, CUP intoxication downregulated the expression of myelin basic protein (MBP) and myelin proteolipid protein (PLP), upregulated the expression of Matrix metallopeptidase-9 (MMP-9) and S100β, and increased caspase-3 immunoexpression, these results were supported histopathologically in the cerebral cortexes. Treatment of CUP-rats with either SF or IONP-SF demonstrated remyelinating and neurotherapeutic activities. We could conclude that IONP-SF was more effective than free SF in mitigating the CUP-induced downregulation of MBP, upregulation of S100β, and caspase-3 immunoexpression.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
7
|
Ibrahim Fouad G. Sulforaphane, an Nrf-2 Agonist, Modulates Oxidative Stress and Inflammation in a Rat Model of Cuprizone-Induced Cardiotoxicity and Hepatotoxicity. Cardiovasc Toxicol 2023; 23:46-60. [PMID: 36650404 PMCID: PMC9859885 DOI: 10.1007/s12012-022-09776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
Cuprizone (CPZ) is a neurotoxic agent that is used to induce demyelination and neurotoxicity in rats. This study aimed to investigate the protective potential of sulforaphane (SF), nuclear factor E2 related factor (Nrf-2) activator, against CPZ-induced cardiotoxicity and hepatotoxicity. Male adult Wistar rats (n = 18) were fed with a regular diet or a CPZ-contained diet (0.2%) for four weeks. The rats were divided into three groups (n = 6): negative control rats, CPZ-exposed rats, and CPZ + SF treated rats. SF was intraperitoneally administrated (2 mg/kg/day) for two weeks. The anti-inflammatory and anti-oxidative functions of SF were investigated biochemically, histologically, and immunohistochemically. CPZ increased serum levels of cardiac troponin 1 (CTn1), aspartate amino transaminase (AST), alanine amino transaminase (ALT), and alkaline phosphatase (ALP). In addition, serum levels of inflammatory interferon-gamma (IFN-γ), and pro-inflammatory interleukin 1β (IL-1β) were significantly elevated. Moreover, CPZ administration provoked oxidative stress as manifested by declined serum levels of total antioxidant capacity (TAC), as well as, stimulated lipid peroxidation and decreased catalase activities in both cardiac and hepatic tissues. SF treatment reversed all these biochemical alterations through exerting anti-oxidative and anti-inflammatory activities, and this was supported by histopathological investigations in both cardiac and hepatic tissues. This SF-triggered modulation of oxidative stress and inflammation is strongly associated with Nrf-2 activation, as evidenced by activated immunoexpression in both cardiac and hepatic tissues. This highlights the cardioprotective and hepatoprotective activities of SF via Nrf-2 activation and enhancing catalase function.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
8
|
Gharagozloo M, Mace JW, Calabresi PA. Animal models to investigate the effects of inflammation on remyelination in multiple sclerosis. Front Mol Neurosci 2022; 15:995477. [PMID: 36407761 PMCID: PMC9669474 DOI: 10.3389/fnmol.2022.995477] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/22/2022] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). In people with MS, impaired remyelination and axonal loss lead to debilitating long-term neurologic deficits. Current MS disease-modifying drugs mainly target peripheral immune cells and have demonstrated little efficacy for neuroprotection or promoting repair. To elucidate the pathological mechanisms and test therapeutic interventions, multiple animal models have been developed to recapitulate specific aspects of MS pathology, particularly the acute inflammatory stage. However, there are few animal models that facilitate the study of remyelination in the presence of inflammation, and none fully replicate the biology of chronic demyelination in MS. In this review, we describe the animal models that have provided insight into the mechanisms underlying demyelination, myelin repair, and potential therapeutic targets for remyelination. We highlight the limitations of studying remyelination in toxin-based demyelination models and discuss the combinatorial models that recapitulate the inflammatory microenvironment, which is now recognized to be a major inhibitor of remyelination mechanisms. These models may be useful in identifying novel therapeutics that promote CNS remyelination in inflammatory diseases such as MS.
Collapse
Affiliation(s)
- Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jackson W. Mace
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
Tanaka A, Anada K, Yasue M, Honda T, Nakamura H, Murayama T. Ceramide kinase knockout ameliorates multiple sclerosis-like behaviors and demyelination in cuprizone-treated mice. Life Sci 2022; 296:120446. [PMID: 35245521 DOI: 10.1016/j.lfs.2022.120446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 12/18/2022]
Abstract
Changes in sphingolipid metabolism regulate and/or alter many cellular functions in the brain. Ceramide, a central molecule of sphingolipid metabolism, is phosphorylated to ceramide-1-phosphate (C1P) by ceramide kinase (CerK). CerK and C1P were reported to regulate many cellular responses, but their roles in immune-related diseases in vivo have not been well elucidated. Thus, we investigated the effects of CerK knockout on the onset/progression of multiple sclerosis (MS), which is a chronic neurodegenerative disease accompanied by the loss of myelin sheaths in the brain. MS-model mice were prepared using a diet containing the copper chelator cuprizone (CPZ). Treatment of 8-week-old mice with 0.2% CPZ for 8 weeks resulted in motor dysfunction based on the Rota-rod test, and caused the loss of myelin-related proteins (MRPs) in the brain and demyelination in the corpus callosum without affecting synaptophysin levels. CerK knockout, which did not affect developmental changes in MRPs, ameliorated the motor dysfunction, loss of MRPs, and demyelination in the brain in CPZ-treated mice. Loss of tail tonus, another marker of motor dysfunction, was detected at 1 week without demyelination after CPZ treatment in a CerK knockout-independent manner. CPZ-induced loss of tail tonus progressed, specifically in female mice, to 6-8 weeks, and the loss was ameliorated by CerK knockout. Activities of ceramide metabolic enzymes including CerK in the lysates of the brain were not affected by CPZ treatment. Inhibition of CerK as a candidate for MS treatment was discussed.
Collapse
Affiliation(s)
- Ai Tanaka
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kohei Anada
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masataka Yasue
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
10
|
Morgan ML, Teo W, Hernandez Y, Brideau C, Cummins K, Kuipers HF, Stys PK. Cuprizone-induced Demyelination in Mouse Brain is not due to Depletion of Copper. ASN Neuro 2022; 14:17590914221126367. [PMID: 36114624 PMCID: PMC9483969 DOI: 10.1177/17590914221126367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The cuprizone (CPZ) model allows the study of the biochemical processes underlying
nonautoimmune-mediated demyelination, remyelination, and chronic white matter disease
progression. CPZ is a copper (Cu) chelator that chiefly causes oligodendrocyte apoptosis
in the corpus callosum and cerebellum when administered in the mouse diet. While
disruption of Cu homeostasis is known to cause neurodegeneration (as is observed in
Wilson’s and Menkes disease), no consensus exists to date as to CPZ’s mechanism of action.
We sought to determine whether CPZ-induced pathology is due to Cu depletion as is
generally believed. Cu supplementation in chow, in stoichiometric excess to the added CPZ,
did not reduce CPZ-induced demyelination in C57Bl/6 mice. Moreover, equivalent doses of
other known Cu chelators neocuproine and D-penicillamine (D-Pen) failed to induce central
nervous system (CNS) demyelination. Since administration of D-Pen in the treatment of
Wilson’s disease can induce hypocupremia, we next sought to recreate penicillamine-induced
Cu deficiency to compare with purported CPZ-induced Cu deficiency. The resulting clinical
phenotype and histopathology were unlike that of CPZ. D-Pen-treated mice exhibited digit
paralysis, tail flaccidity, subcutaneous hemorrhaging, and optic and sciatic neuropathy,
all of which were prevented with Cu supplementation. No demyelination of the corpus
callosum or cerebellum was observed, even with D-Pen doses tenfold higher than CPZ.
Intriguingly, addition of D-Pen to the CPZ diet paradoxically prevented demyelination in a
dose-dependent manner.
Collapse
Affiliation(s)
- Megan L. Morgan
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Wulin Teo
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Yda Hernandez
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Craig Brideau
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Karen Cummins
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Hedwich F. Kuipers
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Peter K. Stys
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
11
|
Behrangi N, Lorenz P, Kipp M. Oligodendrocyte Lineage Marker Expression in eGFP-GFAP Transgenic Mice. J Mol Neurosci 2020; 71:2237-2248. [PMID: 33346907 PMCID: PMC8585802 DOI: 10.1007/s12031-020-01771-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, orchestrate several key cellular functions in the brain and spinal cord, including axon insulation, energy transfer to neurons, and, eventually, modulation of immune responses. There is growing interest for obtaining reliable markers that can specifically label oligodendroglia and their progeny. In many studies, anti-CC1 antibodies, presumably recognizing the protein adenomatous polyposis coli (APC), are used to label mature, myelinating oligodendrocytes. However, it has been discussed whether anti-CC1 antibodies could recognize as well, under pathological conditions, other cell populations, particularly astrocytes. In this study, we used transgenic mice in which astrocytes are labeled by the enhanced green fluorescent protein (eGFP) under the control of the human glial fibrillary acidic protein (GFAP) promoter. By detailed co-localization studies we were able to demonstrate that a significant proportion of eGFP-expressing cells co-express markers of the oligodendrocyte lineage, such as the transcription factor Oligodendrocyte Transcription Factor 2 (OLIG2); the NG2 proteoglycan, also known as chrondroitin sulfate proteoglycan 4 (CSPG4); or APC. The current finding that the GFAP promoter drives transgene expression in cells of the oligodendrocyte lineage should be considered when interpreting results from co-localization studies.
Collapse
Affiliation(s)
- Newshan Behrangi
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany.,Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Peter Lorenz
- Institute of Immunology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany. .,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147, Rostock, Germany.
| |
Collapse
|
12
|
Kaddatz H, Joost S, Nedelcu J, Chrzanowski U, Schmitz C, Gingele S, Gudi V, Stangel M, Zhan J, Santrau E, Greiner T, Frenz J, Müller-Hilke B, Müller M, Amor S, van der Valk P, Kipp M. Cuprizone-induced demyelination triggers a CD8-pronounced T cell recruitment. Glia 2020; 69:925-942. [PMID: 33245604 DOI: 10.1002/glia.23937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023]
Abstract
The loss of myelinating oligodendrocytes is a key characteristic of many neurological diseases, including Multiple Sclerosis (MS). In progressive MS, where effective treatment options are limited, peripheral immune cells can be found at the site of demyelination and are suggested to play a functional role during disease progression. In this study, we hypothesize that metabolic oligodendrocyte injury, caused by feeding the copper chelator cuprizone, is a potent trigger for peripheral immune cell recruitment into the central nervous system (CNS). We used immunohistochemistry and flow cytometry to evaluate the composition, density, and activation status of infiltrating T lymphocytes in cuprizone-intoxicated mice and post-mortem progressive MS tissues. Our results demonstrate a predominance of CD8+ T cells along with high proliferation rates and cytotoxic granule expression, indicating an antigenic and pro-inflammatory milieu in the CNS of cuprizone-intoxicated mice. Numbers of recruited T cells and the composition of lymphocytic infiltrates in cuprizone-intoxicated mice were found to be comparable to those found in progressive MS lesions. Finally, amelioration of the cuprizone-induced pathology by treating mice with laquinimod significantly reduces the number of recruited T cells. Overall, this study provides strong evidence that toxic demyelination is a sufficient trigger for T cells to infiltrate the demyelinated CNS. Further investigation of the mode of action and functional consequence of T cell recruitment might offer promising new therapeutic approaches for progressive MS.
Collapse
Affiliation(s)
- Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sarah Joost
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Nedelcu
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Uta Chrzanowski
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph Schmitz
- Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Emily Santrau
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Theresa Greiner
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Frenz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
13
|
The Cuprizone Model: Dos and Do Nots. Cells 2020; 9:cells9040843. [PMID: 32244377 PMCID: PMC7226799 DOI: 10.3390/cells9040843] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Various pre-clinical models with different specific features of the disease are available to study MS pathogenesis and to develop new therapeutic options. During the last decade, the model of toxic demyelination induced by cuprizone has become more and more popular, and it has contributed substantially to our understanding of distinct yet important aspects of the MS pathology. Here, we aim to provide a practical guide on how to use the cuprizone model and which pitfalls should be avoided.
Collapse
|
14
|
Stereological Investigation of Regional Brain Volumes after Acute and Chronic Cuprizone-Induced Demyelination. Cells 2019; 8:cells8091024. [PMID: 31484353 PMCID: PMC6770802 DOI: 10.3390/cells8091024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 02/03/2023] Open
Abstract
Brain volume measurement is one of the most frequently used biomarkers to establish neuroprotective effects during pre-clinical multiple sclerosis (MS) studies. Furthermore, whole-brain atrophy estimates in MS correlate more robustly with clinical disability than traditional, lesion-based metrics. However, the underlying mechanisms leading to brain atrophy are poorly understood, partly due to the lack of appropriate animal models to study this aspect of the disease. The purpose of this study was to assess brain volumes and neuro-axonal degeneration after acute and chronic cuprizone-induced demyelination. C57BL/6 male mice were intoxicated with cuprizone for up to 12 weeks. Brain volume, as well as total numbers and densities of neurons, were determined using design-based stereology. After five weeks of cuprizone intoxication, despite severe demyelination, brain volumes were not altered at this time point. After 12 weeks of cuprizone intoxication, a significant volume reduction was found in the corpus callosum and diverse subcortical areas, particularly the internal capsule and the thalamus. Thalamic volume loss was accompanied by glucose hypermetabolism, analyzed by [18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography. This study demonstrates region-specific brain atrophy of different subcortical brain regions after chronic cuprizone-induced demyelination. The chronic cuprizone demyelination model in male mice is, thus, a useful tool to study the underlying mechanisms of subcortical brain atrophy and to investigate the effectiveness of therapeutic interventions.
Collapse
|