1
|
Luo F, Deng Y, Angelov B, Angelova A. Melatonin and the nervous system: nanomedicine perspectives. Biomater Sci 2025. [PMID: 40231558 DOI: 10.1039/d4bm01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The mechanism of action of melatonin on the nervous system, sleep, cognitive deficits, and aging is not fully understood. Neurodegenerative diseases (ND) are one of the leading causes of disability and mortality worldwide. Sleeping and cognitive impairments also represent common and serious public health problems, particularly deteriorating with the aging process. Melatonin, as a neuromodulatory hormone, regulates circadian rhythms and the sleep-wake cycle, with functions extending to antioxidant, anti-inflammatory, neuroprotective, and anti-aging properties. However, melatonin is a hydrophobic compound with relatively low water solubility and a short half-life. While melatonin can cross the blood-brain barrier, exogenous melatonin administered orally or intravenously has poor bioavailability, undergoes rapid metabolism in the circulation, and shows limited brain accumulation, ultimately compromising its therapeutic efficacy. In recent years, the convergence of melatonin research with nanomedicine ensures safe therapeutic uses, limited drug degradation, and perspectives for targeted drug delivery to the central nervous system. Here we outline the promising neurotherapeutic properties of nanomaterials as carriers loaded with melatonin drug alone or in combinations with other active molecules.
Collapse
Affiliation(s)
- Fucen Luo
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France.
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No.1, Jinlian Road, Longwan District, Wenzhou, Zhejiang 325001, China
| | - Borislav Angelov
- Extreme Light Infrastructure ERIC, Department of Structural Dynamics, CZ-25241 Dolni Brezany, Czech Republic
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France.
| |
Collapse
|
2
|
Beker M, Beker MC, Elibol B, Caglayan AB, Altug B, Kilic E, Yilmaz B, Celik U. Melatonin enhances neurogenesis and neuroplasticity in long-term recovery following cerebral ischemia in mice. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167738. [PMID: 39993544 DOI: 10.1016/j.bbadis.2025.167738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
The important therapeutic role of melatonin in neuropathological conditions is underscored by a broad array of studies, many of which elucidated its neuroprotective properties. Yet, our scientific knowledge still needs several approaches to uncover molecular mechanisms. In this study, we contextually modelled cerebral ischemia through transient intraluminal middle cerebral artery occlusion. Melatonin was administered via an intraperitoneally placed mini osmotic pump, and released periodically from 3 days post-ischemia (dpi) to 56 dpi. We conferred several lines of evidence to address the fundamental questions about melatonin's cytoprotective functions after cerebral ischemia. We demonstrated that melatonin assisted post-ischemic neuro-restoration and micro-vascularization. In addition, it restricted glial scar formation, which interferes with neuronal interactions and stands as a barrier against plasticity. Even more interestingly, axonal plasticity, which was studied on the pyramidal tract using an anterograde tract tracer, proved the role of melatonin in remodeling across the injury site. In addition, plasticity-associated membrane-localized proteins, ephrin b1, ephrin b2, brevican, and versican were also modulated by melatonin. These findings suggested that melatonin orchestrated neurological recovery which was accompanied by molecular alterations resulting in cellular and extracellular structural changes. Based on the molecular signatures, ipsilesional and contralesional brain tissues were finely tuned by melatonin to compensate the loss after ischemia. Accordingly, neurological improvements correlated with the brain's molecular changes over time. It was suggested that melatonin enabled neuronal recovery by regulating neurogenesis and neuroplasticity in long term.
Collapse
Affiliation(s)
- Merve Beker
- Department of Medical Biology, International School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey
| | - Mustafa Caglar Beker
- Department of Physiology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ahmet Burak Caglayan
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Burcugul Altug
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, Turkey; Department of Genetics, Faculty of Veterinary Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Ulkan Celik
- Department of Medical Biology, School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey.
| |
Collapse
|
3
|
He C, Wang T, Han Y, Zuo C, Wang G. Jun-activated SOCS1 enhances ubiquitination and degradation of CCAAT/enhancer-binding protein β to ameliorate cerebral ischaemia/reperfusion injury. J Physiol 2024; 602:4959-4985. [PMID: 39197117 DOI: 10.1113/jp285673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/18/2024] [Indexed: 08/30/2024] Open
Abstract
This study investigates the molecular mechanisms behind ischaemia/reperfusion (I/R) injury in the brain, focusing on neuronal apoptosis. It scrutinizes the role of the Jun proto-oncogene in apoptosis, involvement of SOCS1 in neural precursor cell accumulation in ischaemic regions, and the upregulation of C-EBPβ in the hippocampus following I/R. Key to the study is understanding how Jun controls C-EBPβ degradation via SOCS1, potentially offering new clinical treatment avenues for I/R. Techniques such as mRNA sequencing, KEGG enrichment analysis and protein-protein interaction (PPI) in mouse models have indicated involvement of Jun (AP-1) in I/R-induced cerebral damage. The study employs middle cerebral artery occlusion in different mouse models and oxygen-glucose deprivation/reoxygenation in cortical neurons to examine the impacts of Jun and SOCS1 manipulation on cerebral I/R injury and neuronal damage. The findings reveal that I/R reduces Jun expression in the brain, but its restoration lessens cerebral I/R injury and neuron death. Jun activates SOCS1 transcriptionally, leading to C-EBPβ degradation, thereby diminishing cerebral I/R injury through the SOCS1/C-EBPβ pathway. These insights provide a deeper understanding of post-I/R cerebral injury mechanisms and suggest new therapeutic targets for cerebral I/R injury. KEY POINTS: Jun and SOCS1 are poorly expressed, and C-EBPβ is highly expressed in ischaemia/reperfusion mouse brain tissues. Jun transcriptionally activates SOCS1. SOCS1 promotes the ubiquitination-dependent C-EBPβ protein degradation. Jun blunts oxygen-glucose deprivation/reoxygenation-induced neuron apoptosis and alleviates neuronal injury. This study provides a theoretical basis for the management of post-I/R brain injury.
Collapse
Affiliation(s)
- Chuan He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Tie Wang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yanwu Han
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Changyang Zuo
- Department of Neurosurgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, P.R. China
| | - Guangming Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
4
|
Canonico B, Carloni S, Montanari M, Ambrogini P, Papa S, Alonso-Alconada D, Balduini W. Melatonin Modulates Cell Cycle Dynamics and Promotes Hippocampal Cell Proliferation After Ischemic Injury in Neonatal Rats. Mol Neurobiol 2024; 61:6910-6919. [PMID: 38358438 PMCID: PMC11339182 DOI: 10.1007/s12035-024-04013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Promoting neural cell proliferation may represent an important strategy for enhancing brain repair after developmental brain injury. The present study aimed to assess the effects of melatonin on cell proliferation after an ischemic injury in the developing hippocampus, focusing on cell cycle dynamics. After in vivo neonatal hypoxia-ischemia (HI), hippocampal cell cycle dynamics were assessed by flow cytometry, together with histological evaluation of dentate gyrus cellularity and proliferation. Melatonin significantly increased the number of proliferating cells in the G2/M phase as well as the proliferating cell nuclear antigen (PCNA) and doublecortin (DCX) labeling reduced by HI. In vivo BrdU labeling revealed a higher BrdU-positivity in the dentate gyrus of ischemic rats treated with melatonin, an effect followed by increased cellularity and preserved hippocampal tissue integrity. These results indicate that the protective effect of melatonin after ischemic injury in neonatal rats may rely on the modulation of cell cycle dynamics of newborn hippocampal cells and increased cell proliferation.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy.
| |
Collapse
|
5
|
Zhang C, Ma Y, Zhao Y, Guo N, Han C, Wu Q, Mu C, Zhang Y, Tan S, Zhang J, Liu X. Systematic review of melatonin in cerebral ischemia-reperfusion injury: critical role and therapeutic opportunities. Front Pharmacol 2024; 15:1356112. [PMID: 38375039 PMCID: PMC10875093 DOI: 10.3389/fphar.2024.1356112] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is the predominant causes for the poor prognosis of ischemic stroke patients after reperfusion therapy. Currently, potent therapeutic interventions for cerebral I/R injury are still very limited. Melatonin, an endogenous hormone, was found to be valid in preventing I/R injury in a variety of organs. However, a systematic review covering all neuroprotective effects of melatonin in cerebral I/R injury has not been reported yet. Thus, we perform a comprehensive overview of the influence of melatonin on cerebral I/R injury by collecting all available literature exploring the latent effect of melatonin on cerebral I/R injury as well as ischemic stroke. In this systematic review, we outline the extensive scientific studies and summarize the beneficial functions of melatonin, including reducing infarct volume, decreasing brain edema, improving neurological functions and attenuating blood-brain barrier breakdown, as well as its key protective mechanisms on almost every aspect of cerebral I/R injury, including inhibiting oxidative stress, neuroinflammation, apoptosis, excessive autophagy, glutamate excitotoxicity and mitochondrial dysfunction. Subsequently, we also review the predictive and therapeutic implications of melatonin on ischemic stroke reported in clinical studies. We hope that our systematic review can provide the most comprehensive introduction of current advancements on melatonin in cerebral I/R injury and new insights into personalized diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yumei Ma
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shutong Tan
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
7
|
Yilmaz U, Tanbek K, Gul S, Gul M, Koc A, Sandal S. Melatonin Attenuates Cerebral Ischemia/Reperfusion Injury through Inducing Autophagy. Neuroendocrinology 2023; 113:1035-1050. [PMID: 37321200 DOI: 10.1159/000531567] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The aim of this study was to investigate how melatonin administration for 3 days or 7 days following cerebral ischemia (CI) injury would affect autophagy and, therefore, survival in neurons of the penumbra region. Moreover, it was also aimed at determining how this melatonin treatment would affect the neurological deficit score and rotarod and adhesive removal test durations. METHODS Focal CI (90 min) was achieved in a total of 105 rats utilizing a middle cerebral artery occlusion model. After the start of reperfusion, the groups were treated with melatonin (10 mg/kg/day) for 3 days or 7 days. In all groups, neurological deficit scoring, rotarod, and adhesive removal tests were executed during reperfusion. Infarct areas were determined by TTC (2,3,5-triphenyltetrazolium chloride) staining at the end of the 3rd and 7th days of reperfusion. Beclin-1, LC3, p62, and caspase-3 protein levels were assessed using Western blot and immunofluorescence methods in the brain tissues. Moreover, penumbra areas were evaluated by transmission electron microscopy (TEM). RESULTS Following CI, it was observed that melatonin treatment improved the rotarod and adhesive removal test durations from day 5 and reduced the infarct area after CI. It also induced autophagic proteins Beclin-1, LC3, and p62 and suppressed the apoptotic protein cleaved caspase-3. According to TEM findings, melatonin treatment partially reduced the damage in neurons after CI. CONCLUSION Melatonin treatment following CI reduced the infarct area and induced the autophagic proteins Beclin-1, LC3, and p62 by inhibiting the apoptotic caspase-3 protein. The functional reflection of melatonin treatment on neurological test scores was became significant from the 5th day onward.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Semir Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Mehmet Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Ahmet Koc
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
8
|
Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int J Mol Sci 2022; 23:ijms23158512. [PMID: 35955647 PMCID: PMC9369264 DOI: 10.3390/ijms23158512] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.
Collapse
|