1
|
Lee N, Hwang YJ, Na HG, Cho DH. Far-infrared irradiation inhibits proliferation of human upper airway epithelial cells via protein phosphatase 2A-promoted dephosphorylation of p70 S6 kinase. Photochem Photobiol Sci 2024; 23:2075-2089. [PMID: 39461912 DOI: 10.1007/s43630-024-00652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Far-infrared (FIR) ray, an invisible electromagnetic radiation with a wavelength of 3‒1000 μm, elicits various biological effects. Excessive proliferation of human upper airway epithelial cells (HUAEpCs) contributes to the development and exacerbation of nasal narrowing diseases, including nasal polyposis and chronic rhinosinusitis with nasal polyps (CRSwNP). Here, we investigated the molecular mechanisms through which FIR irradiation inhibits the proliferation of HUAEpCs. FIR irradiation significantly inhibited the proliferation of NCI-H292 cells without alteration in cell viability. The anti-proliferative effect of FIR radiation was accompanied by decreased phosphorylation of p70S6K at Thr389 (p-p70S6K-Thr389), without changes in the phosphorylation of mammalian target of rapamycin and adenosine monophosphate-activated protein kinase (AMPK). Overexpression of p70S6K-T389E mutant gene, not dominant negative-AMPKα1 gene, significantly reversed FIR irradiation-inhibited p-p70S6K-Thr389 and cell proliferation. Cotreatment with okadaic acid or knockdown of protein phosphatase 2A catalytic subunit (PP2Ac) gene expression significantly reversed FIR irradiation-decreased p-p70S6K-Thr389 and cell proliferation. FIR irradiation remarkably promoted the physical association of p70S6K and PP2Ac without change in total PP2Ac expression. Hyperthermal stimulus (39 °C) did not alter p-p70S6K-Thr389 and cell proliferation. In line with NCI-H292 cell results, FIR irradiation, not hyperthermal stimulus, significantly decreased p-p70S6K-Thr389 and cell proliferation in primary human nasal turbinate and polyp epithelial cells. These results demonstrated that FIR irradiation decreased the proliferation of HUAEpCs through PP2A-mediated inhibition of p70S6K phosphorylation, independent of its hyperthermal effect. Our data suggest that FIR therapy can be used to treat upper airway narrowing epithelial hyperplastic diseases, including nasal polyposis and CRSwNP.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, South Korea
| | - Yun-Jin Hwang
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, South Korea
| | - Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, South Korea
| | - Du-Hyong Cho
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, South Korea.
| |
Collapse
|
2
|
Pacifici F, Chiereghin F, D’Orazio M, Malatesta G, Infante M, Fazio F, Bertinato C, Donadel G, Martinelli E, De Lorenzo A, Della-Morte D, Pastore D. Patch-Based Far-Infrared Radiation (FIR) Therapy Does Not Impact Cell Tracking or Motility of Human Melanoma Cells In Vitro. Curr Issues Mol Biol 2024; 46:10026-10037. [PMID: 39329951 PMCID: PMC11429816 DOI: 10.3390/cimb46090599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Far-Infrared Radiation (FIR) is emerging as a novel non-invasive tool for mitigating inflammation and oxidative stress, offering potential benefits for certain medical conditions such as cardiovascular disease and chronic inflammatory disorders. We previously demonstrated that the application of patch-based FIR therapy on human umbilical vein endothelial cells (HUVECs) reduced the expression of inflammatory biomarkers and the levels of reactive oxygen species (ROS). Several in vitro studies have shown the inhibitory effects of FIR therapy on cell growth in different cancer cells (including murine melanoma cells), mainly using the wound healing assay, without direct cell motility or tracking analysis. The main objective of the present study was to conduct an in-depth analysis of single-cell motility and tracking during the wound healing assay, using an innovative high-throughput technique in the human melanoma cell line M14/C2. This technique evaluates various motility descriptors, such as average velocity, average curvature, average turning angle, and diffusion coefficient. Our results demonstrated that patch-based FIR therapy did not impact cell proliferation and viability or the activation of mitogen-activated protein kinases (MAPKs) in the human melanoma cell line M14/C2. Moreover, no significant differences in cell motility and tracking were observed between control cells and patch-treated cells. Altogether, these findings confirm the beneficial effects of the in vitro application of patch-based FIR therapy in human melanoma cell lines, although such effects need to be confirmed in future in vivo studies.
Collapse
Affiliation(s)
- Francesca Pacifici
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (F.P.); (F.C.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.); (E.M.)
| | - Francesca Chiereghin
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (F.P.); (F.C.); (D.D.-M.)
| | - Michele D’Orazio
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.); (E.M.)
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gina Malatesta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (A.D.L.)
| | - Marco Infante
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Federica Fazio
- Department of Medical and Surgery Sciences, University “Magna Graecia” of Catanzaro, 8810 Catanzaro, Italy;
| | - Chiara Bertinato
- Department of Cellular, Computational and Integrative Biology-CIBO, University of Trento, 38123 Trento, Italy;
| | - Giulia Donadel
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Eugenio Martinelli
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.); (E.M.)
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonino De Lorenzo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (A.D.L.)
| | - David Della-Morte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (F.P.); (F.C.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.); (E.M.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (A.D.L.)
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Donatella Pastore
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (F.P.); (F.C.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.); (E.M.)
| |
Collapse
|
3
|
Qin B, Fu SJ, Xu XF, Yang JJ, Wang Y, Wang LN, Huang BX, Zhong J, Wu WY, Lu HA, Law BYK, Wang N, Wong IN, Wong VKW. Far-infrared radiation and its therapeutic parameters: A superior alternative for future regenerative medicine? Pharmacol Res 2024; 208:107349. [PMID: 39151679 DOI: 10.1016/j.phrs.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
In future regenerative medicine, far-infrared radiation (FIR) may be an essential component of optical therapy. Many studies have confirmed or validated the efficacy and safety of FIR in various diseases, benefiting from new insights into FIR mechanisms and the excellent performance of many applications. However, the lack of consensus on the biological effects and therapeutic parameters of FIR limits its practical applications in the clinic. In this review, the definition, characteristics, and underlying principles of the FIR are systematically illustrated. We outline the therapeutic parameters of FIR, including the wavelength range, power density, irradiation time, and distance. In addition, the biological effects, potential molecular mechanisms, and preclinical and clinical applications of FIR are discussed. Furthermore, the future development and applications of FIR are described in this review. By applying optimal therapeutic parameters, FIR can influence various cells, animal models, and patients, eliciting diverse underlying mechanisms and offering therapeutic potential for many diseases. FIR could represent a superior alternative with broad prospects for application in future regenerative medicine.
Collapse
Affiliation(s)
- Bo Qin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Shi-Jie Fu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiong-Fei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Jiu-Jie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Breast, Thyroid and Vascular Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Lin-Na Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Bai-Xiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Wan-Yu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Heng-Ao Lu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Nick Wang
- New Age Technology (Asia) Limited, TML Tower, 3 Hoi Shing Road, Tsuen Wan, Hong Kong
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macao.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao.
| |
Collapse
|
4
|
The Convergence of FTIR and EVs: Emergence Strategy for Non-Invasive Cancer Markers Discovery. Diagnostics (Basel) 2022; 13:diagnostics13010022. [PMID: 36611313 PMCID: PMC9818376 DOI: 10.3390/diagnostics13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In conjunction with imaging analysis, pathology-based assessments of biopsied tissue are the gold standard for diagnosing solid tumors. However, the disadvantages of tissue biopsies, such as being invasive, time-consuming, and labor-intensive, have urged the development of an alternate method, liquid biopsy, that involves sampling and clinical assessment of various bodily fluids for cancer diagnosis. Meanwhile, extracellular vesicles (EVs) are circulating biomarkers that carry molecular profiles of their cell or tissue origins and have emerged as one of the most promising biomarkers for cancer. Owing to the biological information that can be obtained through EVs' membrane surface markers and their cargo loaded with biomolecules such as nucleic acids, proteins, and lipids, EVs have become useful in cancer diagnosis and therapeutic applications. Fourier-transform infrared spectroscopy (FTIR) allows rapid, non-destructive, label-free molecular profiling of EVs with minimal sample preparation. Since the heterogeneity of EV subpopulations may result in complicated FTIR spectra that are highly diverse, computational-assisted FTIR spectroscopy is employed in many studies to provide fingerprint spectra of malignant and non-malignant samples, allowing classification with high accuracy, specificity, and sensitivity. In view of this, FTIR-EV approach carries a great potential in cancer detection. The progression of FTIR-based biomarker identification in EV research, the rationale of the integration of a computationally assisted approach, along with the challenges of clinical translation are the focus of this review.
Collapse
|
5
|
A Low-Density Polyethylene (LDPE)/Macca Carbon Advanced Composite Film with Functional Properties for Packaging Materials. Polymers (Basel) 2022; 14:polym14091794. [PMID: 35566963 PMCID: PMC9103540 DOI: 10.3390/polym14091794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Macca carbon (MC) powder, a biomass derived from macadamia nut cultivation that emits far-infrared (FIR) radiation, was incorporated into low-density polyethylene (LDPE) by melt-compounding and subsequent melt-extrusion operations. Optical microscopy, scanning electron microscopy, differential scanning calorimetry, thermal gravitational analysis, mechanical properties, FIR emission power, barrier properties, transmission properties, antimicrobial activity assays, and storage tests were used to evaluate the manufactured LDPE/MC composite viability sheets for antimicrobial packaging applications. The physical properties and antibacterial activity of composite films were significantly correlated with the amount of MC powder used. The higher the MC powder content in the LDPE/MC composite film, the better the FIR emission ability. Only the MC powder at 0.5% by weight displayed adequate fundamental film characteristics, antibacterial activity, and storage performance, allowing lettuce and strawberries to remain fresh for more than 7 and 5 days, respectively, outside the refrigerator. This study demonstrates that FIR composites made from MC powder are a distinct and potential packaging material for future application in the food industry.
Collapse
|
6
|
Chen CH, Chen MC, Hsu YH, Chou TC. Far-infrared radiation alleviates cisplatin-induced vascular damage and impaired circulation via activation of HIF-1α. Cancer Sci 2022; 113:2194-2206. [PMID: 35411640 PMCID: PMC9207382 DOI: 10.1111/cas.15371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 12/03/2022] Open
Abstract
Severe vascular damage and complications are often observed in cancer patients during treatment with chemotherapeutic drugs such as cisplatin. Thus, development of potential options to ameliorate the vascular side effects is urgently needed. In this study, the effects and the underlying mechanisms of far‐infrared radiation (FIR) on cisplatin‐induced vascular injury and endothelial cytotoxicity/dysfunction in mice and human umbilical vein endothelial cells (HUVECs) were investigated. An important finding is that the severe vascular stenosis and poor blood flow seen in cisplatin‐treated mice were greatly mitigated by FIR irradiation (30 minutes/day) for 1‐3 days. Moreover, FIR markedly increased the levels of phosphorylation of PI3K and Akt, and VEGF secretion, as well as the expression and the activity of hypoxia‐inducible factor 1α (HIF‐1α) in cisplatin‐treated HUVECs in a promyelocytic leukemia zinc finger protein (PLZF)‐dependent manner. However, FIR‐stimulated endothelial angiogenesis and VEGF release were significantly diminished by transfection with HIF‐1α siRNA. We also confirmed that HIF‐1α, PI3K, and PLZF contribute to the inhibitory effect of FIR on cisplatin‐induced apoptosis in HUVECs. Notably, FIR did not affect the anticancer activity and the HIF‐1α/VEGF cascade in cisplatin‐treated cancer cells under normoxic or hypoxic condition, indicating that the actions of FIR may specifically target endothelial cells. It is the first study to demonstrate that FIR effectively attenuates cisplatin‐induced vascular damage and impaired angiogenesis through activation of HIF‐1α–dependent processes via regulation of PLZF and PI3K/Akt. Taken together, cotreatment with the noninvasive and easily performed FIR has a therapeutic potential to prevent the pathogenesis of vascular complications in cancer patients during cisplatin treatment.
Collapse
Affiliation(s)
- Cheng-Hsien Chen
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Meng-Chuan Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Ho Hsu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,TMU Research Center of Urology and Kidney, Taipei, Taiwan
| | - Tz-Chong Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pharmacology, National Defense Medical Center, Taipei, 11490, Taiwan.,China Medical University Hospital, China Medical University, Taichung, 404332, Taiwan.,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.,Cathay Medical Research Institute, Cathay General Hospital, New Taipei City, 22174, Taiwan
| |
Collapse
|
7
|
Aguilar L, Lara-Flores M, Rendón-von Osten J, Kurczyn JA, Vilela B, da Cruz AL. Effects of polycyclic aromatic hydrocarbons on biomarker responses in Gambusia yucatana, an endemic fish from Yucatán Peninsula, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47262-47274. [PMID: 33891236 DOI: 10.1007/s11356-021-13952-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are petroleum components that, when dissolved in the aquatic environment, can disrupt normal animal physiological functions and negatively affect species populations. Gambusia yucatana is an endemic fish of the Yucatán Peninsula that seems to be particularly sensitive to the presence of PAHs dissolved in the water. Here, we examined PAH effects on gene expressions linked to endocrine disruption and biotransformation in this species. Specifically, we examined the expression of vitellogenin I (vtg1), vitellogenin II (vtg2), oestrogen receptor α (esr1), oestrogen receptor β (esr2), aryl hydrocarbon receptor (AhR) and the cytochrome P4503A (CYP3A) genes. We exposed G. yucatana to different concentrations of PAHs (3.89, 9.27, 19.51 μg/L) over a period of 72 h and found changes associated with reproduction, such as increases in hepatic expression of vtg, esr, AhR and CYP3A, mainly at concentrations of 9.27 and 19.51 μg/L. Our results also indicate that benzo[a]pyrene was probably the main PAH responsible for the observed effects. The genes examined here can be used as molecular markers of endocrine-disrupting compounds, as the PAHs, present in the environment, as gene expression increases could be observed as early as after 24 h. These biomarkers can help researchers and conservationists rapidly identify the impacts of oil spills and improve mitigation before the detrimental effects of environmental stressors become irreversible.
Collapse
Affiliation(s)
- Letícia Aguilar
- Institute of Biology, Laboratory of Animal Physiology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil
| | - Maurílio Lara-Flores
- Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico, Laboratory of Ecotoxicology, Autonomous University of Campeche, Av. Héroe de Nacozari 480, C.P. 24029, San Francisco de Campeche, Campeche, Mexico
| | - Jaime Rendón-von Osten
- Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico, Laboratory of Ecotoxicology, Autonomous University of Campeche, Av. Héroe de Nacozari 480, C.P. 24029, San Francisco de Campeche, Campeche, Mexico
| | - Jorge A Kurczyn
- Institute of Engineering, Coastal Engineering and Processes Laboratory, National Autonomous University of Mexico, Puerto de Abrigo s/n, 97356, Sisal, Yucatán, Mexico
| | - Bruno Vilela
- Institute of Biology, Spatial Ecology Laboratory, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil
| | - André Luis da Cruz
- Institute of Biology, Laboratory of Animal Physiology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil.
| |
Collapse
|
8
|
Cao TL, Le TA, Hadadian Y, Yoon J. Theoretical Analysis for Using Pulsed Heating Power in Magnetic Hyperthermia Therapy of Breast Cancer. Int J Mol Sci 2021; 22:ijms22168895. [PMID: 34445603 PMCID: PMC8396204 DOI: 10.3390/ijms22168895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
In magnetic hyperthermia, magnetic nanoparticles (MNPs) are used to generate heat in an alternating magnetic field to destroy cancerous cells. This field can be continuous or pulsed. Although a large amount of research has been devoted to studying the efficiency and side effects of continuous fields, little attention has been paid to the use of pulsed fields. In this simulation study, Fourier's law and COMSOL software have been utilized to identify the heating power necessary for treating breast cancer under blood flow and metabolism to obtain the optimized condition among the pulsed powers for thermal ablation. The results showed that for small source diameters (not larger than 4 mm), pulsed powers with high duties were more effective than continuous power. Although by increasing the source domain the fraction of damage caused by continuous power reached the damage caused by the pulsed powers, it affected the healthy tissues more (at least two times greater) than the pulsed powers. Pulsed powers with high duty (0.8 and 0.9) showed the optimized condition and the results have been explained based on the Arrhenius equation. Utilizing the pulsed powers for breast cancer treatment can potentially be an efficient approach for treating breast tumors due to requiring lower heating power and minimizing side effects to the healthy tissues.
Collapse
Affiliation(s)
- Thanh-Luu Cao
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Korea; (T.-L.C.); or (T.-A.L.); (Y.H.)
| | - Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Korea; (T.-L.C.); or (T.-A.L.); (Y.H.)
- Department of Electrical Engineering, Faulty of Electrical and Electronics Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi 116705, Vietnam
| | - Yaser Hadadian
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Korea; (T.-L.C.); or (T.-A.L.); (Y.H.)
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Korea; (T.-L.C.); or (T.-A.L.); (Y.H.)
- Correspondence: ; Tel.: +82-62-715-5332
| |
Collapse
|
9
|
Xia L, Cui C, Nicoli F, Al-Mousawi A, Campisi CC, Lazzeri D, Liu NF, Xie B, Li K, Zhang Y. Far Infrared Radiation Therapy for Gynecological Cancer-Related Lymphedema Is an Effective and Oncologically Safe Treatment: A Randomized-Controlled Trial. Lymphat Res Biol 2021; 20:164-174. [PMID: 34028298 DOI: 10.1089/lrb.2019.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Gynecological cancer-related lymphedema (GCRL) is a devastating condition that adversely influences function, health, and quality of life. We conducted a randomized-controlled clinical study as well as in vitro experiments to investigate the efficacy and safety of far infrared radiation (FIR) to treat lymphedema in patients having previously undergone surgery for gynecological tumors. Materials and Methods: Seventy-four women with GCRL, cancer free for 5 years or more, were randomly allocated into two treatment groups: standard of care with bandage treatment and treatment with FIR plus bandage. Variations of fluid, circumference of lymphedematous limbs, serum tumor markers (cancer antigen 125 [CA125]), inguinal-pelvic lymph nodes, vagina, lungs, and adverse reactions were assessed after 1 year. In vitro experiments examined the effects on cell viability, proliferation, apoptosis, and the cell cycle of fibroblast, A2780, SKOV-3, HELA, and Ishikawa cells. Results: The FIR+bandage group showed significantly decreased tissue fluid and reduced limb circumference (p < 0.05) in comparison with the control group at 1 year. There was no increase of serum CA125 in both groups, and no recurrence of neoplasia or lymphadenopathy was detected. No adverse reactions were recorded. In addition, no changes were detected after FIR treatment for fibroblast, A2780, SKOV-3, HELA, and Ishikawa cells in cell viability, proliferation, apoptosis, and cell cycle. Conclusion: FIR can be used to treat patients with GCRL following gynecological cancer treatment. Following clinical and experimental studies, we confirm that FIR is an oncologically safe treatment for lymphedema in gynecological tumor patients.
Collapse
Affiliation(s)
- Liang Xia
- Department of Oral and Cranio-Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chunxiao Cui
- Department of Facial Plastic and Reconstructive Surgery, Fudan University, Eye & ENT Hospital, Shanghai, China
| | - Fabio Nicoli
- Department of Plastic and Reconstructive Surgery, University of Rome "Tor Vergata," Rome, Italy.,Department of Plastic and Reconstructive Surgery, Northumbria Healthcare NHS Foundation Trust, Northumberland, United Kingdom.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Plastic and Reconstructive Surgery, Royal Victoria Infirmary Hospital Newcastle NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ahmed Al-Mousawi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Plastic and Reconstructive Surgery, Royal Victoria Infirmary Hospital Newcastle NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Corrado Cesare Campisi
- Unit of Lymphatic Surgery, Department of Surgery, University of Genoa, IRCCS University Hospital San Martino-IST National Institute for Cancer Research, Genoa, Italy
| | - Davide Lazzeri
- Plastic Reconstructive and Aesthetic Surgery Unit, Villa Salaria Clinic, Rome, Italy
| | - Ning Fei Liu
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Bingying Xie
- Department of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ke Li
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Yixin Zhang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Cho DH, Lee HJ, Lee JY, Park JH, Jo I. Far-infrared irradiation inhibits breast cancer cell proliferation independently of DNA damage through increased nuclear Ca 2+/calmodulin binding modulated-activation of checkpoint kinase 2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 219:112188. [PMID: 33901880 DOI: 10.1016/j.jphotobiol.2021.112188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022]
Abstract
Far-infrared (FIR) irradiation is reported to inhibit cell proliferation in various types of cancer cells; the underlying mechanism, however, remains unclear. We explored the molecular mechanisms using MDA-MB-231 human breast cancer cells. FIR irradiation significantly inhibited cell proliferation and colony formation compared to hyperthermal stimulus, with no alteration in cell viability. No increase in DNA fragmentation or phosphorylation of DNA damage kinases including ataxia-telangiectasia mutated kinase, ataxia telangiectasia and Rad3-related kinase, and DNA-dependent protein kinase indicated no DNA damage. FIR irradiation increased the phosphorylation of checkpoint kinase 2 (Chk2) at Thr68 (p-Chk2-Thr68) but not that of checkpoint kinase 1 at Ser345. Increased nuclear p-Chk2-Thr68 and Ca2+/CaM accumulations were found in FIR-irradiated cells, as observed in confocal microscopic analyses and cell fractionation assays. In silico analysis predicted that Chk2 possesses a Ca2+/calmodulin (CaM) binding motif ahead of its kinase domain. Indeed, Chk2 physically interacted with CaM in the presence of Ca2+, with their binding markedly pronounced in FIR-irradiated cells. Pre-treatment with a Ca2+ chelator significantly reversed FIR irradiation-increased p-Chk2-Thr68 expression. In addition, a CaM antagonist or small interfering RNA-mediated knockdown of the CaM gene expression significantly attenuated FIR irradiation-increased p-Chk2-Thr68 expression. Finally, pre-treatment with a potent Chk2 inhibitor significantly reversed both FIR irradiation-stimulated p-Chk2-Thr68 expression and irradiation-repressed cell proliferation. In conclusion, our results demonstrate that FIR irradiation inhibited breast cancer cell proliferation, independently of DNA damage, by activating the Ca2+/CaM/Chk2 signaling pathway in the nucleus. These results demonstrate a novel Chk2 activation mechanism that functions irrespective of DNA damage.
Collapse
Affiliation(s)
- Du-Hyong Cho
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyunchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| | - Hyeon-Ju Lee
- Department of Molecular Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, South Korea
| | - Jee Young Lee
- Department of Molecular Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, South Korea
| | - Jung-Hyun Park
- Department of Molecular Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, South Korea.
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, South Korea.
| |
Collapse
|
11
|
Yu T, Hu Y, Feng G, Hu K. A Graphene‐Based Flexible Device as a Specific Far‐Infrared Emitter for Noninvasive Tumor Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tingting Yu
- Department of Medical GeneticsSchool of Basic Medical Science & Jiangsu Key Laboratory of XenotransplantationNanjing Medical University Nanjing 211166 China
| | - Yimin Hu
- Grahope New Materials Technologies Inc. Shenzhen 518063 China
| | - Guanping Feng
- Grahope New Materials Technologies Inc. Shenzhen 518063 China
| | - Ke Hu
- Key Laboratory of Clinical and Medical EngineeringDepartment of Biomedical Engineering, School of Biomedical Engineering and InformaticsNanjing Medical University Nanjing 211166 China
| |
Collapse
|
12
|
Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019; 9:cells9010060. [PMID: 31878360 PMCID: PMC7017199 DOI: 10.3390/cells9010060] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of molecular chaperones classified by their molecular weights, and they include HSP27, HSP40, HSP60, HSP70, and HSP90. HSPs function in diverse physiological and protective processes to assist in maintaining cellular homeostasis. In particular, HSPs participate in protein folding and maturation processes under diverse stressors such as heat shock, hypoxia, and degradation. Notably, HSPs also play essential roles across cancers as they are implicated in a variety of cancer-related activities such as cell proliferation, metastasis, and anti-cancer drug resistance. In this review, we comprehensively discuss the functions of HSPs in association with cancer initiation, progression, and metastasis and anti-cancer therapy resistance. Moreover, the potential utilization of HSPs to enhance the effects of chemo-, radio-, and immunotherapy is explored. Taken together, HSPs have multiple clinical usages as biomarkers for cancer diagnosis and prognosis as well as the potential therapeutic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Hyung Joo Kim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Ji Ho Lim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31538, Korea
- Correspondence: ; Tel.: +82-02-709-2029
| |
Collapse
|
13
|
Far-Infrared-Emitting Sericite Board Upregulates Endothelial Nitric Oxide Synthase Activity through Increasing Biosynthesis of Tetrahydrobiopterin in Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1813282. [PMID: 31781259 PMCID: PMC6875339 DOI: 10.1155/2019/1813282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022]
Abstract
Far-infrared ray (FIR) therapy has been reported to exert beneficial effects on cardiovascular function by elevating endothelial nitric oxide synthesis (eNOS) activity and nitric oxide (NO) production. Tetrahydrobiopterin (BH4) is a key determinant of eNOS-dependent NO synthesis in vascular endothelial cells. However, whether BH4 synthesis is associated with the effects of FIR on eNOS/NO production has not yet been investigated. In this study, we investigated the effects of FIR on BH4-dependent eNOS/NO production and vascular function. We used FIR-emitting sericite boards as an experimental material and placed human umbilical vein endothelial cells (HUVECs) and Sprague–Dawley rats on the boards with or without FIR irradiation and then evaluated vascular relaxation by detecting NO generation, BH4 synthesis, and Akt/eNOS activation. Our results showed that FIR radiation significantly enhanced Akt/eNOS phosphorylation and NO production in human endothelial cells and aorta tissues. FIR can also induce BH4 storage by elevating levels of enzymes (e.g., guanosine triphosphate cyclohydrolase-1, 6-pyruvoyl tetrahydrobiopterin synthase, sepiapterin reductase, and dihydrofolate reductase), which ultimately results in NO production. These results indicate that FIR upregulated eNOS-dependent NO generation via BH4 synthesis and Akt phosphorylation, which contributes to the regulation of vascular function. This might develop potential clinical application of FIR to treat vascular diseases by augmenting the BH4/NO pathway.
Collapse
|
14
|
Kim S, Park HT, Soh SH, Oh MW, Shim S, Yoo HS. Evaluation of the immunobiological effects of a regenerative far-infrared heating system in pigs. J Vet Sci 2019; 20:e61. [PMID: 31775188 PMCID: PMC6883191 DOI: 10.4142/jvs.2019.20.e61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 11/20/2022] Open
Abstract
Thermal conditions are an important environmental factor in maintaining healthy pigs because they affect feed intake, growth efficiency, reproduction and immune responses in pigs. RAVI, a regenerative far-infrared heating system, can effect pig production by emitting an optimal far-infrared wavelength. Far-infrared radiation has been reported to increase microvascular dilation and vascular flow volume. The purpose of this study was to evaluate the immunobiological differences between pigs raised with the RAVI system and the gasoline heater system. Twenty-six-week-old weaned pigs were raised in two rooms that were equipped with a RAVI system or a gasoline heater for 8 weeks. A porcine atrophic rhinitis vaccine was administered after two weeks and transcriptome analysis in whole blood were analyzed at 2-week intervals. Signaling pathway analyses of the RAVI group at 8 weeks showed the activation of pathways related to nitric oxide (NO) production. This suggests that the application of RAVI might induce the production of NO and iNOS, which are important for increasing the immune activity. Similar to the result of microarray, phenotypic changes were also observed at a later period of the experiment. The increase in body weight in the RAVI group was significantly higher than the gasoline heater group at 8 weeks. The antibody titer against the vaccine in the RAVI group was also higher than that the gasoline heater group at 4 weeks and 8 weeks. This evaluation of the use of a far-infrared heating system with pigs will be helpful for applications in the pig farm industry and pig welfare.
Collapse
Affiliation(s)
- Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hong Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sang Hee Soh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Myung Whan Oh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
15
|
Cheng YC, Lung CW, Jan YK, Kuo FC, Lin YS, Lo YC, Liau BY. Evaluating the Far-Infrared Radiation Bioeffects on Micro Vascular Dysfunction, Nervous System, and Plantar Pressure in Diabetes Mellitus. INT J LOW EXTR WOUND 2019; 19:125-131. [PMID: 31625431 DOI: 10.1177/1534734619880741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The most frequent clinical complication is diabetes. Diabetes is characterized by elevated blood glucose levels resulting in sensory nerve damage or lesions. Diabetic foot wounds are often slow to heal and require medical attention and monitoring. This study evaluates the effect of far-infrared radiation on the microcirculation and plantar pressure in the diabetic foot. Ten diabetics and 4 nondiabetics were recruited in this study. The diabetic group was examined before and after the intervention in each month for 3 consecutive months. Four nondiabetic groups were also measured before and after the intervention for 2 weeks in each month. The surface temperature and blood flow in the diabetic foot was significantly improved (temperature: 32.1 ± 2.3°C vs 33.5 ± 2.2°C, P < .05; blood flow image: 118.3 ± 58.1 PU [perfusion unit] vs 50.4 ± 4.3 PU, P < .05). The sympathetic nerve activity index LF also increased from 40.8 ± 18.6% to 61.8 ± 13.5% (P = .07) in the second month. Plantar pressure tended to increase in the third month. This might indicate that far-infrared radiation could affect the mechanical properties of the plantar foot soft tissue. These results indicated that the effects of far-infrared radiation would improve blood circulation and change the soft tissue properties in the diabetic foot.
Collapse
Affiliation(s)
| | | | - Yih-Kuen Jan
- University of Illinois at Urbana-Champaign, IL, USA
| | | | | | | | | |
Collapse
|
16
|
Chen JC, Hwang JH. Effects of Far-infrared Ray on Temozolomide-treated Glioma in Rats. In Vivo 2019; 33:1203-1208. [PMID: 31280210 DOI: 10.21873/invivo.11591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIM Malignant glioma is a rapidly progressive primary brain cancer. The aim of the study was to investigate the effect of far-infrared ray (FIR) on temozolomide (TMZ)-treated glioma in rats. MATERIALS AND METHODS Male, 8-week old, Fischer 344 inbred rats with glioma were randomly divided into three study groups (20 rats in each group). The control group received saline only once daily for 5 days. The TMZ group received TMZ (30 mg/kg) once daily for 5 days. The TMZ plus FIR group received TMZ (30 mg/kg) once daily for 5 days and infrared-c irradiation of 40 min twice daily for 4 weeks. The relative tumor fold and the expression of hypoxia-induced factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were compared using one-way ANOVA at the end of study. RESULTS The relative tumor fold of the TMZ+FIR group was significantly higher compared to the control group, and was borderline higher compared to the TMZ group at Day 7. The relative tumor fold of TMZ+FIR group was significantly higher compared to the control group and the TMZ group at Days 14, 21 and 28. HIF-1α expression of TMZ+FIR group was borderline higher compared to the control group at Day 28. The VEGF expression of TMZ+FIR group was significantly higher compared to the control group and the TMZ group at Day 28. CONCLUSION FIR might increase the growth of glioma under TMZ treatment in rats possibly via increasing VEGF expression, but not HIF-1α expression.
Collapse
Affiliation(s)
- Jin-Cherng Chen
- Department of Neurosurgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan, R.O.C.,School of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Juen-Haur Hwang
- School of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C. .,Department of Otolaryngology-Head and Neck Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
17
|
Xiong Y, Huang S, Wang W, Liu X, Li H. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder. MATERIALS 2017; 10:ma10121370. [PMID: 29186047 PMCID: PMC5744305 DOI: 10.3390/ma10121370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022]
Abstract
Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced (p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.
Collapse
Affiliation(s)
- Yabo Xiong
- School of Printing and Packaging, Wuhan University, No. 129 Luo Yu Road, Wuchang District, Wuhan 430079, China.
| | - Shaoyun Huang
- School of Printing and Packaging, Wuhan University, No. 129 Luo Yu Road, Wuchang District, Wuhan 430079, China.
| | - Wenqi Wang
- School of Printing and Packaging, Wuhan University, No. 129 Luo Yu Road, Wuchang District, Wuhan 430079, China.
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, No. 129 Luo Yu Road, Wuchang District, Wuhan 430079, China.
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, No. 129 Luo Yu Road, Wuchang District, Wuhan 430079, China.
| |
Collapse
|
18
|
Yang CC, Lin GM, Wang JH, Chu HC, Wu HT, Chen JJ, Sun CK. Effects of Combined Far-Infrared Radiation and Acupuncture at ST36 on Peripheral Blood Perfusion and Autonomic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1947315. [PMID: 28883882 PMCID: PMC5572608 DOI: 10.1155/2017/1947315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022]
Abstract
Using four-channel photoplethysmography (PPG) for acquiring peripheral arterial waveforms, this study investigated vascular and autonomic impacts of combined acupuncture-far infrared radiation (FIR) in improving peripheral circulation. Twenty healthy young adults aged 25.5 ± 4.6 were enrolled for 30-minute measurement. Each subject underwent four treatment strategies, including acupuncture at ST36 (Zusanli), pseudoacupuncture, FIR, and combined acupuncture-FIR at different time points. Response was assessed at 5-minute intervals. Area under arterial waveform at baseline was defined as AreaBaseline, whereas AreaStim referred to area at each 5-minute substage during and after treatment. AreaStim/AreaBaseline was compared at different stages and among different strategies. Autonomic activity at different stages was assessed using low-to-high frequency power ratio (LHR). The results demonstrated increased perfusion for each therapeutic strategy from stage 1 to stage 2 (all p < 0.02). Elevated perfusion was noted for all treatment strategies at stage 3 compared to stage 1 except pseudoacupuncture. Increased LHR was noted only in subjects undergoing pseudoacupuncture at stage 3 compared to stage 1 (p = 0.045). Reduced LHR at stage 2 compared to stage 1 was found only in combined treatment group (p = 0.041). In conclusion, the results support clinical benefits of combined acupuncture-FIR treatment in enhancing peripheral perfusion and parasympathetic activity.
Collapse
Affiliation(s)
- Cheng-Chan Yang
- Department of Electrical Engineering, National Dong Hwa University, Hualien 97401, Taiwan
- Department of Chinese Medicine, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan
| | - Gen-Min Lin
- Department of Electrical Engineering, National Dong Hwa University, Hualien 97401, Taiwan
- Department of Medicine, Hualien-Armed Forces General Hospital, Hualien 97144, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan
| | - Hsiao-Chiang Chu
- Department of Electrical Engineering, National Dong Hwa University, Hualien 97401, Taiwan
| | - Hsien-Tsai Wu
- Department of Electrical Engineering, National Dong Hwa University, Hualien 97401, Taiwan
| | - Jian-Jung Chen
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
- School of Chinese Medicine, Tzu Chi University, Hualien 97002, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
19
|
Tsai SR, Hamblin MR. Biological effects and medical applications of infrared radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 170:197-207. [PMID: 28441605 PMCID: PMC5505738 DOI: 10.1016/j.jphotobiol.2017.04.014] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
Infrared (IR) radiation is electromagnetic radiation with wavelengths between 760nm and 100,000nm. Low-level light therapy (LLLT) or photobiomodulation (PBM) therapy generally employs light at red and near-infrared wavelengths (600-100nm) to modulate biological activity. Many factors, conditions, and parameters influence the therapeutic effects of IR, including fluence, irradiance, treatment timing and repetition, pulsing, and wavelength. Increasing evidence suggests that IR can carry out photostimulation and photobiomodulation effects particularly benefiting neural stimulation, wound healing, and cancer treatment. Nerve cells respond particularly well to IR, which has been proposed for a range of neurostimulation and neuromodulation applications, and recent progress in neural stimulation and regeneration are discussed in this review. The applications of IR therapy have moved on rapidly in recent years. For example, IR therapy has been developed that does not actually require an external power source, such as IR-emitting materials, and garments that can be powered by body heat alone. Another area of interest is the possible involvement of solar IR radiation in photoaging or photorejuvenation as opposites sides of the coin, and whether sunscreens should protect against solar IR? A better understanding of new developments and biological implications of IR could help us to improve therapeutic effectiveness or develop new methods of PBM using IR wavelengths.
Collapse
Affiliation(s)
- Shang-Ru Tsai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Kao WL, Sun CW. Gender-Related Effect in Oxygenation Dynamics by Using Far-Infrared Intervention with Near-Infrared Spectroscopy Measurement: A Gender Differences Controlled Trial. PLoS One 2015; 10:e0135166. [PMID: 26555225 PMCID: PMC4640828 DOI: 10.1371/journal.pone.0135166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022] Open
Abstract
Many studies have indicated the microcirculation can directly respond to disease-related symptoms. However, the capacity of microcirculation would vary due to the gender differences. Near-infrared spectroscopy (NIRS) is a noninvasive technique to monitor tissue oxygenation dynamics. In this study, the far-infrared (FIR) source was used for physiological intervention of microcirculation. The experimental results show that the nature difference of oxygenation status exists between male and female during FIR irradiation. Therefore, we suggest the NIRS-based assessment should be calibrated with the gender-related effect for clinical diagnosis of peripheral arterial disease.
Collapse
Affiliation(s)
- Wei-Lung Kao
- Department of Photonics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
| | - Chia-Wei Sun
- Department of Photonics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
- * E-mail:
| |
Collapse
|
21
|
A Parallel-Arm Randomized Controlled Trial to Assess the Effects of a Far-Infrared-Emitting Collar on Neck Disorder. MATERIALS 2015; 8:5862-5876. [PMID: 28793539 PMCID: PMC5512659 DOI: 10.3390/ma8095279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/08/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022]
Abstract
The purpose of this study is to assess the beneficial effects of a far-infrared-emitting collar (FIRC) on the management of neck disorders. A neck disorder is generalized as neck muscle pain and its relative mental disorders because the etiologies of the neck's multidimensional syndrome are either muscle impairment or psychiatric distress. This is the first study to determine the efficacy of a FIRC by evaluating objective physical evidence and psychometric self-reports using a parallel-arm randomized sham-controlled and single-blinded design. In this trial, 60 participants with neck disorders were observed at baseline and post-intervention. Compared to the placebo group after a 30-min intervention, the FIRC demonstrated a statistically significant biological effect in elevating skin temperature and promoting blood circulation with p-values 0.003 and 0.020, respectively. In addition, FIRC application significantly reduced neck muscle tension, relieved pain, ameliorated fatigue, improved depression, and decreased anxiety. The FIRC could therefore be a potential treatment for neck disorders.
Collapse
|
22
|
Akhalaya MY, Maksimov GV, Rubin AB, Lademann J, Darvin ME. Molecular action mechanisms of solar infrared radiation and heat on human skin. Ageing Res Rev 2014; 16:1-11. [PMID: 24742502 DOI: 10.1016/j.arr.2014.03.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 03/18/2014] [Accepted: 03/28/2014] [Indexed: 01/01/2023]
Abstract
The generation of ROS underlies all solar infrared-affected therapeutic and pathological cutaneous effects. The signaling pathway NF-kB is responsible for the induced therapeutic effects, while the AP-1 for the pathological effects. The different signaling pathways of infrared-induced ROS and infrared-induced heat shock ROS were shown to act independently multiplying the influence on each other by increasing the doses of irradiation and/or increasing the temperature. The molecular action mechanisms of solar infrared radiation and heat on human skin are summarized and discussed in detail in the present paper. The critical doses are determined. Protection strategies against infrared-induced skin damage are proposed.
Collapse
Affiliation(s)
- M Ya Akhalaya
- M.V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, Leninskie Gory, 1-12, 119991 Moscow, Russia
| | - G V Maksimov
- M.V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, Leninskie Gory, 1-12, 119991 Moscow, Russia
| | - A B Rubin
- M.V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, Leninskie Gory, 1-12, 119991 Moscow, Russia
| | - J Lademann
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - M E Darvin
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
23
|
Hwang S, Lee DH, Lee IK, Park YM, Jo I. Far-infrared radiation inhibits proliferation, migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin levels. Cancer Lett 2014; 346:74-83. [DOI: 10.1016/j.canlet.2013.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 11/15/2022]
|
24
|
Mutant γPKC that causes spinocerebellar ataxia type 14 upregulates Hsp70, which protects cells from the mutant's cytotoxicity. Biochem Biophys Res Commun 2013; 440:25-30. [PMID: 24021284 DOI: 10.1016/j.bbrc.2013.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/02/2013] [Indexed: 11/24/2022]
Abstract
Several missense mutations in the protein kinase Cγ (γPKC) gene have been found to cause spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demonstrated that the mutant γPKC found in SCA14 is misfolded, susceptible to aggregation and cytotoxic. Molecular chaperones assist the refolding and degradation of misfolded proteins and prevention of the proteins' aggregation. In the present study, we found that the expression of mutant γPKC-GFP increased the levels of heat-shock protein 70 (Hsp70) in SH-SY5Y cells. To elucidate the role of this elevation, we investigated the effect of siRNA-mediated knockdown of Hsp70 on the aggregation and cytotoxicity of mutant γPKC. Knockdown of Hsp70 exacerbated the aggregation and cytotoxicity of mutant γPKC-GFP by inhibiting this mutant's degradation. These findings suggest that mutant γPKC increases the level of Hsp70, which protects cells from the mutant's cytotoxicity by enhancing its degradation.
Collapse
|
25
|
Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells. PLoS One 2013; 8:e54117. [PMID: 23335992 PMCID: PMC3546001 DOI: 10.1371/journal.pone.0054117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 12/06/2012] [Indexed: 11/19/2022] Open
Abstract
There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.
Collapse
|
26
|
Ke YM, Ou MC, Ho CK, Lin YS, Liu HY, Chang WA. Effects of somatothermal far-infrared ray on primary dysmenorrhea: a pilot study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:240314. [PMID: 23320024 PMCID: PMC3536333 DOI: 10.1155/2012/240314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to assess the beneficial effects of using a far-infrared (FIR) belt on the management of patients with primary dysmenorrhea. This is the first study to determine the efficacy of somatothermal FIR using a parallel-arm randomized sham-controlled and double-blinded design with objective physical evidence and psychometric self-reports. Fifty-one Taiwanese women with primary dysmenorrhea were enrolled in the study. Results indicate that there was an increased abdominal temperature of 0.6°C and a 3.27% increase in abdominal blood flow in the FIR group (wearing FIR belt) compared to those in the control group (wearing sham belt). Verbal rating scale and numeric rating scale scores in the FIR group were both lower than those in the control group. Compared to the blank group (wearing no belt), the average dysmenorrhea pain duration of the FIR group was significantly reduced from 2.5 to 1.8 days, but there was no significant difference in the control group. These results demonstrate that the use of a belt made of far-infrared ceramic materials can reduce primary dysmenorrhea.
Collapse
Affiliation(s)
- Yu-Min Ke
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Ming-Chiu Ou
- Department of Applied Cosmetology and Master Program of Cosmetic Science, Hungkuang University, Taichung 43302, Taiwan
| | - Cheng-Kun Ho
- Department of Applied Cosmetology and Master Program of Cosmetic Science, Hungkuang University, Taichung 43302, Taiwan
| | - Yung-Sheng Lin
- Department of Applied Cosmetology and Master Program of Cosmetic Science, Hungkuang University, Taichung 43302, Taiwan
| | - Ho-Yen Liu
- Department of Applied Cosmetology and Master Program of Cosmetic Science, Hungkuang University, Taichung 43302, Taiwan
| | - Wen-An Chang
- Department of Applied Cosmetology and Master Program of Cosmetic Science, Hungkuang University, Taichung 43302, Taiwan
| |
Collapse
|
27
|
Wang CY, Chuang ML, Chuang CC, Hsieh YS, Sun CW. The utility of far-infrared illumination in oxygenation dynamics as measured with near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2012; 5:719-723. [PMID: 22271704 DOI: 10.1002/jbio.201100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
Near-infrared spectroscopy (NIRS) is a noninvasive method for measuring the oxygenation in muscle and other tissues in vivo. For quantitative NIRS measurement of oxygenation dynamics, the vessel-occlusion test was usually applied as physiological intervention. There are several drawbacks of the vessel-occlusion method that include skin contact, uncomfortable and microcirculation block of patients. Thus, we propose the far-infrared (FIR) illumination as a new physiological intervention method in this paper. Our preliminary result shows a linear correlation of oxygenation dynamic signals between FIR illumination and arterial-occlusion test (AOT) that implies the FIR illumination could be applied for hemodynamic response measurement in clinical diagnosis.
Collapse
Affiliation(s)
- Chun-Yang Wang
- Biophotonics and Molecular Imaging Research Center and Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
28
|
Mfoumou E, Sivakumar N, Yasmeen A, Al Moustafa AE, Stiharu I. A new concept to measure cell proliferation using Fourier transform infrared spectroscopy. Med Hypotheses 2012; 79:171-3. [DOI: 10.1016/j.mehy.2012.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/14/2012] [Indexed: 10/28/2022]
|
29
|
Leung TK, Shang HF, Chen DC, Chen JY, Chang TM, Hsiao SY, Ho CK, Lin YS. EFFECTS OF FAR INFRARED RAYS ON HYDROGEN PEROXIDE-SCAVENGING CAPACITY. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237211002414] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Far infrared rays (FIRs) have several proven effects on the human body and are generally considered to be biologically beneficial. In this study, we determined the effect of FIRs on hydrogen peroxide (H2O2) -scavenging activity, which was directly increased by 10.26% after FIR application. Even in the indirect use of FIRs accompanying carrot extract, FIRs still contributed to a 5.48% increase in H2O2 -scavenging activity. We further proved that additional FIR treatment resulted in about 23.02% and 18.77% viability increases of osteoblast cells in the 200 and 800 μM H2O2 , respectively; and about 25.67% and 47.16% viability increases of fibroblast cells in the 25 and 50 μM H2O2 , respectively. Finally, FIR treatment also delayed senescence of detached Railway Beggarticks leaves in H2O2 solution with the concentrations of 10, 100, and 1000 μM. By reviewing past articles related to the effects of oxidative stress from metabolically produced H2O2 , we discuss possible benefits of FIRs for plants and animals.
Collapse
Affiliation(s)
- Ting-Kai Leung
- Department of Radiology, Faculty of Medicine, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Huey-Fang Shang
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Dai-Chian Chen
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Yu Chen
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Tsong-Min Chang
- Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Hungkuang University, Taichung, Taiwan
| | - Sheng-Yi Hsiao
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Cheng-Kun Ho
- Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Hungkuang University, Taichung, Taiwan
| | - Yung-Sheng Lin
- Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
30
|
Leung TK, Lin YS, Chen YC, Shang HF, Lee YH, Su CH, Liao HC, Chang TM. IMMUNOMODULATORY EFFECTS OF FAR-INFRARED RAY IRRADIATION VIA INCREASING CALMODULIN AND NITRIC OXIDE PRODUCTION IN RAW 264.7 MACROPHAGES. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237209001404] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Far-infrared ray (FIR) radiation has been shown to be beneficial to human health; however, little scientific evidence of its mechanisms has been provided. In the present study, we investigated the effect of nonthermal-enhanced FIR on the expression of calmodulin (Cam) protein and nitric oxide (NO) production by RAW 264.7 macrophages. Results indicated a significant increase in Cam protein in FIR-treated RAW 264.7 macrophages with or without the addition of lipopolysaccharide (LPS). In addition, the amount of NO was slightly higher but increased significantly in FIR plus LPS-treated RAW 264.7 macrophages. Data of the present study provide the first evidence to indicate the immunomodulatory properties of FIR through increasing Cam protein and NO production in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ting-Kai Leung
- Department of Radiology, School of Medicine, Taipei Medical University and Hospital, Taipei, Taiwan
- Breast Health Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Sheng Lin
- Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Hungkuang University, Taichung, Taiwan
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Huey-Fang Shang
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department of Physiology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hua Su
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huang-Chu Liao
- Department of Radiology, School of Medicine, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Tsong-Min Chang
- Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
31
|
Vatansever F, Hamblin MR. Far infrared radiation (FIR): its biological effects and medical applications. ACTA ACUST UNITED AC 2012; 4:255-266. [PMID: 23833705 DOI: 10.1515/plm-2012-0034] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Far infrared (FIR) radiation (λ = 3-100 μm) is a subdivision of the electromagnetic spectrum that has been investigated for biological effects. The goal of this review is to cover the use of a further sub-division (3- 12 μm) of this waveband, that has been observed in both in vitro and in vivo studies, to stimulate cells and tissue, and is considered a promising treatment modality for certain medical conditions. Technological advances have provided new techniques for delivering FIR radiation to the human body. Specialty lamps and saunas, delivering pure FIR radiation (eliminating completely the near and mid infrared bands), have became safe, effective, and widely used sources to generate therapeutic effects. Fibers impregnated with FIR emitting ceramic nanoparticles and woven into fabrics, are being used as garments and wraps to generate FIR radiation, and attain health benefits from its effects.
Collapse
Affiliation(s)
- Fatma Vatansever
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; and Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
32
|
Far infrared ray irradiation attenuates apoptosis and cell death of cultured keratinocytes stressed by dehydration. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 106:61-8. [DOI: 10.1016/j.jphotobiol.2011.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/05/2011] [Accepted: 10/11/2011] [Indexed: 01/21/2023]
|
33
|
Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ 2011; 18:1046-56. [PMID: 21233847 DOI: 10.1038/cdd.2010.177] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Stress protein mortalin is a multifunctional protein and is highly expressed in cancers. It has been shown to interact with tumor suppressor protein-p53 (both wild and mutant types) and inactivates its transcriptional activation and apoptotic functions in cancer cells. In the present study, we found that, unlike most of the cancer cells, HepG2 hepatoma lacked mortalin-p53 interaction. We demonstrate that the mortalin-p53 interaction exists in cancer cells that are either physiologically stressed (frequently associated with p53 mutations) or treated with stress-inducing chemicals. Targeting mortalin-p53 interaction with either mortalin small hairpin RNA or a chemical or peptide inhibitor could induce p53-mediated tumor cell-specific apoptosis in hepatocellular carcinoma; p53-null hepatoma or normal hepatocytes remain unaffected.
Collapse
|
34
|
Yang CS, Yeh CH, Tung CL, Chen MY, Jiang CH, Yeh ML. Impact of far-infrared ray exposure on the mechanical properties of unwounded skin of rats. Exp Biol Med (Maywood) 2010; 235:952-6. [PMID: 20660095 DOI: 10.1258/ebm.2010.009372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Far-infrared ray (FIR) has been applied to promote growth, modulate sleep, speed up the healing of wounds and accelerate microcirculation. The action of FIR on wounds has been well established in previous studies. However, whether the same action also works on normal skin is unclear. Therefore, the aim of this study was to evaluate the impact of FIR exposure on the tensile strength (TS) and composition of unwounded skin. In this study, 84 Sprague-Dawley (SD) rats were randomly divided into control and FIR groups. The dorsum samples were harvested for mechanical testing and histological observation at one, two, four and six weeks. The TS in the control group had no significant difference for all durations. However, a steep increase in the TS occurred between one and two weeks (P = 0.033) in the FIR group. The TS in the FIR group was found to be significantly higher than the TS in the control group at two weeks (P = 0.049). From histological observation, capillary dilation and increased inflammatory cells around the capillaries were observed at one week in FIR-treated groups. However, the mild inflammatory changes vanished after two weeks. In conclusion, our results showed that FIR may induce inflammatory changes and enhance skin TS in the short term, but the effect diminished with time.
Collapse
Affiliation(s)
- Cheng-San Yang
- Department of Plastic Surgery, Chia-Yi Christian Hospital, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Jia D, Liu J. Current devices for high-performance whole-body hyperthermia therapy. Expert Rev Med Devices 2010; 7:407-23. [PMID: 20420562 DOI: 10.1586/erd.10.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For late-stage cancer, whole-body hyperthermia (WBH) is highly regarded by physicians as a promising alternative to conventional therapies. Although WBH is still under scrutiny due to potential toxicity, its benefits are incomparable, as diversified devices and very promising treatment protocols in this area are advanced into Phase II and III clinical trials. Following the introduction of the WBH principle, this paper comprehensively reviews the state-of-art high-performance WBH devices based on the heat induction mechanisms - radiation, convection and conduction. Through analyzing each category's physical principle and heat-induction property, the advantages and disadvantages of the devices are evaluated. Technical strategies and critical scientific issues are summarized. For future developments, research directions worth pursuing are presented in this article.
Collapse
Affiliation(s)
- Dewei Jia
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China
| | | |
Collapse
|
36
|
Du XL, Jiang T, Wen ZQ, Gao R, Cui M, Wang F. Silencing of heat shock protein 70 expression enhances radiotherapy efficacy and inhibits cell invasion in endometrial cancer cell line. Croat Med J 2009; 50:143-50. [PMID: 19399947 DOI: 10.3325/cmj.2009.50.143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIM To investigate the role of heat shock proteins 70 (HSP70) in radiosensitivity and invasiveness of endometrial cancer in vitro. METHODS HSP70 expression was silenced in relatively radioresistant, well-differentiated human endometrial cancer cell line ISK, using small interference RNA method, or by HSP70 overexpression after transfecting a HSP70-expressing vector. The effect of HSP70 on ISK cell line response to irradiation was evaluated. The surviving fraction was measured using colony-formation assay. Apoptosis was detected by flow cytometry and HSP70 expression was determined by quantitative real-time polymerase chain reaction, western-blot, and/or immunocytochemistry. Cell invasiveness was measured using transwell invasion assay. RESULTS HSP70 silencing caused a significant increase in irradiation-induced cell killing in comparison with control cells, with an enhancement factor of 1.27, and in the percentage of apoptotic cells (14.22% vs 6.74%, P = 0.021). After 4 Gy irradiation, mean +/- standard deviation survival fraction in ISK cells was reduced to 0.32 +/- 0.04 in comparison with control values but in ISK/siRNA-HSP70 cells the survival fraction was higher and amounted to 0.51 +/- 0.08 (P = 0.026). Silencing HSP70 significantly inhibited cell invasion before and after irradiation (106 +/- 19 vs 219 +/- 18 and 119 +/- 16 vs 256 +/- 31, P = 0.007). On the contrary, ectopic overexpression of HSP70 attenuated irradiation-induced apoptosis (7.15% vs 4.08%, P = 0.043) and induced more ISK/HSP70 cells invaded through the filters than mock-infected cells before and after irradiation (274 +/- 21 vs 194 +/- 16 before irradiation, and 298 +/- 24 vs 227 +/- 19 after irradiation, respectively, P = 0.032). CONCLUSION Disruption of HSP70-induced cytoprotection during irradiation enhances therapeutic effect of irradiation, which makes HSP70 a promising target in the research of endometrial cancer.
Collapse
Affiliation(s)
- Xue-lian Du
- Department of Gynecologic Oncology, Shandong Tumor Hospital, Shandong University, No. 440, Jiyan Road, Jinan, China 250117.
| | | | | | | | | | | |
Collapse
|