1
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Ismail RA, Abd-Elmawla MA, Rizk NI, Fathi D, Abulsoud AI. Insights into the genetic and epigenetic mechanisms governing X-chromosome-linked-miRNAs expression in cancer; a step-toward ncRNA precision. Int J Biol Macromol 2025; 289:138773. [PMID: 39675615 DOI: 10.1016/j.ijbiomac.2024.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Sex chromosomes play a significant role in establishing sex-specific differences in gene expression, thereby contributing to phenotypic diversity and susceptibility to various diseases. MicroRNAs (miRNAs), which are small non-coding RNAs encoded by both the X and Y chromosomes, exhibit sex-specific regulatory characteristics. Computational analysis has identified several X-linked miRNAs differentially expressed in sex-specific cancers. This review aims to elucidate the genetic and epigenetic mechanisms that govern the sex-specific expression of X- and Y-linked miRNAs, with particular attention to their functional role in regulating diverse cellular processes in different cancer pathways. In addition, this review provides a comprehensive understanding of the targeted therapeutic interventions and critical insights into the potential clinical implications of targeting sex-specific miRNAs. In conclusion, this review opens new horizons for further research to effectively translate these findings into viable treatment options.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | | | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
2
|
Koopaie M, Arian-Kia S, Manifar S, Fatahzadeh M, Kolahdooz S, Davoudi M. Expression of Salivary miRNAs, Clinical, and Demographic Features in the Early Detection of Gastric Cancer: A Statistical and Machine Learning Analysis. J Gastrointest Cancer 2024; 56:15. [PMID: 39520622 DOI: 10.1007/s12029-024-01136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Gastric cancer ranks as one of the top five deadliest cancers worldwide and is often diagnosed at late stages. Analysis of saliva may provide a non-invasive approach for detection of malignancies in organs associated with the oral cavity. This research aims to analyze salivary microRNA expression together with clinical and demographic features with the aim of diagnosing gastric cancer. MATERIALS The study included 19 patients with early-stage gastric cancer and 19 healthy controls. Saliva samples were collected and processed for RNA isolation. Salivary expression of miR-223-3p and miR-21-5p were measured using quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curves were generated to evaluate the accuracy of diagnostic models. Machine learning algorithms, multiple logistic regression, and principal component analysis (PCA) were used to assess the predictive power of miRNAs in conjunction with clinical-demographic features. RESULTS Significant upregulation of miR-223-3p and downregulation of miR-21-5p in saliva were observed in patients with gastric cancer. The area under ROC curve (AUC) values for salivary miR-21-5p, salivary miR-223-3p, and their multiple logistic regression were determined to be 0.723, 0.791, and 0.850, respectively. The AUC for multiple logistic regression model was 0.919. The PCA model led to the highest diagnostic odds ratio (DOR) of 134.33 (sensitivity = 0.785, specificity = 1.00, AUC = 903). Application of machine learning methods, and in particular a random forest algorithm, showed high accuracy in diagnosing patients with gastric cancer (sensitivity = 1.00, specificity = 0.857, AUC = 0.93). CONCLUSION The application of validated salivary diagnostics in clinical practice could help facilitate earlier diagnosis of gastric cancer and improve medical outcome. Expression of miR-21 and miR-223-3p in saliva together with clinical and demographic features, appears promising in screening for GC.
Collapse
Affiliation(s)
- Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O.BOX:14395-433, Po. Code, Tehran, 14399-55991, Iran.
| | - Sasan Arian-Kia
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O.BOX:14395-433, Po. Code, Tehran, 14399-55991, Iran
| | - Soheila Manifar
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Fatahzadeh
- Division of Oral Medicine, Department of Oral Medicine, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, 07103, USA
| | - Sajad Kolahdooz
- Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Davoudi
- Department of Computer Science and Engineering and IT, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Minareci Y, Ak N, Sozen H, Tosun OA, Kucukgergin C, Aydin F, Bingul İ, Salihoglu MY, Topuz S. The evaluation of miR-1181 and miR-4314 as serum microRNA biomarkers for epithelial ovarian cancer diagnosis and prognosis. Mol Biol Rep 2024; 51:515. [PMID: 38622482 DOI: 10.1007/s11033-024-09464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
AIM Epithelial ovarian cancer (EOC) is the most ominous tumor of gynecological cancers due to its poor early detection rate and unfavorable prognosis. To date, there is no reliable screening method for the diagnosis of ovarian cancer at an early stage. MiRNAs are small non-coding RNA molecules, and their main function is to regulate gene expression. The present study compared the serum miR-1181 and miR-4314 levels in patients with EOC and healthy controls to measure the diagnostic and prognostic value as candidate biomarkers. MATERIALS AND METHODS We collected serum samples from a total of 135 participants (69 patients with EOC and 66 healthy controls). Relative expressions of miR-1181 and miR-4314 were measured by quantitative real-time polymerase chain reaction assay (qPCR). RESULTS The present study revealed that both serum miR-1181 and miR-4314 levels in patients with EOC were significantly increased compared to healthy controls for each marker. In addition, there was a significant relationship between miR-1181 and miR-4314 overexpressions and the stage and prognosis of the disease. Finally, patients with high expression levels of miR-1181 and miR-4314 had significantly shorter survival rates than those with low expression levels. CONCLUSION The current study proposed that serum miR-1181 and miR-4314 could discriminate the EOC patients from healthy controls. In addition, both miR-1181 and miR-4314 may be predictive biomarkers for ovarian cancer prognosis. Further studies are needed to confirm the findings of the present study.
Collapse
Affiliation(s)
- Yagmur Minareci
- Faculty of Medicine, Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Istanbul University, Istanbul, Turkey.
| | - Naziye Ak
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Hamdullah Sozen
- Faculty of Medicine, Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Istanbul University, Istanbul, Turkey
| | - Ozgur A Tosun
- Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Goztepe Research and Education Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Canan Kucukgergin
- Faculty of Medicine, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Fatih Aydin
- Faculty of Medicine, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - İlknur Bingul
- Faculty of Medicine, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - M Yavuz Salihoglu
- Faculty of Medicine, Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Istanbul University, Istanbul, Turkey
| | - Samet Topuz
- Faculty of Medicine, Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Moeinafshar A, Nouri M, Shokrollahi N, Masrour M, Behnam A, Tehrani Fateh S, Sadeghi H, Miryounesi M, Ghasemi MR. Non-coding RNAs as potential therapeutic targets for receptor tyrosine kinase signaling in solid tumors: current status and future directions. Cancer Cell Int 2024; 24:26. [PMID: 38200584 PMCID: PMC10782702 DOI: 10.1186/s12935-023-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Tehrani Fateh
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Xu Y, Wang G, Hu W, He S, Li D, Chen P, Zhang J, Gao Y, Yu D, Zong L. Clinical role of miR-421 as a novel biomarker in diagnosis of gastric cancer patients: A meta-analysis. Medicine (Baltimore) 2022; 101:e29242. [PMID: 35583533 PMCID: PMC9276225 DOI: 10.1097/md.0000000000029242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/17/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) has been identified as one of the most common malignancies. It was found that microRNAs can be used as potential biomarkers for GC diagnosis. The aim of this study was to estimate the diagnostic value of 4 potential microRNAs in GC. METHODS PubMed, Embase, Cochrane Library, and Web of Science were used to search published studies. The quality of the studies was scored with the Quality Assessment of Diagnostic Accuracy Studies. The pooled sensitivity and specificity, diagnostic odds ratio (DOR) and area under the curve (AUC) were calculated. The heterogeneity was evaluated using Cochrane Q statistics and the inconsistency index. RESULTS A total of 22 studies reporting the diagnostic value of miR-21 (n = 9), miR-106 (n = 10), miR-421 (n = 5) and miR-223 (n = 3) were included. Quality Assessment of Diagnostic Accuracy Studies scores showed the high quality of the selected 22 articles. The random effects model was adopted by evaluating the heterogeneity between articles. The DOR, AUC, and Q value of miRNA-21 were 12.37 (95% confidence interval [CI]: 5.36-28.54), 0.86 and 0.79, respectively. The DOR, AUC and Q value of miRNA-106 were 12.98 [95% CI: 7.14-23.61], 0.85 and 0.78, respectively. The DOR, AUC and Q value of miRNA-421 were 27.86 [95% CI: 6.04-128.48], 0.92 and 0.86, respectively. The DOR, AUC and Q value of miRNA-223 were 18.50 [95% CI: 7.80-43.86], 0.87 and 0.80, respectively. These results indicate that miRNA-421 has the highest diagnostic accuracy, followed by miR-223, miRNA-21, and miRNA-106 among the 4 microRNAs in GC. CONCLUSIONS miR-21, miR-106, miR-421, and miR-223 have good diagnostic efficacy, especially miR-421, could be used as auxiliary diagnostic indicator for GC.
Collapse
Affiliation(s)
- Yingying Xu
- Department of General Surgery, Yizheng People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Guiping Wang
- Department of Gastrointestinal Surgery, Clinical Medical School of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, PR China
- Clinical Medical College, Dalian Medical University, Liaoning, PR China
| | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi, PR China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Dandan Li
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi, PR China
| | - Ping Chen
- Department of Gastrointestinal Surgery, Clinical Medical School of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, PR China
| | - Jinjie Zhang
- Department of Gastrointestinal Surgery, The Affiliated Heji Hospital of Changzhi Medical college, Changzhi, Shanxi, PR China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou, PR China
| | - Liang Zong
- Department of General Surgery, Yizheng People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi, PR China
| |
Collapse
|
6
|
Mirzajani E, Vahidi S, Norollahi SE, Samadani AA. Novel biomarkers of microRNAs in gastric cancer; an overview from diagnosis to treatment. Microrna 2022; 11:12-24. [PMID: 35319404 DOI: 10.2174/2211536611666220322160242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
The fourth frequent disease in the world and the second cause of cancer-related death is gastric cancer (GC). In this way, over 80% of diagnoses are made in the middle to advanced degrees of the disease, underscoring the requirement for innovative biomarkers that can be identified quickly. Meaningly, biomarkers that can complement endoscopic diagnosis and be used to detect patients with a high risk of GC are desperately needed. These biomarkers will allow for the accurate prediction of therapy response and prognosis in GC patients, as well as the development of an optimal treatment strategy for each individual. Conspicoiusly, microRNAs (miRNAs) and small noncoding RNA regulates the expression of target mRNA and thereby modifies critical biological mechanisms. According to the data, abnormally miRNAs expression in GC is linked to tumor growth, carcinogenesis, aggression and distant metastasis. Importantly, miRNA expression patterns and next-generation sequencing (NGS) can also be applied to analyze kinds of tissues and cancers. Given the high death rates and poor prognosis of GC, and the absence of a clinical diagnostic factor that is adequately sensitive to GC, research into novel sensitive and specific markers for GC diagnosis is critical. In this review,we evaluate the latest research findings that suggest the feasibility and clinical utility of miRNAs in GC.
Collapse
Affiliation(s)
- Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
8
|
Zhou H, Sun C, Li C, Hua S, Li F, Li R, Cai D, Zou Y, Cai Y, Jiang X. The MicroRNA-106a/20b Strongly Enhances the Antitumour Immune Responses of Dendritic Cells Pulsed with Glioma Stem Cells by Targeting STAT3. J Immunol Res 2022; 2022:9721028. [PMID: 36157880 PMCID: PMC9499788 DOI: 10.1155/2022/9721028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND Evaluate the effect of the miRNA-106a/20b on the efficacy of DCs pulsed with GSCs in activating GSC-specific T cell responses. METHODS We cultured GSCs and prepared GSC antigen lysates by apoptosis. Then, immature DCs were pulsed with GSC antigen lysates in vitro. STAT3 levels in DCs were assessed by Western blotting, and the expression of CD80, CD86, and MHC-II was tested by fluorescence-activated cell sorting. The production and secretion of the cytokines IL-6, IL-12, TNF-α, and IL-10 in DCs induced by GSCs were determined by enzyme-linked immunosorbent assay. Finally, the cytotoxic functions of T cells stimulated by GSC-DC fusion cells transfected with a miR-106a/20b mimic in vitro and the antitumour activity in vivo were detected. RESULTS We found that the levels of miR-106a/20b were downregulated, but the expression of STAT3 was significantly upregulated. Simultaneously, the inhibition of STAT3 in the fusion cells by STAT3-specific siRNA caused significant upregulation of the expression of CD80, CD86, and MHC-II, and the secretion of the cytokines IL-6 and IL-12 was substantially increased, IL-10 was markedly decreased. These findings revealed that STAT3 is an important regulator of DC maturation. Furthermore, the interactional binding sites between the 3'-untranslated region (3'-UTR) of STAT3 mRNA and miR-106a/20b were predicted by bioinformatics and verified by a dual-luciferase assay. Moreover, the reduction in STAT3 levels in GSC-DCs enhanced the generation of CD8+ T cells and reduced the generation of Foxp3+ regulatory T cells. Meanwhile, the secretion of the T cell cytokine IFN-γ was significantly increased. Further research showed that DCs after miR-106a/20b-mimics transfection could promote the inhibition of GSC proliferation by T cells in vitro and suppress tumour growth in vivo. CONCLUSIONS This study indicted that the miR-106a/20b activation could be one of the important molecular mechanisms leading to enhance antitumour immune responses of GSC-mediated DCs, which downregulated the expression of STAT3 to alleviate its the inhibitory effect.
Collapse
Affiliation(s)
- Hui Zhou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Chengmei Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Cong Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Shiting Hua
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Feng Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Dongpeng Cai
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Yuxi Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Yingqian Cai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Xiaodan Jiang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Huang H, Xie L, Feng X, Zheng Z, Ouyang J, Li Y, Yu J. An integrated analysis of DNA promoter methylation, microRNA regulation, and gene expression in gastric adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1414. [PMID: 34733966 PMCID: PMC8506766 DOI: 10.21037/atm-21-3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
Background Gastric adenocarcinoma (GAC), a common type of gastric cancer, poses a significant public health threat worldwide. This study aimed to determine the transcriptional regulatory mechanisms of GAC. Methods HTSeq-FPKM raw data were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma data collection. Subsequently, the limma package in R was used to identify differentially expressed genes (DEGs). Differentially methylated genes (DMGs), DEGs, and differentially expressed microRNAs (miRNAs) in normal, and tumor tissues of the same patients were screened and compared using R software tools. A functional enrichment analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) for various DEGs, DMGs, promoter methylation, and miRNAs. DEG-specific methylation and transcription factors were analyzed using ENCODE ChIP-seq. Results DEGs were centrally modified by the histone trimethylation of lysine 27 on histone H3 (H3K27me3). Upstream transcription factors of DEGs were enriched in different ChIP-seq clusters, such as Forkhead Box M1, E2F Transcription Factor 4, and suppressor of zest 12. Integrated regulatory networks of DEGs, promoter methylation, and miRNAs were constructed. Two miRNAs (hsa-mir-1 and hsa-mir-133a) and four DEGs (A disintegrin and metalloproteinase domain 12, transcription factor AP-2 alpha, solute carrier family 5 member 7, and cadherin 19) separately played important roles in the integrated regulatory network. Therefore, these DEGs, DMGs, promoter methylation, and miRNAs may play an important role in GAC pathogenesis. Conclusions In summary, the present study results provide insights into the oncogenesis and progression of GAC, thus accelerating the development of novel targeted GAC therapies.
Collapse
Affiliation(s)
- Hongyun Huang
- Department of General Surgery of Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lang Xie
- Department of General Surgery of Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Feng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zheng Zheng
- Department of General Surgery of Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Juntao Ouyang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinlong Yu
- Department of General Surgery of Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Prediction of Blood miRNA-mRNA Regulatory Network in Gastric Cancer. Rep Biochem Mol Biol 2021; 10:243-256. [PMID: 34604414 DOI: 10.52547/rbmb.10.2.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 01/15/2023]
Abstract
Background The aim of the study was to suggest a high specific and sensitive blood biomarker for early GC diagnosis. Methods the expression data of miRNAs and mRNAs were collected from the blood samples of the GC patients based on literature mining. Bioinformatics tools and databases (PANTHER, TargetScan, miRTarBase, miRDB, STRING, and Cytoscape) were used to predict the regulatory relationship. Subsequently, expression level of the selected miRNA was evaluated in the blood samples of gastritis patients to recognize the common miRNA between the GC and gastritis patients. Results Analysis of 40 target genes by MCODE (installed in Cytoscape software) indicated 4 hub genes (WWP1, SKP2, KLHL42, and FBXO11) as a significant cluster in the PPI network related to miR-21, with Node Score Cutoff: 0.2, Degree Cutoff: 2 and K-Core: 2. In addition, the miRNA RT-qPCR results showed that, the expression level of miR-21 was significantly higher in gastritis group compared to the healthy group (p< 0.05). Conclusion the present study clearly demonstrated the increasing level of blood miR-21 among the gastritis patients infected by H. pylori. Therefore, the altered miRNAs, especially overexpression of onco-miRs, may identify a potential link between miRNAs and pathogenesis of the H. pylori-related complications.
Collapse
|
11
|
Abstract
Gastric cancer (GC) remains a leading cause of cancer morbidity and mortality worldwide. Outcomes from GC remain poor, especially in Western nations where cancer diagnosis is usually at advanced stages where curative resection is not possible. By contrast, nations of East Asia have adopted methods of population-level screening with improvements in stage of diagnosis and survival. In this review, the authors discuss the epidemiology of GC in Western populations, highlight at-risk populations who may benefit from screening, overview screening modalities, and discuss promising approaches to early GC detection.
Collapse
Affiliation(s)
- Robert J Huang
- Division of Gastroenterology and Hepatology, Stanford University, 300 Pasteur Drive, Alway Building M211, Stanford, CA 94305, USA.
| | - Joo Ha Hwang
- Division of Gastroenterology and Hepatology, Stanford University, 300 Pasteur Drive, Alway Building M211, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Bure IV, Nemtsova MV. Methylation and Noncoding RNAs in Gastric Cancer: Everything Is Connected. Int J Mol Sci 2021; 22:ijms22115683. [PMID: 34073603 PMCID: PMC8199097 DOI: 10.3390/ijms22115683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Despite recent progress, gastric cancer remains one of the most common cancers and has a high mortality rate worldwide. Aberrant DNA methylation pattern and deregulation of noncoding RNA expression appear in the early stages of gastric cancer. Numerous investigations have confirmed their significant role in gastric cancer tumorigenesis and their high potential as diagnostic and prognostic biomarkers. Currently, it is clear that these epigenetic regulators do not work alone but interact with each other, generating a complex network. The aim of our review was to summarize the current knowledge of this interaction in gastric cancer and estimate its clinical potential for the diagnosis, prognosis, and treatment of the disease.
Collapse
Affiliation(s)
- Irina V. Bure
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Correspondence: ; Tel.: +49-915-069-2721
| | - Marina V. Nemtsova
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
13
|
Jonaitis P, Kiudelis V, Streleckiene G, Gedgaudas R, Skieceviciene J, Kupcinskas J. Novel Biomarkers in the Diagnosis of Benign and Malignant Gastrointestinal Diseases. Dig Dis 2021; 40:1-13. [PMID: 33647906 DOI: 10.1159/000515522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Various noninvasive biomarkers have been used in the diagnosis, prognosis, and treatment of different gastrointestinal (GI) diseases for years. Novel technological developments and profound perception of molecular processes related to GI diseases over the last decade have allowed researchers to evaluate genetic, epigenetic, and many other potential molecular biomarkers in different diseases and clinical settings. Here, we present a review of recent and most relevant articles in order to summarize major findings on novel biomarkers in the diagnosis of benign and malignant GI diseases. SUMMARY Genetic variations, noncoding RNAs (ncRNAs), cell-free DNA (cfDNA), and microbiome-based biomarkers have been extensively analyzed as potential biomarkers in benign and malignant GI diseases. Multiple single-nucleotide polymorphisms have been linked with a number of GI diseases, and these observations are further being used to build up disease-specific genetic risk scores. Micro-RNAs and long ncRNAs have a large potential as noninvasive biomarkers in the management of inflammatory bowel diseases and GI tumors. Altered microbiome profiles were observed in multiple GI diseases, but most of the findings still lack translational clinical application. As of today, cfDNA appears to be the most potent biomarker for early detection and screening of GI cancers. Key Messages: Novel noninvasive molecular biomarkers show huge potential as useful tools in the diagnostics and management of different GI diseases. However, the use of these biomarkers in real-life clinical practice still remains limited, and further large studies are needed to elucidate the ultimate role of these potential noninvasive clinical tools.
Collapse
Affiliation(s)
- Paulius Jonaitis
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytautas Kiudelis
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Streleckiene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rolandas Gedgaudas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
14
|
Calanzani N, Druce PE, Snudden C, Milley KM, Boscott R, Behiyat D, Saji S, Martinez-Gutierrez J, Oberoi J, Funston G, Messenger M, Emery J, Walter FM. Identifying Novel Biomarkers Ready for Evaluation in Low-Prevalence Populations for the Early Detection of Upper Gastrointestinal Cancers: A Systematic Review. Adv Ther 2021; 38:793-834. [PMID: 33306189 PMCID: PMC7889689 DOI: 10.1007/s12325-020-01571-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Introduction Detecting upper gastrointestinal (GI) cancers in primary care is challenging, as cancer symptoms are common, often non-specific, and most patients presenting with these symptoms will not have cancer. Substantial investment has been made to develop biomarkers for cancer detection, but few have reached routine clinical practice. We aimed to identify novel biomarkers for upper GI cancers which have been sufficiently validated to be ready for evaluation in low-prevalence populations. Methods We systematically searched MEDLINE, Embase, Emcare, and Web of Science for studies published in English from January 2000 to October 2019 (PROSPERO registration CRD42020165005). Reference lists of included studies were assessed. Studies had to report on second measures of diagnostic performance (beyond discovery phase) for biomarkers (single or in panels) used to detect pancreatic, oesophageal, gastric, and biliary tract cancers. We included all designs and excluded studies with less than 50 cases/controls. Data were extracted on types of biomarkers, populations and outcomes. Heterogeneity prevented pooling of outcomes. Results We identified 149 eligible studies, involving 22,264 cancer cases and 49,474 controls. A total of 431 biomarkers were identified (183 microRNAs and other RNAs, 79 autoantibodies and other immunological markers, 119 other proteins, 36 metabolic markers, 6 circulating tumour DNA and 8 other). Over half (n = 231) were reported in pancreatic cancer studies. Only 35 biomarkers had been investigated in at least two studies, with reported outcomes for that individual marker for the same tumour type. Apolipoproteins (apoAII-AT and apoAII-ATQ), and pepsinogens (PGI and PGII) were the most promising biomarkers for pancreatic and gastric cancer, respectively. Conclusion Most novel biomarkers for the early detection of upper GI cancers are still at an early stage of matureness. Further evidence is needed on biomarker performance in low-prevalence populations, in addition to implementation and health economic studies, before extensive adoption into clinical practice can be recommended. Electronic Supplementary Material The online version of this article (10.1007/s12325-020-01571-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Calanzani
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Paige E Druce
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
| | - Claudia Snudden
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kristi M Milley
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
| | - Rachel Boscott
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dawnya Behiyat
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Smiji Saji
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Javiera Martinez-Gutierrez
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
- Department of Family Medicine, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jasmeen Oberoi
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
| | - Garth Funston
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mike Messenger
- Leeds Centre for Personalised Medicine and Health, University of Leeds, Leeds, UK
| | - Jon Emery
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
| | - Fiona M Walter
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Supplitt S, Karpinski P, Sasiadek M, Laczmanska I. Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine. Int J Mol Sci 2021; 22:1422. [PMID: 33572595 PMCID: PMC7866970 DOI: 10.3390/ijms22031422] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, transcriptome profiling emerged as one of the most powerful approaches in oncology, providing prognostic and predictive utility for cancer management. The development of novel technologies, such as revolutionary next-generation sequencing, enables the identification of cancer biomarkers, gene signatures, and their aberrant expression affecting oncogenesis, as well as the discovery of molecular targets for anticancer therapies. Transcriptomics contribute to a change in the holistic understanding of cancer, from histopathological and organic to molecular classifications, opening a more personalized perspective for tumor diagnostics and therapy. The further advancement on transcriptome profiling may allow standardization and cost reduction of its analysis, which will be the next step for transcriptomics to become a canon of contemporary cancer medicine.
Collapse
Affiliation(s)
- Stanislaw Supplitt
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
| | - Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Maria Sasiadek
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
| | - Izabela Laczmanska
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
| |
Collapse
|
16
|
Abdi E, Latifi-Navid S, Abdi F, Taherian-Esfahani Z. Emerging circulating MiRNAs and LncRNAs in upper gastrointestinal cancers. Expert Rev Mol Diagn 2020; 20:1121-1138. [DOI: 10.1080/14737159.2020.1842199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Fatemeh Abdi
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Zahra Taherian-Esfahani
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Sharma PC, Gupta A. MicroRNAs: potential biomarkers for diagnosis and prognosis of different cancers. Transl Cancer Res 2020; 9:5798-5818. [PMID: 35117940 PMCID: PMC8798648 DOI: 10.21037/tcr-20-1294] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
A thorough understanding of the tumor environment and underlying genetic factors helps in the better formulation of cancer management strategies. Availability of efficient diagnostic and prognostic biomarkers facilitates early detection and progression of the disease. MicroRNAs affect different biological processes participating in tumorigenesis through regulation of their target genes. An expanding list of unique RNAs and understanding of their regulatory role has opened up a new field in cancer research. Based on a comprehensive literature search, we identified 728 miRNAs dysregulated in sixteen cancer types namely bladder cancer (BC), breast cancer (BrC), cervical cancer (CC), colorectal cancer (CRC), esophageal cancer (EC), endometrial cancer (EnC), gastric cancer (GC), hepatocellular cancer (HCC), head and neck squamous cell cancer (HNSCC), lung cancer (LC), ovarian cancer (OC), pancreatic cancer (PC), prostate cancer (PrC), renal cell cancer (RCC), skin cancer (SC), and thyroid cancer (TC). Expression of 43 miRNAs was either upregulated or downregulated in six or more of these cancers. Finally, seven miRNAs namely mir-18a, mir-21, mir-143/145, mir-210, mir-218, mir-221, showing maximum dysregulation, either up- or down-regulation in the majority of cancers, were selected for a detailed presentation of their expression and evaluation of their potential as biomarkers in the diagnosis and prognosis of different cancers.
Collapse
Affiliation(s)
- Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Alisha Gupta
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
18
|
Chen L, Chen Y, Feng YL, Zhu Y, Wang LQ, Hu S, Cheng P. Tumor circulome in the liquid biopsies for digestive tract cancer diagnosis and prognosis. World J Clin Cases 2020; 8:2066-2080. [PMID: 32548136 PMCID: PMC7281040 DOI: 10.12998/wjcc.v8.i11.2066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023] Open
Abstract
Digestive tract cancer is one of the main diseases that endanger human health. At present, the early diagnosis of digestive tract tumors mainly depends on serology, imaging, endoscopy, and so on. Although tissue specimens are the gold standard for cancer diagnosis, with the rapid development of precision medicine in cancer, the demand for dynamic monitoring of tumor molecular characteristics has increased. Liquid biopsy involves the collection of body fluids via non-invasive approaches, and analyzes biological markers such as circulating tumor cells, circulating tumor DNA, circulating cell-free DNA, microRNAs, and exosomes. In recent years, liquid biopsy has become more and more important in the diagnosis and prognosis of cancer in clinical practice due to its convenience, non-invasiveness, high specificity and it overcomes temporal-spatial heterogeneity. Therefore, this review summarizes the current evidence on liquid biopsies in digestive tract cancers in relation to diagnosis and prognosis.
Collapse
Affiliation(s)
- Long Chen
- Department of Radiotherapy, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Yu Chen
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou 511400, Guangdong Province, China
| | - Yuan-Ling Feng
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yan Zhu
- Department of Respiratory, Shulan Hospital, Hangzhou 310004, Zhejiang Province, China
| | - Li-Quan Wang
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310052, Zhejiang Province, China
| |
Collapse
|
19
|
Ahadi A. Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression. IUBMB Life 2020; 72:884-898. [DOI: 10.1002/iub.2259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
20
|
Quirico L, Orso F. The power of microRNAs as diagnostic and prognostic biomarkers in liquid biopsies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:117-139. [PMID: 35582611 PMCID: PMC9090592 DOI: 10.20517/cdr.2019.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
In the last decades, progresses in medical oncology have ameliorated the treatment of patients and their outcome. However, further improvements are still necessary, in particular for certain types of tumors such as pancreatic, gastric, and lung cancer as well as acute myeloid leukemia where early detection and monitoring of the disease are crucial for final patient outcome. Liquid biopsy represents a great advance in the field because it is less invasive, less time-consuming, and safer compared to classical biopsies and it can be useful to monitor the evolution of the disease as well as the response of patients to therapy. Liquid biopsy allows the detection of circulating tumor cells, nucleic acids, and exosomes not only in blood but also in different biological fluids: urine, saliva, pleural effusions, cerebrospinal fluid, and stool. Among the potential biomarkers detectable in liquid biopsies, microRNAs (miRNAs) are gaining more and more attention, since they are easily detectable, quite stable in biological fluids, and show high sensitivity. Many data demonstrate that miRNAs alone or in combination with other biomarkers could improve the diagnostic and prognostic power for many different tumors. Despite this, standardization of methods, sample preparation, and analysis remain challenging and a huge effort should be made to address these issues before miRNA biomarkers can enter the clinic. This review summarizes the main findings in the field of circulating miRNAs in both solid and hematological tumors.
Collapse
Affiliation(s)
- Lorena Quirico
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino 10126, Italy
| | - Francesca Orso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino 10126, Italy
- Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino 10126, Italy
| |
Collapse
|
21
|
Bhat SA, Majid S, Rehman MU. Scenario and future prospects of microRNAs in gastric cancer: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:345-352. [PMID: 31168337 PMCID: PMC6535194 DOI: 10.22038/ijbms.2019.32399.7765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Carcinoma of the stomach is one of the major prevalent and principal causes of cancer-related deaths worldwide. Current advancement in technology has improved the understanding of the pathogenesis and pathology of gastric cancers (GC). But, high mortality rates, unfavorable prognosis and lack of clinical predictive biomarkers provide an impetus to investigate novel early diagnostic/prognostic markers and therapeutic targets for GC, which are sufficiently sensitive to GC. Current biomedical investigations have explored several budding GC biomarker by utilizing serum proteins, natural oncogenic genes during improvement in molecular technologies as microarray, and RNA/DNA-Seq. Recently, small non-coding microRNAs (miRNAs) are becoming vital regulators in oncogenesis pathways and can act as handy clinical biomarkers. The newly introduced class of biomarkers is rising as new molecules for cancer diagnosis and prognosis. For better understanding of the gastric carcinogenesis, miRNAs may help to elucidate the mechanisms of tumor growth and can help to discover novel untimely potent markers for early detection of GC. Here in this review, we summarize the recent research studies supporting the utility of miRNAs as novel early diagnostic/prognostic tools and therapeutic targets. Thus, here we introduce potential future treatment strategies for gastrointestinal (GI) cancers, which indicate the practicality and clinical applications of miRNAs in GC.
Collapse
Affiliation(s)
- Showkat Ahmad Bhat
- Department of Biochemistry, Govt. Medical College, Srinagar Jammu & Kashmir, India
| | - Sabhiya Majid
- Department of Biochemistry, Govt. Medical College, Srinagar Jammu & Kashmir, India
| | - Muneeb U Rehman
- Department of Biochemistry, Govt. Medical College, Srinagar Jammu & Kashmir, India
| |
Collapse
|
22
|
Wu X, Shen J, Xiao Z, Li J, Zhao Y, Zhao Q, Cho CH, Li M. An overview of the multifaceted roles of miRNAs in gastric cancer: Spotlight on novel biomarkers and therapeutic targets. Biochem Pharmacol 2019; 163:425-439. [PMID: 30857828 DOI: 10.1016/j.bcp.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that have displayed strong association with gastric cancer (GC). Through the repression of target mRNAs, miRNAs regulate many biological pathways that are involved in cell proliferation, apoptosis, migration, invasion, metastasis as well as drug resistance. The detection of miRNAs in tissues and in body fluids emerges as a promising method in the diagnosis and prognosis of GC, due to their unique expression pattern in correlation with GC. Notably, miRNAs are also identified as potential therapeutic targets for GC therapy. The present review is thus to highlight the multifaceted roles of miRNAs in GC and in GC therapies, which would give indications for future research.
Collapse
Affiliation(s)
- Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M.) Affiliated to Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
23
|
Diagnostic utility of epigenetics in breast cancer - A review. Cancer Treat Res Commun 2019; 19:100125. [PMID: 30802811 DOI: 10.1016/j.ctarc.2019.100125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 12/18/2022]
Abstract
Epigenetic alterations are clearly involved in cancer initiation and progression as recent epigenetic studies of genomic DNA, histone modifications and micro-RNA alterations suggest that these are playing an important role in the incidence of breast cancer. Epigenetic information has recently gained the attention of researchers because epigenetic modification of the genome in breast cancer is still an evolving area for researchers. Several active compounds present in foods, poisons, drugs, and industrial chemicals may as a result of epigenetic mechanisms increase or decrease the risk of breast cancer. Epigenetic regulation is critical in normal growth and development and closely conditions the transcriptional potential of genes. Epigenetic mechanisms convey genomic adaption to an environment thereby ultimately contributing towards given phenotype. In addition to the use of epigenetic alterations as a means of screening, epigenetic alterations in a tumor or adjacent tissues or peripheral blood may also help clinicians in determining prognosis and treatment of breast cancer. As we understand specific epigenetic alterations contributing to breast tumorigenesis and prognosis, these discoveries will lead to significant advances for breast cancer treatment, like in therapeutics that target methylation and histone modifications in breast cancer and the newer versions of the drugs are likely to play an important role in future clinical treatment.
Collapse
|
24
|
Azimzadeh-Isfanjani A, Safaralizadeh R, Hosseinpour-Feizi M, Shokouhi B, Nemati M, Moaddab SY. Expression of miR-520c in intestinal type gastric adenocarcinoma. J Gastrointest Oncol 2018; 9:1184-1189. [PMID: 30603140 DOI: 10.21037/jgo.2018.08.09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs are small non-coding RNAs that participate in post-transcriptional gene regulation in cells thereby playing active role in pathological conditions and have been nominated as new class of biomarkers in disease including cancer. miR-520c has been reported as potential oncogenic micro-RNA in several previous studies. Gastric cancer is the most common cancer of digestive tract and the fourth prevalent cancer worldwide with the intestinal-type gastric adenocarcinoma (IGA) the dominant type of gastric malignancies. This study aimed to explore miR-520c putative role, in IGA and patient's clinicopathological features. Methods Total RNA was first extracted from 42 pairs of IGA tissues and relevant non-tumorous adjacent tissues. cDNA was synthesized from extracted RNAs using specific primers for miR-520c. The level of miR-520c was quantified using SYBER Green Real-Time PCR master mix. The relationship between miR-520c expression and clinicopathological features were examined. Results Our study resulted in no differential expression of miR-520c in IGA. There was no significant correlation between miR-520c expression and clinicopathological features including tumor grade, genus and age groups. Conclusions To our knowledge, this is the first report about exploring miR-520c expression in IGA tissue samples. Our results do not verify miR-520c previously established oncogenic role in IGA.
Collapse
Affiliation(s)
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Behrouz Shokouhi
- Pathology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masuomeh Nemati
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Seyyed-Yaghoub Moaddab
- Liver and Gastroenterology Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Link A, Kupcinskas J. MicroRNAs as non-invasive diagnostic biomarkers for gastric cancer: Current insights and future perspectives. World J Gastroenterol 2018; 24:3313-3329. [PMID: 30122873 PMCID: PMC6092583 DOI: 10.3748/wjg.v24.i30.3313] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/10/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Non-invasive diagnostic biomarkers may contribute to an early identification of gastric cancer (GC) and improve the clinical management. Unfortunately, no sensitive and specific screening biomarkers are available yet and the currently available approaches are limited by the nature of the disease. GC is a heterogenic disease with various distinct genetic and epigenetic events that occur during the multifactorial cascade of carcinogenesis. MicroRNAs (miRNAs) are commonly deregulated in gastric mucosa during the Helicobacter pylori infection and in stepwise manner from chronic gastritis, through preneoplastic conditions such as atrophic gastritis and intestinal metaplasia, to early dysplasia and invasive cancer. Identification of miRNAs in blood in 2008 led to a great interest on miRNA-based diagnostic, prognostic biomarkers in GC. In this review, we provide the most recent systematic review on the existing studies related to miRNAs as diagnostic biomarkers for GC. Here, we systematically evaluate 75 studies related to differential expression of circulating miRNAs in GC patients and provide novel view on various heterogenic aspects of the existing data and summarize the methodological differences. Finally, we highlight several important aspects crucial to improve the future translational and clinical research in the field.
Collapse
Affiliation(s)
- Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Juozas Kupcinskas
- Institute for Digestive Research and Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas LT-44307, Lithuania
| |
Collapse
|
26
|
LArki P, Ahadi A, Zare A, Tarighi S, Zaheri M, Souri M, Zali MR, Ghaedi H, Omrani MD. Up-Regulation of miR-21, miR-25, miR-93, and miR-106b in Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2018. [PMID: 29859516 PMCID: PMC6305817 DOI: 10.29252/.22.6.367] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Differential expression profile of microRNAs (miRNAs) could be a diagnosis signature for monitoring gastric cancer (GC) progression. In this study, we focus on the comparison of expression levels of miR-21, miR-25, miR-93, miR-106b, and miR-375 during the sequential pattern of GC development, including normal gastric, gastric dysplasia, and GC sample. Methods: We used SYBR Green-based quantitative-PCR to quantify miRNAs expression. Results: Our analysis revealed the increased expression levels of miR-21 (p = 0.034), miR-25 (p = 0.0003), miR-93 (p = 0.0406), and miR-106b (p = 0.023) in GC samples. In addition, GC patients with positive lymph node metastasis showed the up-regulation of miR-25, miR-93, and miR-106b (p < 0.05). Conclusion: Our findings suggested that the expression of miR-21, miR-25, miR-93, and miR-106b altered in GC, and some of them may be further investigated as biomarkers for GC early detection and prognosis prediction.
Collapse
Affiliation(s)
- Pegah LArki
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahriar Tarighi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahrokh Zaheri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Souri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Peng Q, Shen Y, Lin K, Zou L, Shen Y, Zhu Y. Comprehensive and integrative analysis identifies microRNA-106 as a novel non-invasive biomarker for detection of gastric cancer. J Transl Med 2018; 16:127. [PMID: 29764446 PMCID: PMC5952699 DOI: 10.1186/s12967-018-1510-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/08/2018] [Indexed: 01/18/2023] Open
Abstract
Background Recently, accumulating evidences have revealed that microRNA-106 (miR-106) may serve as a non-invasive and cost-effective biomarker in gastric cancer (GC) detection. However, inconsistent results have prevented its application to clinical practice. Methods As a result of this, a comprehensive meta-analysis was conducted to evaluate the diagnostic performance of miR-106 alone and miR-106-related combination markers for GC detection. Meanwhile, an integrative bioinformatics analysis was performed to explore the function of miR-106 at the systems biology level. Results The results in our work showed that sensitivity of 0.71 (95% CI 0.65–0.76) and specificity of 0.82 (0.72–0.88), with the under area AUC (area under the curve) value of 0.80 (0.76–0.83) for miR-106 alone. Prospectively, miR-106-related combination markers improved the combined sensitivity, specificity and AUC, describing the discriminatory ability of 0.78 (0.65–0.87), 0.83 (0.77–0.89) and 0.88 (0.85–0.90) in the present analysis. Furthermore, targets of miR-106 were obtained and enriched by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, revealing their associations with the occurrence and development of GC. Hub genes and significant modules were identified from the protein–protein interaction networks constructed by miR-106 targets and found closely associated with the initiation and progression of GC again. Conclusions Our comprehensive and integrative analysis revealed that miR-106 may be suitable as a diagnostic biomarker for GC while microRNA combination biomarkers may provide a new alternative for clinical application. However, it is necessary to conduct large-scale population-based studies and biological experiments to further investigate the diagnostic value of miR-106.
Collapse
Affiliation(s)
- Qiliang Peng
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Yi Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kaisu Lin
- Department of Oncology, Nantong Rich Hospital, Nantong, China
| | - Li Zou
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Yuntian Shen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China. .,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China. .,Suzhou Key Laboratory for Radiation Oncology, Suzhou, China.
| |
Collapse
|
28
|
Lin LY, Yang L, Zeng Q, Wang L, Chen ML, Zhao ZH, Ye GD, Luo QC, Lv PY, Guo QW, Li BA, Cai JC, Cai WY. Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol Cancer 2018; 17:84. [PMID: 29690888 PMCID: PMC5978993 DOI: 10.1186/s12943-018-0834-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
Conventional tumor markers for non-invasive diagnosis of gastric cancer (GC) exhibit insufficient sensitivity and specificity to facilitate detection of early gastric cancer (EGC). We aimed to identify EGC-specific exosomal lncRNA biomarkers that are highly sensitive and stable for the non-invasive diagnosis of EGC. Hence, in the present study, exosomes from the plasma of five healthy individuals and ten stage I GC patients and from culture media of four human primary stomach epithelial cells and four gastric cancer cells (GCCs) were isolated. Exosomal RNA profiling was performed using RNA sequencing to identify EGC-specific exosomal lncRNAs. A total of 79 and 285 exosomal RNAs were expressed at significantly higher levels in stage I GC patients and GCCs, respectively, than that in normal controls. Through combinational analysis of the RNA sequencing results, we found two EGC-specific exosomal lncRNAs, lncUEGC1 and lncUEGC2, which were further confirmed to be remarkably up-regulated in exosomes derived from EGC patients and GCCs. Furthermore, stability testing demonstrates that almost all the plasma lncUEGC1 was encapsulated within exosomes and thus protected from RNase degradation. The diagnostic accuracy of exosomal lncUEGC1 was evaluated, and lncUEGC1 exhibited AUC values of 0.8760 and 0.8406 in discriminating EGC patients from healthy individuals and those with premalignant chronic atrophic gastritis, respectively, which was higher than the diagnostic accuracy of carcinoembryonic antigen. Consequently, exosomal lncUEGC1 may be promising in the development of highly sensitive, stable, and non-invasive biomarkers for EGC diagnosis.
Collapse
Affiliation(s)
- Ling-Yun Lin
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Li Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qiang Zeng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Lin Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Mao-Li Chen
- Xiamen LifeInt Technology Co., Ltd, Xiamen, Fujian, China
| | - Ze-Hang Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo-Dong Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi-Cong Luo
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Pei-Yu Lv
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qi-Wei Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bo-An Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Jian-Chun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China. .,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China.
| | - Wang-Yu Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China. .,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
29
|
Zhou X, Wen W, Shan X, Zhu W, Xu J, Guo R, Cheng W, Wang F, Qi LW, Chen Y, Huang Z, Wang T, Zhu D, Liu P, Shu Y. A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget 2018; 8:6513-6525. [PMID: 28036284 PMCID: PMC5351649 DOI: 10.18632/oncotarget.14311] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Differently expressed microRNAs (miRNAs) in the plasma of lung adenocarcinoma (LA) patients might serve as biomarkers for LA detection. MiRNA expression profiling was performed using Exiqon panels followed by the verification (30 LA VS. 10 healthy controls (HCs)) with quantitative reverse transcription polymerase chain reaction (qRT-PCR) in the screening phase. Identified miRNAs were confirmed through training (42 LA VS. 32 HCs) and testing stages (66 LA VS. 62 HCs) by using qRT-PCR based absolute quantification methods. A total of six up-regulated plasma miRNAs (miR-19b-3p, miR-21-5p, miR-221-3p, miR-409-3p, miR-425-5p and miR-584-5p) were identified. The six-miRNA panel could discriminate LA patients from HCs with areas under the receiver operating characteristic curve of 0.72, 0.74 and 0.84 for the training, testing and the external validation stage (33 LA VS. 30 HCs), respectively. All the miRNAs identified except miR-584-5p were significantly up-regulated in LA tissues. MiR-19-3p, miR-21-5p, miR-409-3p and miR-425-5p showed high expression in arterial plasma with borderline significance. Additionally, miR-19-3p, miR-21-5p and miR-221-3p were significantly up-regulated in exosomes extracted from LA peripheral plasma samples. In conclusion, we identified a six-miRNA panel in peripheral plasma which might give assistance to the detection of LA at least for Asian population to a certain extent.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wei Wen
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Xia Shan
- Department of Respiration, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210000, PR China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jing Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Renhua Guo
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wenfang Cheng
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Fang Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University,Nanjing 210029, PR China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines and Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Chen
- Department of Emergency, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Zebo Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ping Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.,Cancer Center of Nanjing Medical University, Nanjing 210029, China
| | - Yongqian Shu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.,Cancer Center of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
30
|
Carè A, Bellenghi M, Matarrese P, Gabriele L, Salvioli S, Malorni W. Sex disparity in cancer: roles of microRNAs and related functional players. Cell Death Differ 2018; 25:477-485. [PMID: 29352271 PMCID: PMC5864217 DOI: 10.1038/s41418-017-0051-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 01/08/2023] Open
Abstract
A sexual dimorphism at the cellular level has been suggested to play a role in cancer onset and progression. In particular, very recent studies have unraveled striking differences between cells carrying XX or XY chromosomes in terms of response to stressful stimuli, indicating the presence of genetic and epigenetic differences determining sex-specific metabolic or phenotypic traits. Although this field of investigation is still in its infancy, available data suggest a key role of sexual chromosomes in determining cell life or death. In particular, cells carrying XX chromosomes exhibit a higher adaptive potential and survival behavior in response to microenvironmental variations with respect to XY cells. Cells from females also appear to be equipped with more efficient epigenetic machinery than the male counterpart. In particular, the X chromosome contains an unexpected high number of microRNAs (miRs), at present 118, in comparison with only two miRs localized on chromosome Y, and an average of 40-50 on the autosomes. The regulatory power of these small non-coding RNAs is well recognized, as 30-50% of all protein-coding genes are targeted by miRs and their role in cell fate has been well demonstrated. In addition, several further insights, including DNA methylation patterns that are different in males and females, claim for a significant gender disparity in cancer and in the immune system activity against tumors. In this brief paper, we analyze the state of the art of our knowledge on the implication of miRs encoded on sex chromosomes, and their related functional paths, in the regulation of cell homeostasis and depict possible perspectives for the epigenetic research in the field.
Collapse
Affiliation(s)
- Alessandra Carè
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Maria Bellenghi
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Paola Matarrese
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Lucia Gabriele
- Immunotherapy Unit, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Walter Malorni
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy.
| |
Collapse
|
31
|
Lu Q, Yu T, Ou X, Cao D, Xie T, Chen X. Potential lncRNA diagnostic biomarkers for early gastric cancer. Mol Med Rep 2017; 16:9545-9552. [PMID: 29039538 DOI: 10.3892/mmr.2017.7770] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/19/2017] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) serve important functions in many crucial biological processes; however, the effects of lncRNAs in early gastric cancer (EGC) are not entirely clear. The present study aimed to demonstrate the potential of lncRNAs to be used as biomarkers in EGC. Reverse transcription‑quantitative polymerase chain reaction was used to measure the expression levels of lncRNAs, including X inactive‑specific transcript (XIST), Yiya, brain cytoplasmic RNA 1 (BCYRN1), ribosomal RNA processing 1B (RRP1B), KCNQ1 opposite transcript 1 (KCNQ1OT1) and testes development related 1 (TDRG1), in EGC tissues compared with normal adjacent tissues (NATs). XIST, BCYRN1, RRP1B and TDRG1 were identified as differentially expressed in EGC tissues compared with NATs. The specificity and sensitivity of XIST, BCYRN1, RRP1B and TDRG1 were determined by receiver operating characteristic curve analysis. In addition, RRP1B expression was revealed to be significantly correlated with distal metastasis (P=0.020) and tumor‑node‑metastasis staging (P=0.018), and TDRG1 expression was significantly correlated with lymph node metastasis (P=0.001). Furthermore, BCYRN1, RRP1B and TDRG1 expression levels were compared between EGC tissues and plasma, and the results indicated that there were significant positive correlations of XIST, BCYRN1, RRP1B and TDRG1 expression levels between the EGC tissues and plasma. Therefore, the present study suggested that XIST, BCYRN1, RRP1B and TDRG1 may be served as potential diagnostic biomarkers for EGC.
Collapse
Affiliation(s)
- Qin Lu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ting Yu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xilong Ou
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dazhong Cao
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ting Xie
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xia Chen
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
32
|
Mozzoni P, Ampollini L, Goldoni M, Alinovi R, Tiseo M, Gnetti L, Carbognani P, Rusca M, Mutti A, Percesepe A, Corradi M. MicroRNA Expression in Malignant Pleural Mesothelioma and Asbestosis: A Pilot Study. DISEASE MARKERS 2017; 2017:9645940. [PMID: 28757678 PMCID: PMC5512053 DOI: 10.1155/2017/9645940] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/21/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The identification of diagnostic/prognostic biomarkers for asbestos-related diseases is relevant for early diagnosis and patient survival and may contribute to understanding the molecular mechanisms underlying the disease development and progression. AIMS To identify a pattern of miRNAs as possible diagnostic biomarkers for patients with malignant pleural mesothelioma (MPM) and asbestosis (ASB) and as prognostic biomarkers for MPM patients. METHODS miRNA-16, miRNA-17, miRNA-126, and miRNA-486 were quantified in plasma and formalin-fixed paraffin-embedded samples to evaluate their diagnostic and prognostic roles compared to patients with other noncancerous pulmonary diseases (controls). Results. The expression of all the miRNAs was significantly lower in patients with MPM and ASB than that in controls. miRNA-16, miRNA-17, and miRNA-486 in plasma and tissue of MPM patients were significantly correlated. Furthermore, the expression of miRNA-16 in plasma and tissue, and miRNA-486 only in tissue, was positively related with cumulative survival in MPM patients. CONCLUSIONS All the miRNA levels were decreased in patients with MPM or ASB, supporting the role of circulating miRNAs as a potential tool for diseases associated with exposure to asbestos fibers. miRNA-16 was directly related to MPM patient prognosis, suggesting its possible use as a prognostic marker in MPM patients.
Collapse
Affiliation(s)
- Paola Mozzoni
- Molecular Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Ampollini
- Thoracic Surgery, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Letizia Gnetti
- Pathological Anatomy and Histology, University Hospital of Parma, Parma, Italy
| | - Paolo Carbognani
- Thoracic Surgery, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michele Rusca
- Thoracic Surgery, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Mutti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Percesepe
- Molecular Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
33
|
Ding X, Liu J, Liu T, Ma Z, Wen D, Zhu J. miR-148b inhibits glycolysis in gastric cancer through targeting SLC2A1. Cancer Med 2017; 6:1301-1310. [PMID: 28440026 PMCID: PMC5463086 DOI: 10.1002/cam4.1008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/03/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Although the molecular biology of GC has been well characterized, early diagnostic biomarkers and effective therapeutic options in gastric cancer are still under investigation. Here, we found that miR-148b expression decreased in human gastric cancer tissues compared with matched adjacent nontumor tissues by q-PCR analysis and in situ hybridization. Further investigation revealed that overexpression of miR-148b limited glycolysis including glucose consumption, lactate production in gastric cancer cell lines BGC-823 and MKN45. Bioinformatics prediction uncovered that a dedicated transporters solute carrier family 2 member 1 (SLC2A1), also called GLUT1, was the direct target of miR-148b. The target effects were further confirmed by luciferase assay and western blot analysis. Besides, a reverse correlation was observed between relative SLC2A1 and miR-148b expression in human GC tissues compared with matched adjacent nontumor tissues. Subsequently, SLC2A1 suppression by SLC2A1 siRNA or specific inhibitor restricted the reduced effects of glycolysis mediated by miR-148b while SLC2A1 overexpression abrogated the effect of miR-148b on glycolysis. Our findings provided new evidence of miR-148b in GC development through restraining glycolysis, highlighting the role of miR-148b as a new target for GC treatment.
Collapse
Affiliation(s)
- Xiangfu Ding
- Department of Thyroid SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| | - Jingjing Liu
- Department of Gastrointestinal SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| | - Tianzhou Liu
- Department of Gastrointestinal SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| | - Zhiming Ma
- Department of Gastrointestinal SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| | - Dacheng Wen
- Department of Gastrointestinal SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| | - Jiaming Zhu
- Department of Gastrointestinal SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| |
Collapse
|
34
|
The significance of elevated plasma expression of microRNA 106b~25 clusters in gastric cancer. PLoS One 2017; 12:e0178427. [PMID: 28562634 PMCID: PMC5451054 DOI: 10.1371/journal.pone.0178427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/12/2017] [Indexed: 01/03/2023] Open
Abstract
Objective Concentrating on oncogenic role and increased plasma expression of microRNA(miR) 106b~25 clusters (involving miR 106b, miR 93 and miR 25), we evaluated significance of the over-expression of plasma miR 106b~25 in GC. Methods Based on 65 pairs matched GC patients and health controls, we explored clinical significance of miR 106b~25 for GC and compared their diagnostic performance with conventional tumor biomarkers including CA724, CA242, CA199 and CEA. Results Both miR 106b~25 cluster and conventional tumor biomarkers were significantly elevated in GC (All P<0.05). In ROC curves, miR 106b had the highest AUC (0.898) in diagnosing GC with optimal sensitivity of 86.2% and specificity of 92.3% at the cut-off value of 1.385. MiR 25 had moderate diagnostic efficacy (AUC = 0.817) with sensitivity of 87.6% and specificity of 76.9% at the threshold of 1.015. The AUC of miR 93 (0.756) was the lowest. The AUC, sensitivity, accuracy and Youden index of miR 106b were higher than all of four conventional biomarkers, while its specificity is higher than CA242 and CA724. The AUC of miR 25 was also higher than CA724, CA242 and CA199, while AUC of miR 93 was only higher than CA199 and CA724. Compared the diagnostic efficacy via ROC curves, miR 106b was significantly higher diagnostic efficacy than CA724, CA242 and CA199, the diagnostic efficacies of miR 93 and miR 25 were significantly higher than CA199(all P<0.05). Conclusions Plasma miR 106b~25 cluster, especially miR 106b, were significantly increased in GC patients and may be hopeful diagnostic biomarkers.
Collapse
|
35
|
Evaluation of Plasma MicroRNAs as Diagnostic and Prognostic Biomarkers in Pancreatic Adenocarcinoma: miR-196a and miR-210 Could Be Negative and Positive Prognostic Markers, Respectively. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6495867. [PMID: 28466015 PMCID: PMC5390608 DOI: 10.1155/2017/6495867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Background. Identifying diagnostic and prognostic biomarkers that could be targeted in the therapy of pancreatic cancer is essential. Objective. Investigations were conducted with respect to plasma miRNA (miR-21, miR-210, miR-155, miR-196a, miR-20a, and miR-25) expression and clinicopathologic factors to evaluate the prognostic value of miRNAs in pancreatic ductal adenocarcinoma (PDAC). Methods. Plasma miRNAs were detected by real-time quantitative PCR, and the association with clinicopathologic factors was subsequently performed by univariate and multivariate analyses. Results. Six miRNAs expressed significantly higher in PDAC patients than in normal individuals were identified. Receiver operating characteristic (ROC) curves were constructed. It was evident that miRNA expression associated with PDAC, lymph node metastasis, serosal infiltration, and comprehensive therapy reached significance for overall survival. High miR-196a expression was associated with poor survival (P = 0.001), whereas high miR-210 expression was significantly associated with improved survival (P = 0.003). Multivariate survival analysis indicated that the miR-210 and miR-196a expression signature, lymph node metastasis, and comprehensive therapy were independent factors affecting overall survival. Conclusions. MiRNA expression profile is distinctive in PDAC. Aberrant expression of certain miRNAs was remarkably involved in shaping the overall survival time, which include miR-196a overexpression and decreased miR-210 expression.
Collapse
|
36
|
Luo Z, Li X, Zhao Z, Yang X, Xiao S, Zhou Y. MicroRNA-146a affects the chemotherapeutic sensitivity and prognosis of advanced gastric cancer through the regulation of LIN52. Oncol Lett 2016; 13:1386-1392. [PMID: 28454266 PMCID: PMC5403335 DOI: 10.3892/ol.2016.5536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to evaluate the correlation between the expression of microRNA-146a (miR-146a) and its target gene, LIN52, in advanced gastric cancer, and determine their potential effects on chemotherapeutic sensitivity and prognosis. Total RNA was extracted from 93 tissue samples of advanced gastric cancer and corresponding adjacent non-tumor tissues to quantify the relative expression levels of miR-146a using reverse transcription-quantitative polymerase chain reaction analysis. The expression of LIN52 was detected in tumors and normal tissues using immunohistochemical analysis. Correlation analysis was performed to assess the correlation between the expression of miR-146a and LIN52 and clinicopathological parameters of gastric cancer, including clinical diagnostic specificity, clinical tumor-necrosis-metastasis staging, lymph node metastasis, differentiation grade, chemotherapeutic sensitivity and prognosis. The expression of miR-146a in advanced gastric cancer tissues was lower, compared with that in the adjacent non-tumor tissues, and was negatively correlated with lymph node metastasis (P<0.05). Gastric cancer tissues with a low expression level of miR146a exhibited an increased expression level of LIN52 (P<0.05). Receiver operating characteristic curve regression analysis showed that miR-146a had 98% sensitivity in distinguishing gastric cancer tissues and adjacent non-tumor tissues. A high expression of miR-146a in gastric cancer was associated with improved treatment efficacy in patients. The chemotherapeutic sensitivity of patients with tumors expressing high levels of miR-146a was significantly higher, compared with that of patients with tumors expressing low levels of miR-146a (P<0.05). The expression of miR-146a was low in advanced gastric cancer tissues. As a tumor suppressor gene in advanced gastric cancer, miR-146a had a significant negative correlation with LIN52. High expression levels of miR-146a in advanced gastric cancer tissue may be associated with improved treatment efficacy of chemotherapy, suggesting that miR-146a may be a molecular marker for the diagnosis, prediction of treatment efficacy and prognosis of advanced gastric cancer.
Collapse
Affiliation(s)
- Zhifen Luo
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, P.R. China
| | - Xiqing Li
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, P.R. China
| | - Zunlan Zhao
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, P.R. China
| | - Xinglong Yang
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shengjun Xiao
- Department of Pathology, Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Yun Zhou
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, P.R. China
| |
Collapse
|
37
|
da Silva Oliveira KC, Thomaz Araújo TM, Albuquerque CI, Barata GA, Gigek CO, Leal MF, Wisnieski F, Rodrigues Mello Junior FA, Khayat AS, de Assumpção PP, Rodriguez Burbano RM, Smith MC, Calcagno DQ. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroenterol 2016; 22:7951-7962. [PMID: 27672290 PMCID: PMC5028809 DOI: 10.3748/wjg.v22.i35.7951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/14/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Alterations in epigenetic control of gene expression play an important role in many diseases, including gastric cancer. Many studies have identified a large number of upregulated oncogenic miRNAs and downregulated tumour-suppressor miRNAs in this type of cancer. In this review, we provide an overview of the role of miRNAs, pointing to their potential to be useful as diagnostic and/or prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity.
Collapse
|
38
|
Ibarrola-Villava M, Llorca-Cardeñosa MJ, Tarazona N, Mongort C, Fleitas T, Perez-Fidalgo JA, Roselló S, Navarro S, Ribas G, Cervantes A. Deregulation of ARID1A, CDH1, cMET and PIK3CA and target-related microRNA expression in gastric cancer. Oncotarget 2016; 6:26935-45. [PMID: 26334097 PMCID: PMC4694964 DOI: 10.18632/oncotarget.4775] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/17/2015] [Indexed: 12/16/2022] Open
Abstract
Genetic and epigenetic alterations play an important role in gastric cancer (GC) pathogenesis. Aberrations of the phosphatidylinositol-3-kinase signaling pathway are well described. However, emerging genes have been described such as, the chromatin remodeling gene ARID1A. Our aim was to determine the expression levels of four GC-related genes, ARID1A, CDH1, cMET and PIK3CA, and 14 target-related microRNAs (miRNAs). We compared mRNA and miRNA expression levels among 66 gastric tumor and normal adjacent mucosa samples using quantitative real-time reverse transcription PCR. Moreover, ARID1A, cMET and PIK3CA protein levels were assessed by immunohistochemistry (IHC). Finally, gene and miRNAs associations with clinical characteristics and outcome were also evaluated. An increased cMET and PIK3CA mRNA expression was found in 78.0% (P = 2.20 × 10−5) and 73.8% (P = 1.00 × 10−3) of the tumors, respectively. Moreover, IHC revealed that cMET and PIK3CA expression was positive in 63.6% and 87.8% of the tumors, respectively. Six miRNAs had significantly different expression between paired-samples, finding five up-regulated [miR-223-3p (P = 1.65 × 10−6), miR-19a-3p (P = 1.23 × 10−4), miR-128-3p (P = 3.49 × 10−4), miR-130b-3p (P = 1.00 × 10−3) and miR-34a-5p (P = 4.00 × 10−3)] and one down-regulated [miR-124-3p (P = 0.03)]. Our data suggest that cMET, PIK3CA and target-related miRNAs play an important role in GC and may serve as potential targets for therapy.
Collapse
Affiliation(s)
- Maider Ibarrola-Villava
- Hematology and Medical Oncology Unit, Biomedical Research Institute INCLIVA, University of Valencia, 46010, Valencia, Spain
| | - Marta J Llorca-Cardeñosa
- Hematology and Medical Oncology Unit, Biomedical Research Institute INCLIVA, University of Valencia, 46010, Valencia, Spain
| | - Noelia Tarazona
- Hematology and Medical Oncology Unit, Biomedical Research Institute INCLIVA, University of Valencia, 46010, Valencia, Spain
| | - Cristina Mongort
- Department of Pathology, Biomedical Research Institute INCLIVA, University of Valencia, 46010, Valencia, Spain
| | - Tania Fleitas
- Hematology and Medical Oncology Unit, Biomedical Research Institute INCLIVA, University of Valencia, 46010, Valencia, Spain
| | - José Alejandro Perez-Fidalgo
- Hematology and Medical Oncology Unit, Biomedical Research Institute INCLIVA, University of Valencia, 46010, Valencia, Spain
| | - Susana Roselló
- Hematology and Medical Oncology Unit, Biomedical Research Institute INCLIVA, University of Valencia, 46010, Valencia, Spain
| | - Samuel Navarro
- Department of Pathology, Biomedical Research Institute INCLIVA, University of Valencia, 46010, Valencia, Spain
| | - Gloria Ribas
- Hematology and Medical Oncology Unit, Biomedical Research Institute INCLIVA, University of Valencia, 46010, Valencia, Spain
| | - Andrés Cervantes
- Hematology and Medical Oncology Unit, Biomedical Research Institute INCLIVA, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
39
|
Li N, Liu Y, Miao Y, Zhao L, Zhou H, Jia L. MicroRNA-106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer. IUBMB Life 2016; 68:764-75. [PMID: 27519168 DOI: 10.1002/iub.1541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/16/2016] [Indexed: 12/29/2022]
Abstract
It is demonstrated that the maladjustment of microRNA (miRNA) plays significant roles in the occurrence and development of tumors. MicroRNA-106b-5p (miR-106b), a carcinogenic miRNA, is identified as a dysregulated miRNA in human breast cancer. In this article, the expression levels of miR-106b were discovered to be particularly higher in breast cancer tissues than that in the corresponding adjacent tissues. Accordingly, miR-106b was higher expressed in the breast cancer cell lines compared with that in the normal breast cell lines. Moreover, according to the data previously reported, increased expression of miR-106b was significantly associated with advanced clinical stages and poor prognosis in breast cancer. Fucosyltransferase 6 (FUT6), a member of the fucosyltransferase (FUT) family, was found to have a reduced expression in tissues or cells with higher level of miR-106b in breast cancer. Additionally, down-regulation of miR-106b increased the expression of FUT6 and resulted in an obvious decrease of cell migration, invasion, and proliferation in MDA-MB-231 cells. Furthermore, over-expressed FUT6 reversed the impacts of up-regulated miR-106b on cell migration, invasion, and proliferation in MCF-7 cells, indicating that FUT6 might be directly targeted by miR-106b and serve as therapeutic targets for breast cancer. In brief, our results strongly showed that the low expression of FUT6 regulated by miR-106b contributed to cell migration, invasion, and proliferation in human breast cancer. © 2016 IUBMB Life, 68(9):764-775, 2016.
Collapse
Affiliation(s)
- Nana Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Yuejian Liu
- Department of Central Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
| | - Yuan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| |
Collapse
|
40
|
Xie M, Dart DA, Owen S, Wen X, Ji J, Jiang W. Insights into roles of the miR-1, -133 and -206 family in gastric cancer (Review). Oncol Rep 2016; 36:1191-8. [PMID: 27349337 DOI: 10.3892/or.2016.4908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) remains the third most common cause of cancer deaths worldwide and carries a high rate of metastatic risk contributing to the main cause of treatment failure. An accumulation of data has resulted in a better understanding of the molecular network of GC, however, gaps still exist between the unique bio-resources and clinical application. MicroRNAs are an important part of non-coding RNAs and behave as major regulators of tumour biology, alongside their well-known roles as intrinsic factors of gene expression in cellular processes, via their post-transcriptional regulation of components of signalling pathways in a coordinated manner. Deregulation of the miR-1, -133 and -206 family plays a key role in tumorigenesis, progression, invasion and metastasis. This review aims to provide a summary of recent findings on the miR-1, -133 and -206 family in GC and how this knowledge might be exploited for the development of future miRNA-based therapies for the treatment of GC.
Collapse
Affiliation(s)
- Meng Xie
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Dafydd Alwyn Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Xianzi Wen
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Jiafu Ji
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
41
|
Treece AL, Duncan DL, Tang W, Elmore S, Morgan DR, Dominguez RL, Speck O, Meyers MO, Gulley ML. Gastric adenocarcinoma microRNA profiles in fixed tissue and in plasma reveal cancer-associated and Epstein-Barr virus-related expression patterns. J Transl Med 2016; 96:661-71. [PMID: 26950485 PMCID: PMC5767475 DOI: 10.1038/labinvest.2016.33] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/09/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022] Open
Abstract
MicroRNA expression in formalin-fixed paraffin-embedded tissue (FFPE) or plasma may add value for cancer management. The GastroGenus miR Panel was developed to measure 55 cancer-specific human microRNAs, Epstein-Barr virus (EBV)-encoded microRNAs, and controls. This Q-rtPCR panel was applied to 100 FFPEs enriched for adenocarcinoma or adjacent non-malignant mucosa, and to plasma of 31 patients. In FFPE, microRNAs upregulated in malignant versus adjacent benign gastric mucosa were hsa-miR-21, -155, -196a, -196b, -185, and -let-7i. Hsa-miR-18a, 34a, 187, -200a, -423-3p, -484, and -744 were downregulated. Plasma of cancer versus non-cancer controls had upregulated hsa-miR-23a, -103, and -221 and downregulated hsa-miR-378, -346, -486-5p, -200b, -196a, -141, and -484. EBV-infected versus uninfected cancers expressed multiple EBV-encoded microRNAs, and concomitant dysregulation of four human microRNAs suggests that viral infection may alter cellular biochemical pathways. Human microRNAs were dysregulated between malignant and benign gastric mucosa and between plasma of cancer patients and non-cancer controls. Strong association of EBV microRNA expression with known EBV status underscores the ability of microRNA technology to reflect disease biology. Expression of viral microRNAs in concert with unique human microRNAs provides novel insights into viral oncogenesis and reinforces the potential for microRNA profiles to aid in classifying gastric cancer subtypes. Pilot studies of plasma suggest the potential for a noninvasive addition to cancer diagnostics.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/virology
- Aged
- Aged, 80 and over
- Case-Control Studies
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/virology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Pilot Projects
- RNA, Neoplasm/blood
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Viral/blood
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/virology
Collapse
Affiliation(s)
- Amanda L Treece
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Duncan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weihua Tang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sandra Elmore
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas R Morgan
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ricardo L Dominguez
- Department of Gastroenterology, Western Regional Hospital, Santa Rosa de Copan, Honduras
| | - Olga Speck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael O Meyers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margaret L Gulley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Amacher DE. A 2015 survey of established or potential epigenetic biomarkers for the accurate detection of human cancers. Biomarkers 2016; 21:387-403. [PMID: 26983778 DOI: 10.3109/1354750x.2016.1153724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Context The silencing or activation of cancer-associated genes by epigenetic mechanisms can ultimately lead to the clonal expansion of cancer cells. Objective The aim of this review is to summarize all relevant epigenetic biomarkers that have been proposed to date for the diagnosis of some prevalent human cancers. Methods A Medline search for the terms epigenetic biomarkers, human cancers, DNA methylation, histone modifications and microRNAs was performed. Results One hundred fifty-seven relevant publications were found and reviewed. Conclusion To date, a significant number of potential epigenetic cancer biomarkers of human cancer have been investigated, and some have advanced to clinical implementation.
Collapse
|
43
|
Zhang Z, Dou M, Yao X, Tang H, Li Z, Zhao X. Potential Biomarkers in Diagnosis of Human Gastric Cancer. Cancer Invest 2016; 34:115-22. [PMID: 26934336 DOI: 10.3109/07357907.2015.1114122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The high incidence of gastric cancer (GC) and its consequent mortality rate severely threaten human's health. It is not frequently diagnosed until a relatively advanced stage. Surgery is the only potentially curative treatment. Thus, early screening and diagnosis are critical for patients with GC. The tumor marker assays used currently for detecting GC are simple and rapid, but the usage is limited by its low sensitivity and specificity. Here, we provide a brief description of some new potential markers and new biotechnological methods for the diagnosis of GC, hoping to find out more effective approaches for early detection of GC.
Collapse
Affiliation(s)
- Zhihao Zhang
- a College of Pharmaceutical Sciences, Southwest University , Chongqing , China
| | - Mengmeng Dou
- a College of Pharmaceutical Sciences, Southwest University , Chongqing , China
| | - Xiaofang Yao
- a College of Pharmaceutical Sciences, Southwest University , Chongqing , China
| | - Hao Tang
- a College of Pharmaceutical Sciences, Southwest University , Chongqing , China
| | - Zhubo Li
- a College of Pharmaceutical Sciences, Southwest University , Chongqing , China
| | - Xiaoyan Zhao
- a College of Pharmaceutical Sciences, Southwest University , Chongqing , China
| |
Collapse
|
44
|
LI YIFAN, CHEN DUQUN, SU ZHENGMING, LI YUCHI, LIU JIAJU, JIN LU, SHI MIN, JIANG ZHIMAO, QI ZHENGYU, GUI YAOTING, YANG SHANGQI, MAO XIANGMING, WU XIONGHUI, LAI YONGQING. MicroRNA-106b functions as an oncogene in renal cell carcinoma by affecting cell proliferation, migration and apoptosis. Mol Med Rep 2016; 13:1420-6. [DOI: 10.3892/mmr.2015.4656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
|
45
|
MicroRNA-17 family as novel biomarkers for cancer diagnosis: a meta-analysis based on 19 articles. Tumour Biol 2015; 37:6403-11. [PMID: 26631037 DOI: 10.1007/s13277-015-4484-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Cancer remains as the leading cause of death all over the world due to the lack of efficient diagnostic techniques and therapeutic methods. Many studies have reported the potential diagnostic value of microRNA-17 (miRNA-17, miR-17) family members as biomarkers for cancer detection. However, inconsistent results were revealed from a wide range of studies. As a result of this, a meta-analysis based on 19 studies was conducted to assess the diagnostic performance of miR-17 family for cancer detection. A total of 1772 patients with certain types of cancer and 1320 healthy controls were involved in these studies. The overall diagnostic accuracy was measured by the following: sensitivity, 0.67 (95 % confidence interval (CI) 0.60-0.74); specificity, 0.83 (95 % CI 0.74-0.85); positive likelihood ratio (PLR), 3.9 (95 % CI 2.6-5.9); negative likelihood ratio (NLR), 0.40 (95 % CI 0.34-0.48); and diagnostic odds ratio (DOR), 10 (95 % CI 6-16), respectively. Additionally, the pooled area under the summary receiver operator characteristic (SROC) curve (area under the curve (AUC)) was 0.79 (95 % CI 0.75-0.82), indicating a relatively low accuracy of miR-17 family as biomarkers for cancer detection. Subgroup analysis further showed that miR-17 family had more reliable performance in cancer diagnosis for Asian than that for Caucasian. Moreover, multiple miRNAs containing miR-17, -20a/b, and -93 reflected higher diagnostic accuracy than both miR-106a/b (single miRNA) and the overall miR-17 family assay. Therefore, appropriate combinations of miR-17 family may be used as non-invasive screening biomarkers for cancer, and it is necessary to carry out a large-scale population-based study to further assess the potential diagnostic value of miR-17 family.
Collapse
|
46
|
Kalniņa Z, Meistere I, Kikuste I, Tolmanis I, Zayakin P, Linē A. Emerging blood-based biomarkers for detection of gastric cancer. World J Gastroenterol 2015; 21:11636-11653. [PMID: 26556992 PMCID: PMC4631966 DOI: 10.3748/wjg.v21.i41.11636] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/08/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Early detection and efficient monitoring of tumor dynamics are prerequisites for reducing disease burden and mortality, and for improving the management of patients with gastric cancer (GC). Blood-based biomarker assays for the detection of early-stage GC could be of great relevance both for population-wide or risk group-based screening programs, while circulating biomarkers that reflect the genetic make-up and dynamics of the tumor would allow monitoring of treatment efficacy, predict recurrences and assess the genetic heterogeneity of the tumor. Recent research to identify blood-based biomarkers of GC has resulted in the identification of a wide variety of cancer-associated molecules, including various proteins, autoantibodies against tumor associated antigens, cell-free DNA fragments, mRNAs and various non-coding RNAs, circulating tumor cells and cancer-derived extracellular vesicles. Each type of these biomarkers provides different information on the disease status, has different advantages and disadvantages, and distinct clinical usefulness. In the current review, we summarize the recent developments in blood-based GC biomarker discovery, discuss the origin of various types of biomarkers and their clinical usefulness and the technological challenges in the development of biomarker assays for clinical use.
Collapse
|
47
|
Ji X, Wu B, Fan J, Han R, Luo C, Wang T, Yang J, Han L, Zhu B, Wei D, Chen J, Ni C. The Anti-fibrotic Effects and Mechanisms of MicroRNA-486-5p in Pulmonary Fibrosis. Sci Rep 2015; 5:14131. [PMID: 26370615 PMCID: PMC4569899 DOI: 10.1038/srep14131] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/30/2015] [Indexed: 01/25/2023] Open
Abstract
To identify microRNAs (miRNAs, miRs) with potential roles in lung fibrogenesis, we performed genome-wide profiling of miRNA expression in lung tissues from a silica-induced mouse model of pulmonary fibrosis using microarrays. Seventeen miRNAs were selected for validation via qRT-PCR based on the fold changes between the silica and the control group. The dysregulation of five miRNAs, including miR-21, miR-455, miR-151-3p, miR-486-5p and miR-3107, were confirmed by qRT-PCRs in silica-induced mouse model of pulmonary fibrosis and were also confirmed in a bleomycin (BLM)-induced mouse lung fibrosis. Notably, miR-486-5p levels were decreased in the serum samples of patients with silicosis, as well as in the lung tissues of patients with silicosis and idiopathic pulmonary fibrosis (IPF). In addition, as determined by luciferase assays and Western blotting, SMAD2, a crucial mediator of pulmonary fibrosis, was identified to be one of target genes of miR-486-5p. To test the potential therapeutic significance of this miRNA, we overexpressed miR-486-5p in animal models. At day 28, miR-486-5p expression significantly decreased both the distribution and severity of lung lesions compared with the silica group (P < 0.01). In addition, miR-486-5p had a similar effect in the BLM group (P < 0.001). These results indicate that miR-486-5p may inhibit fibrosis.
Collapse
Affiliation(s)
- Xiaoming Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Baiqun Wu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingjing Fan
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruhui Han
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Luo
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingjin Yang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Han
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, China
| | - Baoli Zhu
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, China
| | - Dong Wei
- Nanjing Medical University, Affiliated Wuxi People's Hospital, Lung Transplantation Center, Jiangsu Key Laboratory of Organ Transplantation, China
| | - Jingyu Chen
- Nanjing Medical University, Affiliated Wuxi People's Hospital, Lung Transplantation Center, Jiangsu Key Laboratory of Organ Transplantation, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: An update and review. World J Gastroenterol 2015; 21:9863-9886. [PMID: 26379393 PMCID: PMC4566381 DOI: 10.3748/wjg.v21.i34.9863] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/15/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most popular non-coding RNAs in cancer research. To date, the roles of miRNAs and lncRNAs have been extensively studied in GC, suggesting that miRNAs and lncRNAs represent a vital component of tumor biology. Furthermore, circulating miRNAs and lncRNAs are found to be dysregulated in patients with GC compared with healthy individuals. Circulating miRNAs and lncRNAs may function as promising biomarkers to improve the early detection of GC. Multiple possibilities for miRNA secretion have been elucidated, including active secretion by microvesicles, exosomes, apoptotic bodies, high-density lipoproteins and protein complexes as well as passive leakage from cells. However, the mechanism underlying lncRNA secretion and the functions of circulating miRNAs and lncRNAs have not been fully illuminated. Concurrently, to standardize results of global investigations of circulating miRNAs and lncRNAs biomarker studies, several recommendations for pre-analytic considerations are put forward. In this review, we summarize the known circulating miRNAs and lncRNAs for GC diagnosis. The possible mechanism of miRNA and lncRNA secretion as well as methodologies for identification of circulating miRNAs and lncRNAs are also discussed. The topics covered here highlight new insights into GC diagnosis and screening.
Collapse
|
49
|
Diagnostic value of a plasma microRNA signature in gastric cancer: a microRNA expression analysis. Sci Rep 2015; 5:11251. [PMID: 26059512 PMCID: PMC4462022 DOI: 10.1038/srep11251] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 12/14/2022] Open
Abstract
The differential expression of microRNAs (miRNAs) in plasma of gastric cancer (GC) patients may serve as a diagnostic biomarker. A total of 33 miRNAs were identified through the initial screening phase (3 GC pools vs. 1 normal control (NC) pool) using quantitative reverse transcription polymerase chain reaction (qRT-PCR) based Exiqon panel (miRCURY-Ready-to-Use-PCR-Human-panel-I + II-V1.M). By qRT-PCR, these miRNAs were further assessed in training (30 GC VS. 30 NCs) and testing stages (71 GC VS. 61 NCs). We discovered a plasma miRNA signature including five up-regulated miRNAs (miR-185, miR-20a, miR-210, miR-25 and miR-92b), and this signature was evaluated to be a potential diagnostic marker of GC. The areas under the receiver operating characteristic curve of the signature were 0.86, 0.74 and 0.87 for the training, testing and the external validation stages (32 GC VS. 18 NCs), respectively. The five miRNAs were consistently dysregulated in GC tissues (n = 30). Moreover, miR-185 was decreased while miR-20a, miR-210 and miR-92b were increased in arterial plasma (n = 38). However, none of the miRNAs in the exosomes showed different expression between 10 GC patients and 10 NCs. In conclusion, we identified a five-miRNA signature in the peripheral plasma which could serve as a non-invasive biomarker in detection of GC.
Collapse
|
50
|
Wen X, Wu JQ, Peng W, Feng JF, Tang JH. MicroRNA-377 predicts poor clinical outcome of gastric cancer and induces tumorigenesis by targeting multiple tumor-suppressor genes. Oncol Rep 2015; 34:203-10. [PMID: 25998046 DOI: 10.3892/or.2015.3981] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/27/2015] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer (GC) is a major cause of cancer mortality worldwide. MicroRNAs are evolutionally conserved small non-coding RNAs that are critical for the regulation of gene expression. The aberrant expression of microRNA (miRNA) is involved in tumorigenesis and prognosis. In the present study, the clinical significance of miR-377 was assessed using RT-qPCR and MTT assay. The results showed that the expression of miR-377 was upregulated in GC compared with normal gastric tissues, and its expression level was increased in GC cell lines compared with normal gastric cells. In addition, there was a significant association between miR-377 expression and clinicopathological characteristics, in particular distant metastasis, TNM stage and early recurrence. GC patients with a higher miR-377 expression showed significantly poorer overall survival (OR) and shorter time to recurrence than those with a lower miR-377 expression. The Cox regression analysis identified miR-377 overexpression as an independent prognostic factor for GC. Overexpression of miR-377 in MKN-45 GC cells significantly promoted cell proliferation, whereas the suppression of miR-377 inhibited these effects. Furthermore, miR-377 downregulated p53, PTEN and TIMP1 expression by directly targeting the 3'-untranslated region of these target genes. Collectively, miR-377 potentially served as a new molecular predictive biomarker of GC tumorigenesis and prognosis, which may be useful in targeted therapy and the prognosis of GC patients.
Collapse
Affiliation(s)
- Xu Wen
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P.R. China
| | - Jian-Qiu Wu
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P.R. China
| | - Wei Peng
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P.R. China
| | - Ji-Feng Feng
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P.R. China
| | - Jin-Hai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P.R. China
| |
Collapse
|