1
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Sorafenib-associated translation reprogramming in hepatocellular carcinoma cells. RNA Biol 2025; 22:1-11. [PMID: 40116042 PMCID: PMC11934173 DOI: 10.1080/15476286.2025.2483484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Sorafenib (Sfb) is a multikinase inhibitor regularly used for the management of patients with advanced hepatocellular carcinoma (HCC) that has been shown to increase very modestly life expectancy. We have shown that Sfb inhibits protein synthesis at the level of initiation in cancer cells. However, the global snapshot of mRNA translation following Sorafenib-treatment has not been explored so far. In this study, we performed a genome-wide polysome profiling analysis in Sfb-treated HCC cells and demonstrated that, despite global translation repression, a set of different genes remain efficiently translated or are even translationally induced. We reveal that, in response to Sfb inhibition, translation is tuned, which strongly correlates with the presence of established mRNA cis-acting elements and the corresponding protein factors that recognize them, including DAP5 and ARE-binding proteins. At the level of biological processes, Sfb leads to the translational down-regulation of key cellular activities, such as those related to the mitochondrial metabolism and the collagen synthesis, and the translational up-regulation of pathways associated with the adaptation and survival of cells in response to the Sfb-induced stress. Our findings indicate that Sfb induces an adaptive reprogramming of translation and provides valuable information that can facilitate the analysis of other drugs for the development of novel combined treatment strategies based on Sfb therapy.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Burov A, Grigorieva E, Lebedev T, Vedernikova V, Popenko V, Astakhova T, Leonova O, Spirin P, Prassolov V, Karpov V, Morozov A. Multikinase inhibitors modulate non-constitutive proteasome expression in colorectal cancer cells. Front Mol Biosci 2024; 11:1351641. [PMID: 38774235 PMCID: PMC11106389 DOI: 10.3389/fmolb.2024.1351641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction: Proteasomes are multi-subunit protein complexes responsible for protein degradation in cells. Immunoproteasomes and intermediate proteasomes (together non-constitutive proteasomes) are specific forms of proteasomes frequently associated with immune response, antigen presentation, inflammation and stress. Expression of non-constitutive proteasome subunits has a prognostic value in several types of cancer. Thus, factors that modulate non-constitutive proteasome expression in tumors are of particular interest. Multikinase inhibitors (MKIs) demonstrate promising results in treatment of cancer. At the same time, their immunomodulatory properties and effects on non-constitutive proteasome expression in colorectal cancer cells are poorly investigated. Methods: Proteasome subunit expression in colorectal cancer was evaluated by bioinformatic analysis of available datasets. Two colorectal cancer cell lines, expressing fluorescent non-constitutive proteasomes were treated with multikinase inhibitors: regorafenib and sorafenib. The proteasome subunit expression was assessed by real-time PCR, Western blotting and flow cytometry. The proteasome activity was studied using proteasome activity-based probe and fluorescent substrates. Intracellular proteasome localization was revealed by confocal microscopy. Reactive oxygen species levels following treatment were determined in cells. Combined effect of proteasome inhibition and treatment with MKIs on viability of cells was estimated. Results: Expression of non-constitutive proteasomes is increased in BRAF-mutant colorectal tumors. Regorafenib and sorafenib stimulated the activity and synthesis of non-constitutive proteasomes in examined cell lines. MKIs induced oxidative stress and redistribution of proteasomes within cells. Sorafenib stimulated formation of cytoplasmic aggregates, containing proteolyticaly active non-constitutive proteasomes, while regorafenib had no such effect. MKIs caused no synergistic action when were combined with the proteasome inhibitor. Discussion: Obtained results indicate that MKIs might affect the crosstalk between cancer cells and immune cells via modulation of intracellular proteasome pool. Observed phenomenon should be considered when MKI-based therapy is applied.
Collapse
Affiliation(s)
- Alexander Burov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grigorieva
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria Vedernikova
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Astakhova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Karpov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Cai H, Du X, Deng Y, Cao D, Wang L, Wu Z, Zhang X, Xu J, Xie B. Pharmacokinetics and apparent Michaelis constant for metabolite conversion of sorafenib in healthy and hepatocellular carcinoma-bearing rats. Bioanalysis 2024; 16:461-473. [PMID: 38530220 PMCID: PMC11216244 DOI: 10.4155/bio-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Aim: Investigation of the pharmacokinetics of sorafenib (SRF) in rats with hepatocellular carcinoma (HCC). Methods: A reproducible ultra-HPLC-MS method for simultaneous determination of serum SRF, N-hydroxymethyl sorafenib and N-demethylation sorafenib. Results: Both the maximum serum concentrations (2.5-times) and the area under the serum concentration-time curve from 0 h to infinity (4.5-times) of SRF were observed to be significantly higher, with a greater than 3.0-fold decrease in the clearance rate in the HCC-bearing rats compared with these values in healthy animals. Further study revealed approximately 3.8- and 3.2-times increases in the apparent Michaelis constant for N-hydroxymethyl sorafenib and N-demethylation sorafenib conversions in the HCC-bearing rats. Conclusion: The low efficiency for the SRF conversions was a key contributor to the increased serum concentrations of SRF.
Collapse
Affiliation(s)
- Hongxin Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Xiaoyue Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yufeng Deng
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330001, China
| | - Dejian Cao
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Lele Wang
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Zhiguo Wu
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330001, China
| | - Xianchao Zhang
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Jinbiao Xu
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Baogang Xie
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| |
Collapse
|
4
|
Wang F, Zhang X, Wang Y, Chen Y, Lu H, Meng X, Ye X, Chen W. Activation/Inactivation of Anticancer Drugs by CYP3A4: Influencing Factors for Personalized Cancer Therapy. Drug Metab Dispos 2023; 51:543-559. [PMID: 36732076 DOI: 10.1124/dmd.122.001131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), one of the most important members of the cytochrome P450 subfamily, is a crucial catalyst in the metabolism of numerous drugs. As it catalyzes numerous processes for drug activation or inactivation, the pharmacological activities and clinical outcomes of anticancer drugs metabolized by CYP3A4 are highly dependent on the enzyme's activity and expression. Due to the complexity of tumor microenvironments and various influencing factors observed in human in vitro models and clinical studies, the pharmacokinetics of most anticancer drugs are influenced by the extent of induction or inhibition of CYP3A4-mediated metabolism, and these details are not fully recognized and highlighted. Therefore, this interindividual variability due to genetic and nongenetic factors, together with the narrow therapeutic index of most anticancer drugs, contributes to their unique set of exposures and responses, which have important implications for achieving the expected efficacy and minimizing adverse events of chemotherapy for cancer in individuals. To elucidate the mechanisms of CYP3A4-mediated activation/inactivation of anticancer drugs associated with personalized therapy, this review focuses on the underlying determinants that contribute to differences in CYP3A4 metabolic activity and provides a comprehensive and valuable overview of the significance of these factors, which differs from current considerations for dosing regimens in cancer therapy. We also discuss knowledge gaps, challenges, and opportunities to explore optimal dosing regimens for drug metabolic activation/inactivation in individual patients, with particular emphasis on pooling and analyzing clinical information that affects CYP3A4 activity. SIGNIFICANCE STATEMENT: This review focuses on anticancer drugs that are activated/deactivated by CYP3A4 and highlights outstanding factors affecting the interindividual variability of CYP3A4 activity in order to gain a detailed understanding of CYP3A4-mediated drug metabolism mechanisms. A systematic analysis of available information on the underlying genetic and nongenetic determinants leading to variation in CYP3A4 metabolic activity to predict therapeutic response to drug exposure, maximize efficacy, and avoid unpredictable adverse events has clinical implications for the identification and development of CYP3A4-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xue Zhang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Yanyan Wang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Yunna Chen
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Huiyu Lu
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xiangyun Meng
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xi Ye
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Weidong Chen
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| |
Collapse
|
5
|
Suo H, Hochnadel I, Petriv N, Franke R, Schmidt J, Limanska N, Tugai A, Jedicke N, Broenstrup M, Manns MP, Yevsa T. Elucidating the mechanism behind and investigating the efficacy of Traditional Chinese Medicine and Traditional Tibetan Medicine in combination with standard therapeutics in hepatocellular carcinoma and cholangiocarcinoma in vitro. Front Pharmacol 2022; 13:906468. [PMID: 36172191 PMCID: PMC9511410 DOI: 10.3389/fphar.2022.906468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, we investigated compounds of plant and mushroom origin belonging to Traditional Chinese Medicine (TCM) and to Traditional Tibetan Medicine (TTM): a sandy beige mushroom Trametes robiniophila Murr, commonly known as Huaier/TCM as well as Ershiwuwei Songshi Wan and Qiwei Honghua Shusheng Wan, which both belong to TTM. We aimed to study the efficacy of TTM and TCM in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) in vitro. TCM and TTM were tested either as a monotherapy, or in combination with standard therapeutics: sorafenib for HCC treatment and gemcitabine for CCA. We also discovered a protective mechanism behind the most successful therapeutic combinations. The results demonstrated that TCM and TTM inhibited the proliferation of cancer cells in a time- and dose-dependent manner. The results were compared to classical chemotherapeutics currently used in the clinic: sorafenib for HCC and gemcitabine for CCA. In HCC settings, a combination of Huaier (16 mg/ml) with half of the human plasma concentration of sorafenib, Qiwei Honghua Shusheng Wan (1 mg/ml) monotherapy as well as its combination with half or even a quarter dose of the human plasma concentration of sorafenib represented the most efficient treatments, inhibiting the growth of HCC cells more effectively than the standard therapy. The inhibitory mechanism relied on a strong induction of apoptosis. In CCA settings, Ershiwuwei Songshi Wan and Qiwei Honghua Shusheng Wan as monotherapies or in combination with very low doses of gemcitabine inhibited the growth of CCA cells more efficiently than the standard therapy. Importantly, Ershiwuwei Songshi Wan at the 8 and 16 mg/ml concentrations and Qiwei Honghua Shusheng Wan at the 4 mg/ml concentration were efficacious with gemcitabine applied at massively reduced concentrations. The protective mechanism in CCA relied on a strong induction of early and late apoptosis. Cellular senescence and necroptosis were not associated with protection against HCC/CCA. Combination therapy with TCM or TTM allowed for a dose reduction of standard chemotherapeutics. This is especially important as both chemotherapeutic drugs show strong side effects in patients. The reduction of chemotherapeutics and the synergistic effect observed while applying them in combination with TCM and TTM has strong perspectives for the clinic and patients suffering from HCC and CCA.
Collapse
Affiliation(s)
- Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Inga Hochnadel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nataliia Petriv
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jennifer Schmidt
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nataliia Limanska
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Microbiology, Virology and Biotechnology, Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Alisa Tugai
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nils Jedicke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Mark Broenstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research, Braunschweig, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- *Correspondence: Tetyana Yevsa,
| |
Collapse
|
6
|
Lin ZY, Yeh ML, Huang CI, Liang PC, Hsu PY, Chen SC, Huang CF, Huang JF, Dai CY, Yu ML, Chuang WL. Advantage of clinical colchicine concentration to promote sorafenib or regorafenib anti-cancer effects on hepatocellular carcinoma. Biomed Pharmacother 2022; 153:113540. [PMID: 36076618 DOI: 10.1016/j.biopha.2022.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
The advantage of colchicine to promote sorafenib or regorafenib anti-cancer effects on hepatocellular carcinoma (HCC) was investigated. Four primary cultured HCC cell lines (S103, S143, S160, S176) were studied by clinically achievable plasma sorafenib (5, 10 μg/mL), regorafenib (2, 4 μg/mL) and colchicine (4 ng/mL) concentrations. Sorafenib and regorafenib target genes and cancer stem cell markers (NANOG, POU5F1) were selected for experiments. Colchicine inhibited proliferation in all cell lines. Sorafenib inhibited proliferation only in S143 (5 μg/mL). Combined colchicine with sorafenib reversed the sorafenib effect on cellular proliferation from promotive to inhibitory in S103, and demonstrated anti-proliferative effects on other cell lines. Regorafenib inhibited proliferation in S103 (2 μg/mL), S176 (2 μg/mL) and S160 (4 μg/mL). Combined colchicine with regorafenib demonstrated equal or stronger anti-proliferative effects than regorafenib alone in all cell lines except S160. Combined colchicine obliterated or reduced the number of up-regulated target genes induced by sorafenib, and demonstrated equal or increased number of down-regulated target genes as compared with regorafenib alone. However, combined colchicine with regorafenib increased one up-regulated target gene in three cell lines. Colchicine obliterated or decreased the magnitude of up-regulated NANOG induced by sorafenib (S103, S143, S176) or regorafenib (S143), and combined with regorafenib could down-regulate NANOG (S160, S176). Adding colchicine to sorafenib or regorafenib showed inconsistent influence on POU5F1 expression as compared with sorafenib or regorafenib alone. The above results suggest that the anti-cancer effects of combined sorafenib with colchicine may be better than sorafenib alone. Colchicine may be added to regorafenib non-responders.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Lun Yeh
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-I Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Po-Cheng Liang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Po-Yao Hsu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Shinn-Cherng Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.
| | - Chung-Feng Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jee-Fu Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chia-Yen Dai
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Lung Yu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Guchelaar NAD, van Eerden RAG, Groenland SL, Doorn LV, Desar IME, Eskens FALM, Steeghs N, van Erp NP, Huitema ADR, Mathijssen RHJ, Koolen SLW. Feasibility of therapeutic drug monitoring of sorafenib in patients with liver or thyroid cancer. Biomed Pharmacother 2022; 153:113393. [PMID: 35834987 DOI: 10.1016/j.biopha.2022.113393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION Sorafenib is a tyrosine-kinase inhibitor approved for the treatment of renal cell carcinoma, hepatocellular carcinoma, thyroid carcinoma, and desmoid fibromatosis. As high inter-individual variability exists in exposure, there is a scientific rationale to pursue therapeutic drug monitoring (TDM). We investigated the feasibility of TDM in patients on sorafenib and tried to identify sub-groups in whom pharmacokinetically (PK) guided-dosing might be of added value. METHODS We included patients who started on sorafenib (between October 2017 and June 2020) at the recommended dose of 400 mg BID or with a step-up dosing schedule. Plasma trough levels (Ctrough) were measured at pre-specified time-points. Increasing the dose was advised if Ctrough was below the target of 3750 ng/mL and toxicity was manageable. RESULTS A total of 150 samples from 36 patients were collected. Thirty patients (83 %) had a Ctrough below the prespecified target concentration at a certain time point during treatment. Toxicity from sorafenib hampered dosing according to target Ctrough in almost half of the patients. In 11 patients, dosing was adjusted based on Ctrough. In three patients, this resulted in an adequate Ctrough without additional toxicity four weeks after the dose increase. In the remaining eight patients, dose adjustment based on Ctrough did not result in a Ctrough above the target or caused excessive toxicity. CONCLUSIONS TDM for sorafenib is not of added value in daily clinical practice. In most cases, toxicity restricts the possibility of dose escalations.
Collapse
Affiliation(s)
- Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Leni van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands; Department of Pharmacy, Prinses Máxima Center for Pediatric Oncology, University Medical Center Utrecht, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
8
|
Naik RR, Shakya AK, Aladwan SM, El-Tanani M. Kinase Inhibitors as Potential Therapeutic Agents in the Treatment of COVID-19. Front Pharmacol 2022; 13:806568. [PMID: 35444538 PMCID: PMC9014181 DOI: 10.3389/fphar.2022.806568] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Corona virus is quickly spreading around the world. The goal of viral management is to disrupt the virus's life cycle, minimize lung damage, and alleviate severe symptoms. Numerous strategies have been used, including repurposing existing antivirals or drugs used in previous viral outbreaks. One such strategy is to repurpose FDA-approved kinase inhibitors that are potential chemotherapeutic agents and have demonstrated antiviral activity against a variety of viruses, including MERS, SARS-CoV-1, and others, by inhibiting the viral life cycle and the inflammatory response associated with COVID-19. The purpose of this article is to identify licensed kinase inhibitors that have the ability to reduce the virus's life cycle, from entrance through viral propagation from cell to cell. Several of these inhibitors, including imatinib, ruxolitinib, silmitasertib, and tofacitinib (alone and in conjunction with hydroxychloroquine), are now undergoing clinical studies to determine their efficacy as a possible treatment drug. The FDA approved baricitinib (a Janus kinase inhibitor) in combination with remdesivir for the treatment of COVID-19 patients receiving hospital care in November 2020. While in vitro trials with gilteritinib, fedratinib, and osimertinib are encouraging, further research is necessary before these inhibitors may be used to treat COVID-19 patients.
Collapse
Affiliation(s)
- Rajashri R. Naik
- Department of Biopharmaceutics and Clinical Pharmacy, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ashok K. Shakya
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Safwan M. Aladwan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Department of Biopharmaceutics and Clinical Pharmacy, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
9
|
Pylypchuk IV, Suo H, Chucheepchuenkamol C, Jedicke N, Lindén PA, Lindström ME, Manns MP, Sevastyanova O, Yevsa T. High-Molecular-Weight Fractions of Spruce and Eucalyptus Lignin as a Perspective Nanoparticle-Based Platform for a Therapy Delivery in Liver Cancer. Front Bioeng Biotechnol 2022; 9:817768. [PMID: 35198551 PMCID: PMC8860172 DOI: 10.3389/fbioe.2021.817768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
The natural polymer, lignin, possesses unique biodegradable and biocompatible properties, making it highly attractive for the generation of nanoparticles for targeted cancer therapy. In this study, we investigated spruce and eucalyptus lignin nanoparticles (designated as S-and E-LNPs, respectively). Both LNP types were generated from high-molecular-weight (Mw) kraft lignin obtained as insoluble residues after a five-step solvent fractionation approach, which included ethyl acetate, ethanol, methanol, and acetone. The resulting S-and E-LNPs ranged in size from 16 to 60 nm with uniform spherical shape regardless of the type of lignin. The preparation of LNPs from an acetone-insoluble lignin fraction is attractive because of the use of high-Mw lignin that is otherwise not suitable for most polymeric applications, its potential scalability, and the consistent size of the LNPs, which was independent of increased lignin concentrations. Due to the potential of LNPs to serve as delivery platforms in liver cancer treatment, we tested, for the first time, the efficacy of newly generated E-LNPs and S-LNPs in two types of primary liver cancer, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), in vitro. Both S-LNPs and E-LNPs inhibited the proliferation of HCC cells in a dose-dependent manner and did not affect CCA cell line growth. The inhibitory effect toward HCC was more pronounced in the E-LNP-treated group and was comparable to the standard therapy, sorafenib. Also, E-LNPs induced late apoptosis and necroptosis while inhibiting the HCC cell line. This study demonstrated that an elevated number of carbohydrates on the surface of the LNPs, as shown by NMR, seem to play an important role in mediating the interaction between LNPs and eukaryotic cells. The latter effect was most pronounced in E-LNPs. The novel S- and E-LNPs generated in this work are promising materials for biomedicine with advantageous properties such as small particle size and tailored surface functionality, making them an attractive and potentially biodegradable delivery tool for combination therapy in liver cancer, which still has to be verified in vivo using HCC and CCA models.
Collapse
Affiliation(s)
- Ievgen V Pylypchuk
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Chanakarn Chucheepchuenkamol
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Science Service, Ministry of Higher Education, Science, Research and Innovation, Ratchathewi, Thailand
| | - Nils Jedicke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Pär A Lindén
- Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael E Lindström
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Olena Sevastyanova
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Lin ZY, Yeh ML, Huang CI, Chen SC, Huang CF, Huang JF, Dai CY, Yu ML, Chuang WL. Limited sorafenib anticancer effects on primary cultured hepatocellular carcinoma cells with high NANOG expression. Kaohsiung J Med Sci 2022; 38:157-164. [PMID: 35142429 DOI: 10.1002/kjm2.12471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
Cancer stem cell is considered as an important cause to exacerbate the prognosis. NANOG and POU5F1 are markers for cancer stem cells. The associations between NANOG and POU5F1 expressions with the sorafenib anticancer effects in primary cultured hepatocellular carcinoma (HCC) cells were investigated. Eight primary cultured HCC parent cell lines and 13 subgroups established by flow cytometric sorting using NANOG and POU5F1 as targets were investigated with clinically achievable sorafenib plasma concentrations (5 and 10 μg/mL). Sorafenib showed obvious downregulation of RAF/MEK/ERK signaling pathways and dose-dependent anti-proliferative effects only on s003 parent cell line, which showed the lowest expression of NANOG among all tested cell lines except one downregulated NANOG with upregulated POU5F1 s020 subgroup. Sorafenib also inhibited proliferation in this s020 subgroup but promoted proliferation in its parent cell line. For the only one downregulated NANOG alone s015 subgroup, sorafenib which had no influence on its parent cell line inhibited proliferation in this subgroup. Only the above three cell lines could demonstrate sorafenib antiproliferative effects. On the contrary, sorafenib promoted proliferation in three (s003, s015, s071) out of four upregulated NANOG alone subgroups. On the other hand, Sorafenib showed diverse influence on proliferation among four upregulated POU5F1 alone subgroups. In conclusion, NANOG rather than POU5F1 expression is a critical marker for the anticancer effects of sorafenib on HCC. The sorafenib anticancer effects on HCC cells with high NANOG expression were limited. Sorafenib should be combined with other drug able to target cancer cells with high NANOG expression.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-I Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shinn-Cherng Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Abstract
The global coronavirus disease-19 (COVID-19) has affected more than 140 million and killed more than 3 million people worldwide as of April 20, 2021. The novel human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been identified as an etiological agent for COVID-19. Several kinases have been proposed as possible mediators of multiple viral infections, including life-threatening coronaviruses like SARS-CoV-1, Middle East syndrome coronavirus (MERS-CoV), and SARS-CoV-2. Viral infections hijack abundant cell signaling pathways, resulting in drastic phosphorylation rewiring in the host and viral proteins. Some kinases play a significant role throughout the viral infection cycle (entry, replication, assembly, and egress), and several of them are involved in the virus-induced hyperinflammatory response that leads to cytokine storm, acute respiratory distress syndrome (ARDS), organ injury, and death. Here, we highlight kinases that are associated with coronavirus infections and their inhibitors with antiviral and potentially anti-inflammatory, cytokine-suppressive, or antifibrotic activity.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry
and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen,
Germany
| | - Stefan Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry
and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen,
Germany
| |
Collapse
|
12
|
Krstic J, Reinisch I, Schindlmaier K, Galhuber M, Riahi Z, Berger N, Kupper N, Moyschewitz E, Auer M, Michenthaler H, Nössing C, Depaoli MR, Ramadani-Muja J, Usluer S, Stryeck S, Pichler M, Rinner B, Deutsch AJA, Reinisch A, Madl T, Chiozzi RZ, Heck AJR, Huch M, Malli R, Prokesch A. Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. SCIENCE ADVANCES 2022; 8:eabh2635. [PMID: 35061544 PMCID: PMC8782451 DOI: 10.1126/sciadv.abh2635] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Katharina Schindlmaier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Zina Riahi
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Natascha Berger
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Nadja Kupper
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Martina Auer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Christoph Nössing
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Maria R. Depaoli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sarah Stryeck
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, 8010 Graz, Austria
- Know-Center GmbH, 8010 Graz, Austria
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria
| | - Beate Rinner
- Department for Biomedical Research, Medical University of Graz, Graz, Austria
| | - Alexander J. A. Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Division of Hematology, Department of Blood Group Serology and Transfusion Medicine Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584CH Utrecht, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584CH Utrecht, Netherlands
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Roland Malli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
13
|
Kenda M, Avsec D, Zore T, Kogovšek E, Pečar Fonović U, Kos J, Bozovičar K, Bratkovič T, Karas Kuželički N, Žegura B, Filipič M, Sollner Dolenc M. Effects of tyrosine kinase inhibitors on androgen, estrogen α, glucocorticoid and thyroid receptors. Toxicol Appl Pharmacol 2022; 434:115818. [PMID: 34890638 DOI: 10.1016/j.taap.2021.115818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
Modern anticancer therapies favor a targeted approach. Tyrosine kinase inhibitors (TKIs) are drugs that target molecular pathways involved in various types of malignancies. Although TKIs are safe and well tolerated, they remain not completely selective; e.g., endocrine-mediated adverse events have been observed with their use. In the present study, the effects of seven TKIs were determined on the activities of androgen receptor, estrogen receptor α (ERα), glucocorticoid receptor and thyroid receptor in vitro using stably transfected cell lines expressing firefly luciferase reporter gene: AR-EcoScreen, hERα-HeLa9903, MDA-kb2, and GH3.TRE-Luc cells, respectively. Antiandrogenic activity was seen for erlotinib, estrogenic activity for imatinib, antiestrogenic activity for dasatinib, erlotinib, nilotinib, regorafenib and sorafenib, glucocorticoid activity for erlotinib and ibrutinib, antiglucocorticoid activity for regorafenib and sorafenib, and antithyroid activity for ibrutinib. Additionally, synergism was seen for 1-5 μM dasatinib and 500 nM hydrocortisone combination for glucocorticoid activity in MDA-kb2 cells. The estrogenic activity of imatinib was confirmed as mediated through ERα, and interference of the TKIs with the reporter gene assays was ruled out in a cell-lysate-based firefly luciferase enzyme inhibition assay. Imatinib in combination with 4-hydroxytamoxifen showed concentration-dependent effects on the metabolic activity of ERα-expressing AN3CA, MCF-7, and SKOV3 cells, and on cell proliferation and adhesion of MCF-7 cells. These findings contribute to the understanding of the endocrine effects of TKIs, in terms of toxicity and effectiveness, and define the need to further evaluate the endocrine disrupting activities of TKIs to safeguard human and environmental health.
Collapse
Affiliation(s)
- Maša Kenda
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Taja Zore
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Eva Kogovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Urša Pečar Fonović
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Janko Kos
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Krištof Bozovičar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | | | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
14
|
Klann K, Bojkova D, Tascher G, Ciesek S, Münch C, Cinatl J. Growth Factor Receptor Signaling Inhibition Prevents SARS-CoV-2 Replication. Mol Cell 2020; 80:164-174.e4. [PMID: 32877642 PMCID: PMC7418786 DOI: 10.1016/j.molcel.2020.08.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/08/2020] [Accepted: 08/07/2020] [Indexed: 01/07/2023]
Abstract
SARS-CoV-2 infections are rapidly spreading around the globe. The rapid development of therapies is of major importance. However, our lack of understanding of the molecular processes and host cell signaling events underlying SARS-CoV-2 infection hinders therapy development. We use a SARS-CoV-2 infection system in permissible human cells to study signaling changes by phosphoproteomics. We identify viral protein phosphorylation and define phosphorylation-driven host cell signaling changes upon infection. Growth factor receptor (GFR) signaling and downstream pathways are activated. Drug-protein network analyses revealed GFR signaling as key pathways targetable by approved drugs. The inhibition of GFR downstream signaling by five compounds prevents SARS-CoV-2 replication in cells, assessed by cytopathic effect, viral dsRNA production, and viral RNA release into the supernatant. This study describes host cell signaling events upon SARS-CoV-2 infection and reveals GFR signaling as a central pathway essential for SARS-CoV-2 replication. It provides novel strategies for COVID-19 treatment.
Collapse
Affiliation(s)
- Kevin Klann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany; German Centre for Infection Research (DZIF), External partner site, Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany; Frankfurt Cancer Institute and Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Dar KB, Bhat AH, Amin S, Anjum S, Reshi BA, Zargar MA, Masood A, Ganie SA. Exploring Proteomic Drug Targets, Therapeutic Strategies and Protein - Protein Interactions in Cancer: Mechanistic View. Curr Cancer Drug Targets 2020; 19:430-448. [PMID: 30073927 DOI: 10.2174/1568009618666180803104631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
Abstract
Protein-Protein Interactions (PPIs) drive major signalling cascades and play critical role in cell proliferation, apoptosis, angiogenesis and trafficking. Deregulated PPIs are implicated in multiple malignancies and represent the critical targets for treating cancer. Herein, we discuss the key protein-protein interacting domains implicated in cancer notably PDZ, SH2, SH3, LIM, PTB, SAM and PH. These domains are present in numerous enzymes/kinases, growth factors, transcription factors, adaptor proteins, receptors and scaffolding proteins and thus represent essential sites for targeting cancer. This review explores the candidature of various proteins involved in cellular trafficking (small GTPases, molecular motors, matrix-degrading enzymes, integrin), transcription (p53, cMyc), signalling (membrane receptor proteins), angiogenesis (VEGFs) and apoptosis (BCL-2family), which could possibly serve as targets for developing effective anti-cancer regimen. Interactions between Ras/Raf; X-linked inhibitor of apoptosis protein (XIAP)/second mitochondria-derived activator of caspases (Smac/DIABLO); Frizzled (FRZ)/Dishevelled (DVL) protein; beta-catenin/T Cell Factor (TCF) have also been studied as prospective anticancer targets. Efficacy of diverse molecules/ drugs targeting such PPIs although evaluated in various animal models/cell lines, there is an essential need for human-based clinical trials. Therapeutic strategies like the use of biologicals, high throughput screening (HTS) and fragment-based technology could play an imperative role in designing cancer therapeutics. Moreover, bioinformatic/computational strategies based on genome sequence, protein sequence/structure and domain data could serve as competent tools for predicting PPIs. Exploring hot spots in proteomic networks represents another approach for developing targetspecific therapeutics. Overall, this review lays emphasis on a productive amalgamation of proteomics, genomics, biochemistry, and molecular dynamics for successful treatment of cancer.
Collapse
Affiliation(s)
- Khalid Bashir Dar
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India.,Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Aashiq Hussain Bhat
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India.,Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shajrul Amin
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Syed Anjum
- Amity Institute of Biotechnology, Amity University, Rajasthan, India
| | - Bilal Ahmad Reshi
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohammad Afzal Zargar
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Akbar Masood
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
16
|
Labeur TA, Hofsink Q, Takkenberg RB, van Delden OM, Mathôt RAA, Schinner R, Malfertheiner P, Amthauer H, Schütte K, Basu B, Kuhl C, Mayerle J, Ricke J, Klümpen HJ. The value of sorafenib trough levels in patients with advanced hepatocellular carcinoma - a substudy of the SORAMIC trial. Acta Oncol 2020; 59:1028-1035. [PMID: 32366155 DOI: 10.1080/0284186x.2020.1759826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Sorafenib for advanced hepatocellular carcinoma (HCC) is dose adjusted by toxicity. Preliminary studies have suggested an association between plasma concentrations of sorafenib and its main metabolite (M2) and clinical outcomes. This study aimed to validate these findings and establish target values for sorafenib trough concentrations.Methods: Patients with advanced HCC were prospectively recruited within a multicenter phase II study (SORAMIC). Patients with blood samples available at trough level were included for this pharmacokinetic (PK) substudy. Trough plasma concentrations of sorafenib and its main metabolite (M2) were associated with sorafenib-related toxicity and overall survival (OS).Results: Seventy-four patients were included with a median OS of 19.7 months (95% CI 16.1-23.3). Patients received sorafenib for a median of 51 weeks (IQR 27-62) and blood samples were drawn after a median of 25 weeks (IQR 10-42). Patients had a median trough concentration of 3217 ng/ml (IQR 2166-4526) and 360 ng/ml (IQR 190-593) with coefficients of variation of 65% and 146% for sorafenib and M2, respectively. Patients who experienced severe sorafenib-related toxicity received a lower average daily dose (551 vs 730 mg/day, p = .003), but showed no significant differences in sorafenib (3298 vs 2915 ng/ml, p = .442) or M2 trough levels (428 vs 283 ng/ml, p = .159). Trough levels of sorafenib or M2 showed no significant association with OS.Conclusions: In patients with advanced HCC treated with sorafenib, the administered dose, trough levels of sorafenib or M2, and clinical outcomes were poorly correlated. Toxicity-adjusted dosing remains the standard for sorafenib treatment.
Collapse
Affiliation(s)
- Tim A. Labeur
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Quincy Hofsink
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - R. Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Otto M. van Delden
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ron A. A. Mathôt
- Hospital Pharmacy, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Regina Schinner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Holger Amthauer
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Schütte
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken, Marienhospital Osnabrück, Osnabrück, Germany
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Ji B, Cai H, Yang Y, Peng F, Song M, Sun K, Yan F, Liu Y. Hybrid membrane camouflaged copper sulfide nanoparticles for photothermal-chemotherapy of hepatocellular carcinoma. Acta Biomater 2020; 111:363-372. [PMID: 32434082 DOI: 10.1016/j.actbio.2020.04.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Biomimetic nanoparticles (NPs) coated with cell membranes show enhanced biocompatibility and specificity for homotypic cells, and have gained considerable attention for targeted anti-tumor therapy. We constructed cancer cell-macrophage hybrid membrane-coated near infrared (NIR)-responsive hollow copper sulfide nanoparticles encapsulating sorafenib and surface modified with anti-VEGFR (CuS-SF@CMV NPs). These CuS-SF@CMV NPs expressed the characteristic membrane proteins of both cancer cells and macrophages, and selectively accumulated in cancer cells in vitro and tumors in vivo, compared to the CuS NPs. In addition, the CuS-SF@CMV NPs achieved synergistic photo-thermal and chemotherapy in cancer cells upon NIR irradiation, with 94.3% inhibition of tumor growth in a murine hepatoma model. While the initial increase in temperature rapidly killed the tumor cells, sorafenib and the anti-VEGFR antibody sustained the tumor killing effect by respectively inhibiting tumor cell proliferation and angiogenesis via the Ras/Raf/MEK/ERK and PI3K/AKT pathways. Taken together, the CuS-SF@CMV NPs have immune evasion, tumor cell targeting and drug loading capacities, along with an inherent photo-thermal conversion ability, making them ideal for synergistic photo-thermal/chemo therapy against HCC. STATEMENT OF SIGNIFICANCE: We created cancer cell-macrophage hybrid membrane-coated hollow CuS NPs encapsulating sorafenib and surface modified with anti-VEGFR antibodies (CuS-SF@CMV). These CuS-SF@CMV NPs enhanced synergistic PTT and chemotherapy against hepatoma cells through homotypic cell targeting, immune escape and inhibition of a tumorigenic signaling pathway. A long-term inhibition of tumor growth and metastasis was achieved owing to the rapid destruction of the cancer cells through photo-thermal conversion by the CuS NPs, and sustained clearance of the tumor cells by sorafenib and anti-VEGFR antibodies. Our findings suggest that CuS-SF@CMV NPs present great treating effects in preclinical models of HCC, providing the framework for further study in clinical trials to improve patient outcome in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Hongqiao Cai
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Yang Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Fenghui Peng
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Meiyu Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin street, Changchun 130012, China
| | - Kaiju Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin street, Changchun 130012, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China.
| |
Collapse
|
18
|
Sun L, Yang H, Wang Y, Zhang X, Jin B, Xie F, Jin Y, Pang Y, Zhao H, Lu X, Sang X, Zhang H, Lin F, Sun W, Huang P, Mao Y. Application of a 3D Bioprinted Hepatocellular Carcinoma Cell Model in Antitumor Drug Research. Front Oncol 2020; 10:878. [PMID: 32582546 PMCID: PMC7283506 DOI: 10.3389/fonc.2020.00878] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023] Open
Abstract
The existing in vitro models for antitumor drug screening have great limitations. Many compounds that inhibit 2D cultured cells do not exhibit the same pharmacological effects in vivo, thereby wasting human and material resources as well as time during drug development. Therefore, developing new models is critical. The 3D bioprinting technology has greater advantages in constructing human tissue compared with sandwich culture and organoid construction. Here, we used 3D bioprinting technology to construct a 3D model with HepG2 cells (3DP-HepG2). The biological activities of the model were evaluated by immunofluorescence, real-time quantitative PCR, and transcriptome sequencing. Compared with the traditional 2D cultured tumor cells (2D-HepG2), 3DP-HepG2 showed significantly improved expression of tumor-related genes, including ALB, AFP, CD133, IL-8, EpCAM, CD24, and β-TGF genes. Transcriptome sequencing analysis revealed large differences in gene expression between 3DP-HepG2 and 2D-HepG2, especially genes related to hepatocyte function and tumor. We also compared the effects of antitumor drugs in 3DP-HepG2 and 2D-HepG2, and found that the large differences in drug resistance genes between the models may cause differences in the drugs' pharmacodynamics.
Collapse
Affiliation(s)
- Lejia Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yanan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, CAMS and School of Basic Medicine, PUMC, Beijing, China
| | - Xinyu Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, CAMS and School of Basic Medicine, PUMC, Beijing, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Feihu Xie
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yukai Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.,Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, CAMS and School of Basic Medicine, PUMC, Beijing, China
| | - Feng Lin
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.,Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Beijing, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.,Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Beijing, China.,Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States
| | - Pengyu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
19
|
|
20
|
Cyclosporin A activates human hepatocellular carcinoma (HepG2 cells) proliferation: implication of EGFR-mediated ERK1/2 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:897-908. [PMID: 31907582 DOI: 10.1007/s00210-019-01798-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/19/2019] [Indexed: 11/27/2022]
Abstract
One of the most common causes of cancer mortality worldwide is hepatocellular carcinoma (HCC). Extracellular signal-regulated kinase (ERK1/2) pathway has been shown to play an important role in the development and progression of HCC. Here, we demonstrate that the immunosuppressive agent cyclosporin A (CsA) has the ability to increase the cellular growth in HCC (HepG2 cells) via activation of ERK1/2 signaling cascade. It was found that ERK1/2 phosphorylation induced by CsA was highly reduced in the presence of the reactive oxygen species (ROS) scavenger polyethylene glycol-superoxide dismutase (PEG-SOD). Furthermore, it was observed that inhibition of metalloproteinase activity using TAPI-2 prevents ERK1/2 activation by CsA. Moreover, a disintegrin and metalloproteinase domain 17 (ADAM-17) activity was found to be critical for ERK phosphorylation by CsA. In addition, CsA-induced ERK phosphorylation was highly reduced in the presence of either neutralizing anti-heparin-binding-epidermal growth factor (HB-EGF) antibody or UO126 (MEK inhibitor). By using the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478, it was found that EGFR is critical for ERK phosphorylation induced by CsA. Furthermore, CsA-induced cell proliferation was strongly reduced in the presence of either PEG-SOD or TAPI-2 or neutralizing anti-ADAM17 antibody or neutralizing anti-HB-EGF antibody or AG1478 or UO126. Collectively, these data demonstrate that CsA has the ability to activate ERK1/2 signaling cascade that could be translated into an increase in HepG2 cell proliferation. Furthermore, these data support the role of ROS, ADAM-17, and EGFR in ERK1/2 signaling activation and subsequent cell proliferation induced by CsA in HepG2 cells.
Collapse
|
21
|
A Pharmacokinetic Interaction Study of Sorafenib and Iced Teas in Rats Using UPLC-MS/MS: An Illustration of Beverage-Drug Interaction. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2410845. [PMID: 31871933 PMCID: PMC6907072 DOI: 10.1155/2019/2410845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/01/2019] [Accepted: 10/22/2019] [Indexed: 11/18/2022]
Abstract
Iced teas (ITs), also known as ready-to-drink teas, have gained much popularity among many nations. The modulatory effect of tea beverages on CYP3A4 increases the possibility of their potential interactions with many coadministered medications. Being a substrate of CYP3A4, sorafenib (SOR), the first-line therapy for the treatment of hepatocellular carcinoma, shows a great probability to exhibit pharmacokinetic (PK) interaction with ITs. For this purpose, different groups of Wistar rats were given oral doses of SOR (40 mg/kg), along with different types of ITs. The concentration of SOR in rat plasma was determined using UPLC-MS/MS. Chromatographic analysis was performed on a C18 analytical column, Acquity UPLC BEH™ (100 × 1.0 mm, i.d., 1.7 μm particle size), using erlotinib (ERL) as an internal standard. Isocratic elution was performed with a mobile phase consisting of two solvents: solvent A (water with 0.1% formic acid) and solvent B (acetonitrile with 0.1% formic acid), in a ratio of 30 : 70, v/v, respectively. Quantitation was performed using MRM of the transitions from protonated precursor ions [M+H]+ to product ions at m/z 465.12 > 252.02 (SOR) and m/z 394.29 > 278.19 (ERL). The method was fully validated as per the FDA guidance for bioanalytical method validation in the concentration range of 2.5–500 ng/mL. Different PK parameters were calculated for SOR in all rat groups and groups administered with ITs and SOR, compared with groups with simply water and SOR. Experimental data revealed that ITs caused a general reduction in SOR bioavailability; an approximate reduction of 30% was recorded for all types of tested ITs. These data indicate that ITs could affect the PK profile of SOR in rats.
Collapse
|
22
|
Pottakkat B, Ashokachakkaravarthy K. Sorafenib resistance and autophagy in hepatocellular carcinoma: A concealed threat. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Jung DH, Tak E, Hwang S, Song GW, Ahn CS, Kim KH, Moon DB, Ha TY, Park GC, Ryoo BY, Lee KJ, Kim N, Kwon JH, Jwa EK, Lee SG. Antitumor effect of sorafenib and mammalian target of rapamycin inhibitor in liver transplantation recipients with hepatocellular carcinoma recurrence. Liver Transpl 2018; 24:932-945. [PMID: 29710388 DOI: 10.1002/lt.25191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
Both sorafenib and mammalian target of rapamycin inhibitor (mTORi) have antitumor effects. This study aimed to evaluate their antitumor effects in liver transplantation (LT) recipients with hepatocellular carcinoma (HCC) recurrence. We performed a laboratory study using sorafenib and mTORi and subsequently validated their survival benefit in a clinical LT setting. In the laboratory study, the HepG2.2.15 liver tumor cell line and 5 patient-derived graft HCC cell lines were used for in vitro cytotoxic studies. After treatment with everolimus and sorafenib, cell viability and apoptosis assays revealed noticeable cytotoxic effects with individual agents and augmented effects by combination therapy. An in vivo mouse study also demonstrated similar cytotoxic outcomes. In the clinical study including 232 LT recipients with HCC recurrence, the 3-month medication drop-out rate was 35.6% for sorafenib administration and 23.5% for mTORi administration. Postrecurrence survival rates were not different according to sorafenib administration (P = 0.17) but were significantly improved following mTORi administration (P < 0.001). In mTORi subgroups with and without sorafenib, there was no difference in the overall postrecurrence patient survival period (P = 0.26), indicating an absence of synergistic or additional antitumor effect from sorafenib. The median progression-free and overall survival period was 6.4 and 11.8 months, respectively, after sorafenib administration. Time of tumor recurrence and use of mTORi were independent risk factors. In conclusion, our laboratory study demonstrated synergistic antitumor effects of sorafenib and mTORi, but this was not reproduced in our clinical LT study. Our clinical result of mTORi administration showed improved postrecurrence survival, thus administering mTORi in LT recipients with HCC recurrence appears worthwhile. However, the antitumor effect of sorafenib on posttransplant recurrence was not determined in this retrospective study, thus requiring further studies with early start of sorafenib administration. Liver Transplantation 24 932-945 2018. © 2018 AASLD.
Collapse
Affiliation(s)
- Dong-Hwan Jung
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| | - Eunyoung Tak
- Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shin Hwang
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| | - Gi-Won Song
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| | - Chul-Soo Ahn
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| | - Ki-Hun Kim
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| | - Deok-Bog Moon
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| | - Tae-Yong Ha
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| | - Gil-Chun Park
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| | | | - Kyung Jin Lee
- Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nayoung Kim
- Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Hyeon Kwon
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| | - Eun-Kyoung Jwa
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| | - Sung-Gyu Lee
- Division of Hepatobiliary Surgery and Liver Transplantation, Departments of Surgery
| |
Collapse
|
24
|
Zanotto-Filho A, Rajamanickam S, Loranc E, Masamsetti VP, Gorthi A, Romero JC, Tonapi S, Gonçalves RM, Reddick RL, Benavides R, Kuhn J, Chen Y, Bishop AJR. Sorafenib improves alkylating therapy by blocking induced inflammation, invasion and angiogenesis in breast cancer cells. Cancer Lett 2018; 425:101-115. [PMID: 29608984 DOI: 10.1016/j.canlet.2018.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
Abstract
Molecular targeted compounds are emerging as a strategy to improve classical chemotherapy. Herein, we describe that using low dose of the multikinase inhibitor sorafenib improves cyclophosphamide antitumor activity by inhibiting angiogenesis, metastasis and promoting tumor healing in MDA-MB231 xenografts and the 4T1-12B syngeneic breast cancer metastasis model. Mechanistic studies in MDA-MB231 cells revealed that alkylation upregulates inflammatory genes/proteins such as COX-2, IL8, CXCL2 and MMP1 in a MEK1/2-ERK1/2-dependent manner. These proteins enrich the secretome of cancer cells, stimulating cell invasion and angiogenesis via autocrine and paracrine mechanisms. Sorafenib inhibits MEK1/2-ERK1/2 pathway thereby decreasing inflammatory genes and mitigating cell invasion and angiogenesis at basal and alkylation-induced conditions whereas NRF2 and ER stress pathways involved in alkylation survival are not affected. In non-invasive/non-angiogenic breast cancer cells (SKBR3 and MCF7), alkylation did not elicit inflammatory responses with the only sorafenib effect being ERK1/2-independent ROS-dependent cytotoxicity when using higher drug concentrations. In summary, our data show that alkylating agents may elicit inflammatory responses that seems to contribute to malignant progression in specific breast cancer cells. Identifying and targeting drivers of this phenotype may offer opportunities to optimize combined drug regimens between classical chemotherapeutics and targeted agents.
Collapse
Affiliation(s)
- Alfeu Zanotto-Filho
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA; Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Subapriya Rajamanickam
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Eva Loranc
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - V Pragathi Masamsetti
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - July Carolina Romero
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Sonal Tonapi
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Rosangela Mayer Gonçalves
- Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Robert L Reddick
- Department of Pathology, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Raymond Benavides
- Department of Pathology, University of Texas College of Pharmacy, Austin, TX, USA
| | - John Kuhn
- Department of Pathology, University of Texas Health at San Antonio, San Antonio, TX, USA; Department of Pathology, University of Texas College of Pharmacy, Austin, TX, USA
| | - Yidong Chen
- Department of Epidemiology and Biostatistics, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
25
|
Yosef HK, Frick T, Hammoud MK, Maghnouj A, Hahn S, Gerwert K, El-Mashtoly SF. Exploring the efficacy and cellular uptake of sorafenib in colon cancer cells by Raman micro-spectroscopy. Analyst 2018; 143:6069-6078. [DOI: 10.1039/c8an02029a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study demonstrates the efficacy and distribution of sorafenib in colon cancer cells by label-free Raman microscopy.
Collapse
Affiliation(s)
- H. K. Yosef
- Department of Biophysics
- Ruhr-University Bochum
- Germany
| | - T. Frick
- Department of Biophysics
- Ruhr-University Bochum
- Germany
| | - M. K. Hammoud
- Department of Biophysics
- Ruhr-University Bochum
- Germany
| | - A. Maghnouj
- Department of Molecular GI-Oncology
- Clinical Research Center
- Ruhr-University Bochum
- 44780 Bochum
- Germany
| | - S. Hahn
- Department of Molecular GI-Oncology
- Clinical Research Center
- Ruhr-University Bochum
- 44780 Bochum
- Germany
| | - K. Gerwert
- Department of Biophysics
- Ruhr-University Bochum
- Germany
| | | |
Collapse
|
26
|
Sharma R. Editorial: sorafenib toxicity, a biomarker of effect? Authors' reply. Aliment Pharmacol Ther 2017; 45:1470-1471. [PMID: 28474833 DOI: 10.1111/apt.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- R Sharma
- Imperial College London, Surgery and Cancer, London, UK
| |
Collapse
|
27
|
Bins S, van Doorn L, Phelps MA, Gibson AA, Hu S, Li L, Vasilyeva A, Du G, Hamberg P, Eskens F, de Bruijn P, Sparreboom A, Mathijssen R, Baker SD. Influence of OATP1B1 Function on the Disposition of Sorafenib-β-D-Glucuronide. Clin Transl Sci 2017; 10:271-279. [PMID: 28371445 PMCID: PMC5504481 DOI: 10.1111/cts.12458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/27/2017] [Indexed: 01/05/2023] Open
Abstract
The oral multikinase inhibitor sorafenib undergoes extensive UGT1A9-mediated formation of sorafenib-β-D-glucuronide (SG). Using transporter-deficient mouse models, it was previously established that SG can be extruded into bile by ABCC2 or follow a liver-to-blood shuttling loop via ABCC3-mediated efflux into the systemic circulation, and subsequent uptake in neighboring hepatocytes by OATP1B-type transporters. Here we evaluated the possibility that this unusual process, called hepatocyte hopping, is also operational in humans and can be modulated through pharmacological inhibition. We found that SG transport by OATP1B1 or murine Oatp1b2 was effectively inhibited by rifampin, and that this agent can significantly increase plasma levels of SG in wildtype mice, but not in Oatp1b2-deficient animals. In human subjects receiving sorafenib, rifampin acutely increased the systemic exposure to SG. Our study emphasizes the need to consider hepatic handling of xenobiotic glucuronides in the design of drug-drug interaction studies of agents that undergo extensive phase II conjugation.
Collapse
Affiliation(s)
- S Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - L van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - M A Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - A A Gibson
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - S Hu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - L Li
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - A Vasilyeva
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - G Du
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - P Hamberg
- Department of Internal Medicine, St. Franciscus Gasthuis, Rotterdam, The Netherlands
| | - Falm Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - P de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - A Sparreboom
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands.,Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Rhj Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Wytemaweg, Rotterdam, The Netherlands
| | - S D Baker
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
28
|
Tandia M, Mhiri A, Paule B, Saffroy R, Cailliez V, Noé G, Farinotti R, Bonhomme-Faivre L. Correlation between clinical response to sorafenib in hepatocellular carcinoma treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast cancer resistance protein (ABCG2): monocentric study. Cancer Chemother Pharmacol 2017; 79:759-766. [PMID: 28289864 DOI: 10.1007/s00280-017-3268-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES We studied the relation between the polymorphism of P-glycoprotein (P-gp) and of breast cancer resistance protein (BCRP), encoded by ABCB1 and ABCG2 genes, respectively, and the pharmacokinetic variability and clinical response during the treatment with sorafenib of hepatocellular carcinoma. METHODS At the Paul Brousse Hospital in Villejuif, France, 47 consecutive patients with advanced HCC treated with a single agent sorafenib, were enrolled. Sorafenib exposure was measured by its plasma concentration 3 h after oral administration of 400 mg (bid) by liquid chromatography. All enrolled patients were genotyped for ABCB1 (rs2032582; rs1045642) and ABCG2 (rs2231137; rs2231142; rs2622604) by blood genomic DNA extraction and Mass ARRAY genotyping. The clinical response was evaluated after 3months of treatment according to the RECIST criteria. KEY FINDINGS Significant associations between sorafenib exposure and the studied polymorphisms were observed for ABCB1 3435C>T, ABCG2 34G>A, ABCG2 1143C>T and ABCG2 421C>A, but not for ABCB1 2677G>TA SNP. In heterozygous patients for ABCB1 3435 C>T, ABCG2 34 G>A and ABCG2 1143 C>T polymorphisms were significantly associated with the lowest sorafenib plasma levels. Those patients presented a tendency to have the best clinical evolution. CONCLUSION Heterozygous forms of the studied polymorphisms could be associated with a better therapeutic response.
Collapse
Affiliation(s)
- Mahamadou Tandia
- Laboratory of pharmacology, Service Pharmacie, Paul Brousse Hospital, AP-HP, 14 avenue Paul Vaillant-Couturier, 94800, Villejuif, France.
- UPRES EA 4123 Faculty of Pharmaceutical Sciences, Université Paris XI, 5 rue Jean Baptiste Clémént, 92296, Chatenay-Malabry, cedex, France.
| | - Asma Mhiri
- Laboratory of pharmacology, Service Pharmacie, Paul Brousse Hospital, AP-HP, 14 avenue Paul Vaillant-Couturier, 94800, Villejuif, France
| | - Bernard Paule
- Hepatobiliary center, Paul Brousse Hospital, Villejuif, France
| | - Raphaël Saffroy
- Laboratory of biochemistry, Paul Brousse Hospital, Villejuif, France
| | | | - Gaëlle Noé
- Laboratory of pharmacology, Service Pharmacie, Paul Brousse Hospital, AP-HP, 14 avenue Paul Vaillant-Couturier, 94800, Villejuif, France
| | - Robert Farinotti
- UPRES EA 4123 Faculty of Pharmaceutical Sciences, Université Paris XI, 5 rue Jean Baptiste Clémént, 92296, Chatenay-Malabry, cedex, France
| | - Laurence Bonhomme-Faivre
- Laboratory of pharmacology, Service Pharmacie, Paul Brousse Hospital, AP-HP, 14 avenue Paul Vaillant-Couturier, 94800, Villejuif, France
- UPRES EA 4123 Faculty of Pharmaceutical Sciences, Université Paris XI, 5 rue Jean Baptiste Clémént, 92296, Chatenay-Malabry, cedex, France
| |
Collapse
|
29
|
Lin ZY, Chuang WL. Contrary influence of clinically applied sorafenib concentrations among hepatocellular carcinoma patients. Biomed Pharmacother 2017; 86:27-31. [PMID: 27936391 DOI: 10.1016/j.biopha.2016.11.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
The treatment responses of sorafenib in hepatocellular carcinoma are modest which may be due to different characteristics of cancer cells or insufficient therapeutic concentrations. This study was to clarify this issue. The anti-proliferative effects and differential expressions of 8 genes related to sorafenib anti-cancer mechanisms (tyrosine kinase receptor genes: KDR, PDGFRB; RAF cascade: RAF1, BRAF, MAP2K1, MAP2K2, MAPK1, MAPK3) were investigated in primary cultured hepatocellular carcinoma cells collected from 8 patients using clinically applied sorafenib concentrations (5, 10μg/mL). The anti-proliferative effects of sorafenib at either 5 or 10μg/mL, which were related to down-regulations of KDR, PDGFRB and/or genes in the RAF cascade, were achieved only in one patient (HCC38/KMUH). However, either 5 or 10μg/mL sorafenib promoted proliferation in 4 patients (HCC29/KMUH, HCC62/KMUH, HCC87/KMUH, HCC98/KMUH). Among them, the RAF cascade, PDGFRB and/or KDR were up-regulated in 3 patients but no gene was differentially expressed in the remaining one patient (HCC87/KMUH). Increase the sorafenib concentration to 10μg/mL paradoxically up-regulated and/or obliterated the previously down-regulated genes in the RAF cascade and/or KDR in 4 patients (HCC29/KMUH, HCC76/KMUH, HCC87/KMUH, HCC98/KMUH). Significant down-regulations of the RAF cascade and PDGFRB by sorafenib but without anti-proliferative effects were detected in one patient (HCC54/KMUH). In conclusion, influence of sorafenib on proliferation is not simply through the RAF cascade. The responses of KDR, PDGFRB and the RAF cascade to sorafenib among patients are diverse or even contrary. Increase the sorafenib concentration has potential to up-regulate genes favored angiogenesis and proliferation.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Yang S, Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett 2017; 13:1041-1047. [PMID: 28454211 DOI: 10.3892/ol.2017.5557] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
Although the biological basis of hepatocellular carcinoma (HCC) remains unclear, effective treatments and improvement of the survival rate remain worthwhile research goals. Abnormal protein signaling pathways contributing to uncontrolled cell proliferation, differentiation, survival and apoptosis are biomarkers of the carcinogenic process. Certain mutated components or overexpression of the rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway are increasingly being studied in HCC carcinogenesis. The present review addresses the effect of the Ras/Raf/MEK/ERK signaling pathway on the pathogenesis of HCC, and provides an update on the preclinical and clinical development of various inhibitors targeting this core signaling pathway, which include various Ras inhibitors, Raf inhibitors and MEK inhibitors for HCC.
Collapse
Affiliation(s)
- Sufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical Collage, Shantou, Guangdong 515041, P.R. China
| | - Guohua Liu
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical Collage, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
31
|
Bins S, Lenting A, El Bouazzaoui S, van Doorn L, Oomen-de Hoop E, Eskens FA, van Schaik RH, Mathijssen RH. Polymorphisms in SLCO1B1 and UGT1A1 are associated with sorafenib-induced toxicity. Pharmacogenomics 2016; 17:1483-90. [PMID: 27533851 DOI: 10.2217/pgs-2016-0063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Sorafenib-treated patients display a substantial variation in the incidence of toxicity. We aimed to investigate the association of genetic polymorphisms with observed toxicity on sorafenib. PATIENTS & METHODS We genotyped 114 patients that were treated with sorafenib at the Erasmus MC Cancer Institute, the Netherlands, for SLCO1B1, SLCO1B3, ABCC2, ABCG2, UGT1A1 and UGT1A9. RESULTS The UGT1A1 (rs8175347) polymorphism was associated with hyperbilirubinemia and treatment interruption. Polymorphisms in SLCO1B1 (rs2306283, rs4149056) were associated with diarrhea and thrombocytopenia, respectively. None of the investigated polymorphisms was associated with overall or progression-free survival in hepatocellular cancer patients. CONCLUSION Polymorphisms in SLCO1B1 and UGT1A1 are associated with several different sorafenib side effects.
Collapse
Affiliation(s)
- Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anne Lenting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Samira El Bouazzaoui
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leni van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ferry Alm Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ron Hn van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron Hj Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Zhao X, Cao M, Lu Z, Wang T, Ren Y, Liu C, Nelson D. Small-molecule inhibitor sorafenib regulates immunoreactions by inducing survival and differentiation of bone marrow cells. Innate Immun 2016; 22:493-502. [PMID: 27440860 DOI: 10.1177/1753425916659702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
Sorafenib has been used for the treatment of liver cancer. However, its clinical impact on human immunity system remains poorly known. Our previous study has shown that sorafenib modulates immunosuppressive cell populations in murine liver cancer models. Here, we continue to report that low doses of sorafenib promotes the survival of murine bone marrow cells (BMCs) in a dose-dependent manner by up-regulating the anti-apoptotic protein survivin. Sorafenib induces differentiation of BMCs into suppressive dendritic cells that inhibit autologous T-cell proliferation and stimulate CD4+ T cells to express increased IL-1β, IL-2, IL-4, IL-10, IFN-γ and TNF-α, and reduced levels of IL-6 and CD25, which indicates that sorafenib-induced dendritic cells represent a distinct cellular subset with unique properties. Taken together, our findings suggest that in addition to its anticancer effects, sorafenib has an immunoregulatory property that is apparent at low doses.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, China Medical University Shengjing Hospital, Shenyang, China
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Mengde Cao
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Zaiming Lu
- Department of Radiology, China Medical University Shengjing Hospital, Shenyang, China
| | - Ton Wang
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ying Ren
- Department of Radiology, China Medical University Shengjing Hospital, Shenyang, China
| | - Chen Liu
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - David Nelson
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
33
|
Facciorusso A, Licinio R, Carr BI, Di Leo A, Barone M. MEK 1/2 inhibitors in the treatment of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2015; 9:993-1003. [PMID: 25915713 DOI: 10.1586/17474124.2015.1040763] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sorafenib is the only approved systemic treatment for advanced hepatocellular carcinoma patients and all the recently published randomized controlled trials on new systemic drugs have been unsuccessful. This is likely due to a lack of understanding of tumor progression, molecular drivers, and liver toxicity, as well as flaws in trial design. An important signaling pathway in hepatocarcinogenesis is the MEK cascade involved in various cellular responses, including adaptation and survival. A key role in this cascade is played by MEK, of which MEK 1/2 represent the prototypes and an interesting target for new oncological drugs. This review analyzes recent developments and future perspectives on the role of MEK inhibitors in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Antonio Facciorusso
- Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Ospedali Riuniti Foggia, Italy
| | | | | | | | | |
Collapse
|