1
|
Ramya S, Vijayakumar S, Gomathi T, Vidhya A. Prodigiosin pigment-producing Streptomyces diastaticus on Semi-solid media and anticancer activity against colorectal (COLO-205) cell line. Microb Pathog 2025; 204:107579. [PMID: 40228750 DOI: 10.1016/j.micpath.2025.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/26/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
The present study insights into the copious application of Prodigiosin as a bio-colorant produced by Actinomycetes using semisolid low-cost substrate media. Reddish pink pigment-producing Actinomycetes were isolated from the rhizosphere soil of the peanut plant and characterized by morphological, biochemical, and molecular analysis. Molecular analysis unveiled that the pigment-producing isolate was identified as Streptomyces diastaticus. Prodigiosin was produced in oatmeal media and characterized by UV-Spectrophotometer, Thin layer chromatography, FTIR, GC-MS, and NMR studies to investigate the structure of the pigment. Anti-cancer activity and toxicity of the pigment were studied. The results demonstrated dose-dependent anti-cancer activity against COLO-205 with an IC-50 value 171.36 μg/ml and the toxicity test on the HaCaT cell line showed cytotoxicity at higher concentrations at 1000 μg/ml respectively. The efficiency of anti-cancer activity on COLO-205 was further investigated by colony-forming assay, sphere-forming assay, ROS assay, simple staining, and dual staining. Anti-oxidant activity has increased with the increasing concentration of the pigment. Furtherly, it inhibits the growth of bacterial pathogens Staphylococcus aureus, Pseudomonas sp., Salmonella sp., E. coli and Klebsiella sp. and fungal pathogens Aspergillus niger, Aspergillus flavus, Penicillium sp., and Rhizopus sp. Overall results showed that the Prodigiosin produced from Actinomycetes is found to be toxic to cancer cells. Thus, it could find application as a bio-colorant in the dyeing, cosmetics, and food sectors.
Collapse
Affiliation(s)
- S Ramya
- PG and Research Department of Microbiology, D. K. M. College for Women (Autonomous), Affiliated to Thiruvalluvar University, Vellore, 632001, Tamil Nadu, India
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Thandapani Gomathi
- PG and Research Department of Chemistry, D.K.M. College for Women (Autonomous), Affiliated to Thiruvalluvar University, Vellore, Tamil Nadu, India.
| | - A Vidhya
- PG and Research Department of Microbiology, D. K. M. College for Women (Autonomous), Affiliated to Thiruvalluvar University, Vellore, 632001, Tamil Nadu, India.
| |
Collapse
|
2
|
Poole S, Aning O, McKee V, Catley T, Nielsen A, Thisgaard H, Johansson P, Menounou G, Hennessy J, Slator C, Gibney A, Pyne A, McGorman B, Westerlund F, Kellett A. Design and in vitro anticancer assessment of a click chemistry-derived dinuclear copper artificial metallo-nuclease. Nucleic Acids Res 2025; 53:gkae1250. [PMID: 39777469 PMCID: PMC11705080 DOI: 10.1093/nar/gkae1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Copper compounds with artificial metallo-nuclease (AMN) activity are mechanistically unique compared to established metallodrugs. Here, we describe the development of a new dinuclear copper AMN, Cu2-BPL-C6 (BPL-C6 = bis-1,10-phenanthroline-carbon-6), prepared using click chemistry that demonstrates site-specific DNA recognition with low micromolar cleavage activity. The BPL-C6 ligand was designed to force two redox-active copper centres-central for enhancing AMN activity-to bind DNA, via two phenanthroline ligands separated by an aliphatic linker. DNA-binding experiments, involving circular dichroism spectroscopy, agarose gel electrophoresis and fluorescence quenching, revealed a preference for binding with adenine-thymine-rich DNA. The oxidative cleavage mechanism of Cu2-BPL-C6 was then elucidated using in vitro molecular and biophysical assays, including in-liquid atomic force microscopy analysis, revealing potent DNA cleavage mediated via superoxide and hydrogen peroxide oxidative pathways. Single-molecule analysis with peripheral blood mononuclear cells identified upregulated single-strand DNA lesions in Cu2-BPL-C6-treated cells. Using specific base excision repair (BER) enzymes, we showed that Endo IV selectively repairs these lesions indicating that the complex generates apurinic and apyrimidinic adducts. Broad spectrum anticancer evaluation of BPL-C6 was performed by the National Cancer Institute's 60 human cell line screen (NCI-60) and revealed selectivity for certain melanoma, breast, colon and non-small cell lung cancer cell lines.
Collapse
Affiliation(s)
- Simon Poole
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Obed Akwasi Aning
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Vickie McKee
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Thomas Catley
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | | | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Pegah Johansson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Region Vastra Gotaland, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Georgia Menounou
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Joseph Hennessy
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Creina Slator
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Alex Gibney
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Alice Pyne
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Bríonna McGorman
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew Kellett
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
3
|
Ayoub EA, Azoubi Z, Nadia Z, Assia M, Mohammed M. Relationships of Prodiginins Mechanisms and Molecular Structures to their Antiproliferative Effects. Anticancer Agents Med Chem 2024; 24:1383-1395. [PMID: 39113301 DOI: 10.2174/0118715206314212240805105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 10/26/2024]
Abstract
The Prodiginins (PGs) natural pigments are secondary metabolites produced by a broad spectrum of gram-negative and gram-positive bacteria, notably by species within the Serratia and Streptomyces genera. These compounds exhibit diverse and potent biological activities, including anticancer, immunosuppressive, antimicrobial, antimalarial, and antiviral effects. Structurally, PGs share a common tripyrrolic core but possess variable side chains and undergo cyclization, resulting in structural diversity. Studies have investigated their antiproliferative effects on various cancer cell lines, with some PGs advancing to clinical trials for cancer treatment. This review aims to illuminate the molecular mechanisms underlying PG-induced apoptosis in cancer cells and explore the structure-activity relationships pertinent to their anticancer properties. Such insights may serve as a foundation for further research in anticancer drug development, potentially leading to the creation of novel, targeted therapies based on PGs or their derivatives.
Collapse
Affiliation(s)
- El Abbassi Ayoub
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Zineb Azoubi
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Zougagh Nadia
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Mouslim Assia
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Menggad Mohammed
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| |
Collapse
|
4
|
Saleh N, Mahmoud HE, Eltaher H, Helmy M, El-Khordagui L, Hussein AA. Prodigiosin-Functionalized Probiotic Ghosts as a Bioinspired Combination Against Colorectal Cancer Cells. Probiotics Antimicrob Proteins 2023; 15:1271-1286. [PMID: 36030493 PMCID: PMC10491537 DOI: 10.1007/s12602-022-09980-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 12/02/2022]
Abstract
Lactobacillus acidophilus ghosts (LAGs) with the unique safety of a probiotic, inherent tropism for colon cells, and multiple bioactivities offer promise as drug carriers for colon targeting. Our objective was to evaluate LAGs functionalized with prodigiosin (PG), apoptotic secondary bacterial metabolite, as a bioinspired formulation against colorectal cancer (CRC). LAGs were prepared by a chemical method and highly purified by density gradient centrifugation. LAGs were characterized by microscopic and staining techniques as relatively small-sized uniform vesicles (≈1.6 µm), nearly devoid of cytoplasmic and genetic materials and having a negatively charged intact envelope. PG was highly bound to LAGs envelope, generating a physiologically stable bioactive entity (PG-LAGs), as verified by multiple microscopic techniques and lack of PG release under physiological conditions. PG-LAGs were active against HCT116 CRC cells at both the cellular and molecular levels. Cell viability data highlighted the cytotoxicity of PG and LAGs and LAGs-induced enhancement of PG selectivity for HCT116 cells, anticipating dose reduction for PG and LAGs. Molecularly, expression of the apoptotic caspase 3 and P53 biomarkers in HCT116 intracellular proteins was significantly upregulated while that of the anti-apoptotic Bcl-2 (B-cell lymphoma 2) was downregulated by PG-LAGs relative to PG and 5-fluorouracil. PG-LAGs provide a novel bacteria-based combination for anticancer biomedicine.
Collapse
Affiliation(s)
- Nessrin Saleh
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda E Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Maged Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Labiba El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Abdullah NA, Mahmoud HE, El-Nikhely NA, Hussein AA, El-Khordagui LK. Carbon dots labeled Lactiplantibacillus plantarum: a fluorescent multifunctional biocarrier for anticancer drug delivery. Front Bioeng Biotechnol 2023; 11:1166094. [PMID: 37304143 PMCID: PMC10248154 DOI: 10.3389/fbioe.2023.1166094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
A carbon dots (CDs)-biolabeled heat-inactivated Lactiplantibacillus plantarum (HILP) hybrid was investigated as a multifunctional probiotic drug carrier with bioimaging properties using prodigiosin (PG) as anticancer agent. HILP, CDs and PG were prepared and characterized using standard methods. CDs-labeled HILP (CDs/HILP) and PG loaded CDs/HILP were characterized by transmission electron microscopy (TEM), laser scanning confocal microscopy (LSCM) and for entrapment efficiency (EE%) of CDs and PG, respectively. PG-CDs/HILP was examined for stability and PG release. the anticancer activity of PG-CDs/HILP was assessed using different methods. CDs imparted green fluorescence to HILP cells and induced their aggregation. HILP internalized CDs via membrane proteins, forming a biostructure with retained fluorescence in PBS for 3 months at 4°C. Loading PG into CDs/HILP generated a stable green/red bicolor fluorescent combination permitting tracking of both drug carrier and cargo. Cytotoxicity assay using Caco-2 and A549 cells revealed enhanced PG activity by CDs/HILP. LCSM imaging of PG-CDs/HILP-treated Caco-2 cells demonstrated improved cytoplasmic and nuclear distribution of PG and nuclear delivery of CDs. CDs/HILP promoted PG-induced late apoptosis of Caco-2 cells and reduced their migratory ability as affirmed by flow cytometry and scratch assay, respectively. Molecular docking indicated PG interaction with mitogenic molecules involved in cell proliferation and growth regulation. Thus, CDs/HILP offers great promise as an innovative multifunctional nanobiotechnological biocarrier for anticancer drug delivery. This hybrid delivery vehicle merges the physiological activity, cytocompatibility, biotargetability and sustainability of probiotics and the bioimaging and therapeutic potential of CDs.
Collapse
Affiliation(s)
- Noor A. Abdullah
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda E. Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nefertiti A. El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed A. Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Labiba K. El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Alsharif KF, Albrakati A, Al Omairi NE, Almalki AS, Alsanie W, Abd Elmageed ZY, Alharthi F, Althagafi HA, Alghamdi AAA, Hassan IE, Habotta OA, Lokman MS, Kassab RB, El-Hennamy RE. Neuroprotective efficacy of the bacterial metabolite, prodigiosin, against aluminium chloride-induced neurochemical alternations associated with Alzheimer's disease murine model: Involvement of Nrf2/HO-1/NF-κB signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:266-277. [PMID: 36447373 DOI: 10.1002/tox.23718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Prodigiosin (PDG) is a bacterial metabolite with numerous biological and pharmaceutical properties. Exposure to aluminium is considered a root etiological factor in the pathological progress of Alzheimer's disease (AD). Here, in this investigation, we explored the neuroprotective potential of PDG against aluminium chloride (AlCl3 )-mediated AD-like neurological alterations in rats. For this purpose, rats were gavaged either AlCl3 (100 mg/kg), PDG (300 mg/kg), or both for 42 days. As a result of the analyzes performed on the hippocampal tissue, it was observed that AlCl3 induced biochemical, molecular, and histopathological changes like those related to AD. PDG pre-treatment significantly decreased acetylcholinesterase activity and restored the levels of brain-derived neurotrophic factor, monoamines (dopamine, norepinephrine, and serotonin), and transmembrane protein (Na+ /K+ -ATPase). Furthermore, PDG boosted the hippocampal antioxidant capacity, as shown by the increased superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents. These findings were accompanied by decreases in malondialdehyde and nitric oxide levels. The antioxidant effect may promote the upregulation of the expression of antioxidant genes (Nrf2 and HO-1). Moreover, PDG exerted notable anti-inflammatory effects via the lessening of interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor kappa B, and decreases in the gene expression of inducible nitric oxide synthase. In addition, noteworthy decreases in pro-apoptotic (Bax and caspase-3) levels and increases in anti-apoptotic (Bcl-2) biomarkers suggested an anti-apoptotic effect of PDG. In support, the hippocampal histological examination validated the aforementioned changes. To summarize, the promising neuromodulatory, antioxidative, anti-inflammatory, and anti-apoptotic activities of PDG establish it as a potent therapeutic option for AD.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Naif E Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | | | - Walaa Alsanie
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Zakaria Y Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ibrahim Eid Hassan
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Physics, College of Science and Arts, Qassim University, Alnbhaniah, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Rami B Kassab
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rehab E El-Hennamy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Anwar MM, Albanese C, Hamdy NM, Sultan AS. Rise of the natural red pigment 'prodigiosin' as an immunomodulator in cancer. Cancer Cell Int 2022; 22:419. [PMID: 36577970 PMCID: PMC9798661 DOI: 10.1186/s12935-022-02815-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer is a heterogeneous disease with multifaceted drug resistance mechanisms (e.g., tumour microenvironment [TME], tumour heterogeneity, and immune evasion). Natural products are interesting repository of bioactive molecules, especially those with anticancer activities. Prodigiosin, a red pigment produced by Serratia marcescens, possesses inherent anticancer characteristics, showing interesting antitumour activities in different cancers (e.g., breast, gastric) with low or without harmful effects on normal cells. The present review discusses the potential role of prodigiosin in modulating and reprogramming the metabolism of the various immune cells in the TME, such as T and B lymphocytes, tumour-associated macrophages (TAMs), natural killer (NK) cells, and tumour-associated dendritic cells (TADCs), and myeloid-derived suppressor cells (MDSCs) which in turn might introduce as an immunomodulator in cancer therapy.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- grid.7155.60000 0001 2260 6941Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Chris Albanese
- grid.516085.f0000 0004 0606 3221Oncology and Radiology Departments, Lombardi Comprehensive Cancer Center, Washington, D.C. USA
| | - Nadia M. Hamdy
- Department of Biochemistry, Ain Shams Faculty of Pharmacy, Cairo, Egypt
| | - Ahmed S. Sultan
- grid.7155.60000 0001 2260 6941Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Prodigiosin inhibits the proliferation of glioblastoma by regulating the KIAA1524/PP2A signaling pathway. Sci Rep 2022; 12:18527. [PMID: 36323805 PMCID: PMC9630538 DOI: 10.1038/s41598-022-23186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Prodigiosin (PG), a member of a family of natural red pigments produced by a variety of bacteria, was first discovered in Serratia marcescens. PG has been reported to have an apoptosis-inducing effect in many cancers, such as lymphoma, colon cancer and nasopharyngeal carcinoma. For this study, we used three glioblastoma (GBM) cell lines (LN229, U251 and A172) to explore the effect of prodigiosin on GBM cells. A CCK8 assay was used to evaluate cell viability. We determinedthe cell cycle distribution by flow cytometry and measured proliferation by an EdU incorporation assay. The expression of different molecules was investigated by western blotting and RT-PCR. We further confirmed our results by plasmid transfection and lentiviral transduction. The LN229 xenograft model was used to study the effect of prodigiosin in vivo. We confirmed that prodigiosin played an anticancer role in several GBM cell lines through the KIAA1524/PP2A/Akt signalling pathway. Prodigiosin inhibited the protein expression of KIAA1524 by suppressing its transcription, which led to activation of PP2A. Afterward, PP2A inhibited the phosphorylation of Akt, thereby inducing increased expression of p53/p21. Furthermore, it was verified that prodigiosin inhibited the KIAA1524/PP2A/Akt axis in vivo in the LN229 xenograft model. These data improve the understanding of the anticancer effects of prodigiosin and further highlight the potential of prodigiosin for the development of anti-glioma drugs.
Collapse
|
9
|
Araújo RG, Zavala NR, Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Parra-Arroyo L, Rodríguez-Hernández JA, Martínez-Prado MA, Sosa-Hernández JE, Martínez-Ruiz M, Chen WN, Barceló D, Iqbal HM, Parra-Saldívar R. Recent Advances in Prodigiosin as a Bioactive Compound in Nanocomposite Applications. Molecules 2022; 27:4982. [PMID: 35956931 PMCID: PMC9370345 DOI: 10.3390/molecules27154982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Bionanocomposites based on natural bioactive entities have gained importance due to their abundance; renewable and environmentally benign nature; and outstanding properties with applied perspective. Additionally, their formulation with biological molecules with antimicrobial, antioxidant, and anticancer activities has been produced nowadays. The present review details the state of the art and the importance of this pyrrolic compound produced by microorganisms, with interest towards Serratia marcescens, including production strategies at a laboratory level and scale-up to bioreactors. Promising results of its biological activity have been reported to date, and the advances and applications in bionanocomposites are the most recent strategy to potentiate and to obtain new carriers for the transport and controlled release of prodigiosin. Prodigiosin, a bioactive secondary metabolite, produced by Serratia marcescens, is an effective proapoptotic agent against bacterial and fungal strains as well as cancer cell lines. Furthermore, this molecule presents antioxidant activity, which makes it ideal for treating wounds and promoting the general improvement of the immune system. Likewise, some of the characteristics of prodigiosin, such as hydrophobicity, limit its use for medical and biotechnological applications; however, this can be overcome by using it as a component of a bionanocomposite. This review focuses on the chemistry and the structure of the bionanocomposites currently developed using biorenewable resources. Moreover, the work illuminates recent developments in pyrrole-based bionanocomposites, with special insight to its application in the medical area.
Collapse
Affiliation(s)
- Rafael G. Araújo
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
| | - Natalia Rodríguez Zavala
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango (TecNM-ITD), Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico
| | - Carlos Castillo-Zacarías
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ingeniería Ambiental, Ciudad Universitaria S/N, San Nicolás de los Garza 66455, Mexico
| | - Mario E. Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - María Adriana Martínez-Prado
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango (TecNM-ITD), Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637457, Singapore
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, UPES, Dehradun 248007, India
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
10
|
Shahin YH, Elwakil BH, Ghareeb DA, Olama ZA. Micrococcus lylae MW407006 Pigment: Production, Optimization, Nano-Pigment Synthesis, and Biological Activities. BIOLOGY 2022; 11:biology11081171. [PMID: 36009797 PMCID: PMC9405233 DOI: 10.3390/biology11081171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The global crisis of increased mortality rates due to the emergence of antimicrobial resistance and cancers has increased researchers’ efforts to find new, potent solutions through implementing natural products in the pharmaceutical industry. The present investigation produced echinenone (yellowish-orange pigment) from Micrococcus lylae MW407006 with potent pharmacological activities. A response surface methodology statistical design was used to optimize the biomass production, pigment concentration, and antimicrobial activity. The Spearman correlation coefficient was assessed, which indicated a strong linear relationship between biomass production, pigment concentration, and antimicrobial activity. Nano-echinenone was physically synthesized through the ball-milling technique. The synthesized nano-echinenone showed higher pharmacological activities (antimicrobial, antioxidant, and antitumor activities) in comparison with the crude pigment. The significantly high selectivity index of the synthesized nano-echinenone proved its safety and paved the way for its possible use in the pharmaceutical industry. Abstract Bacterial pigments (e.g., melanin and carotenoids) are considered to be among the most important secondary metabolites due to their various pharmacological activities against cancer and microbial resistance. Different pigmented bacterial strains were isolated from soil samples from El Mahmoudiyah governance and screened for their antimicrobial activity. The most promising pigment producer was identified as Micrococcus lylae MW407006; furthermore, the produced pigment was identified as echinenone (β-carotene pigment). The pigment production was optimized through a central composite statistical design to maximize the biomass production, pigment concentration, and the antimicrobial activity. It was revealed that the most significant fermentation parameters were the glucose (as a carbon source) and asparagine (as a nitrogen source) concentrations. Nano-echinenone was synthesized using the ball milling technique, characterized, and finally assessed for potential antimicrobial, antioxidant, and antitumor activities. The data revealed that the synthesized nano-echinenone had higher antimicrobial activity than the crude pigment. The cytotoxic potency of echinenone and nano-echinenone was investigated in different cell lines (normal and cancer cells). The inhibition of cell proliferation and induction of cell death was observed in Caco-2 and Hep-G2 cells. The data proved that nano-echinenone is a suitable candidate for use as a safe antimicrobial and anti-hepatocellular-carcinoma agent.
Collapse
Affiliation(s)
- Yahya H. Shahin
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21648, Egypt
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21648, Egypt
- Correspondence:
| | - Doaa A. Ghareeb
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Zakia A. Olama
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
11
|
Albrakati A, Alsharif KF, Al omairi NE, Alsanie WF, Almalki ASA, Abd Elmageed ZY, Elshopakey GE, Lokman MS, Bauomy AA, Abdel Moneim AE, Kassab RB. Neuroprotective Efficiency of Prodigiosins Conjugated with Selenium Nanoparticles in Rats Exposed to Chronic Unpredictable Mild Stress is Mediated Through Antioxidative, Anti-Inflammatory, Anti-Apoptotic, and Neuromodulatory Activities. Int J Nanomedicine 2021; 16:8447-8464. [PMID: 35002238 PMCID: PMC8722537 DOI: 10.2147/ijn.s323436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Depression is a mood disorder accompanied by intensive molecular and neurochemical alterations. Currently, available antidepressant therapies are not fully effective and are often accompanied by several adverse impacts. Accordingly, the ultimate goal of this investigation was to clarify the possible antidepressant effects of prodigiosins (PDGs) loaded with selenium nanoparticles (PDGs-SeNPs) in chronic unpredictable mild stress (CUMS)-induced depression-like behavior in rats. METHODS Sixty Sprague Dawley rats were randomly allocated into six groups: control, CUMS group (depression model), fluoxetine (Flu, 10 mg/kg)+CUMS, PDGs+CUMS (300 mg/kg), sodium selenite (Na2SeO3, 400 mg/kg)+CUMS, and PDGs-SeNPs+CUMS (200 mg/kg). All treatments were applied orally for 28 consecutive days. RESULTS PDGs-SeNPs administration prevented oxidative insults in hippocampal tissue, as demonstrated by decreased oxidant levels (nitric oxide and malondialdehyde) and elevated innate antioxidants (glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase), in addition to the upregulated expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in rats exposed to CUMS. Additionally, PDGs-SeNPs administration suppressed neuroinflammation in hippocampal tissue, as determined by the decreased production of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1β, and interleukin-6), increased anti-inflammatory cytokine interleukin-10, and decreased inflammatory mediators (prostaglandin E2, cyclooxygenase-2, and nuclear factor kappa B). Moreover, PDGs-SeNPs administration in stressed rats inhibited neuronal loss and the development of hippocampal apoptosis through enhanced levels of B cell lymphoma 2 and decreased levels of caspase 3 and Bcl-2-associated X protein. Interestingly, PDGs-SeNPs administration improved hormonal levels typically disrupted by CUMS exposure and significantly modulated hippocampal levels of monoamines, brain-derived neurotrophic factor, monoamine oxidase, and acetylcholinesterase activities, in addition to upregulating the immunoreactivity of glial fibrillary acidic protein in CUMS model rats. CONCLUSION PDGs-SeNPs may serve as a prospective antidepressant candidate due to their potent antioxidant, anti-inflammatory, and neuroprotective potential.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Naif E Al omairi
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Zakaria Y Abd Elmageed
- Department of Pharmacology, Edward via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA, USA
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Amira A Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, ArRassAl-Qassim, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Biology Department, Faculty of Science and Arts, Al Baha University, Al Makhwah Branch, Al Baha, Saudi Arabia
| |
Collapse
|
12
|
Butylcycloheptylprodigiosin and undecylprodigiosin are potential photosensitizer candidates for photodynamic cancer therapy. Mol Biol Rep 2021; 48:5965-5975. [PMID: 34331180 DOI: 10.1007/s11033-021-06598-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prodiginines are bacterial red polypyrrole pigments and multifaceted secondary metabolites. These agents have anti-proliferative, immunosuppressive, antimicrobial, and anticancer effects. Recent analysis revealed that prodigiosin hypersensitizes Serratia marcescens to gamma radiation. In the present study, we report the cytotoxicity and genotoxicity properties of undecylprodigiosin and butylcycloheptylprodigiosin in the presence and absence of radiation through the MTT and alkaline comet experiments. METHODS AND RESULTS Findings demonstrated that undecylprodigiosin was at least a fivefold more cytotoxic at low radiation doses (1 and 3 Gy) on both MCF7 and HDF lines rather than in the absence or high radiation doses (5 Gy) (P value < 0.05). Although butylcycloheptylprodigiosin toxicity on MCF7 and HDF was dose-dependent, it was not influenced by any radiation doses (P value > 0.05). Comet findings confirmed that these compounds' genotoxicity is only dose-dependent. Radiation had no significant effects on DNA damage on any of the cells (P value > 0.05). CONCLUSIONS In general, it can be concluded that the prodiginines are cytotoxic agents that act as a double-edged sword, radiosensitizers and radio-protective, respectively at low and high radiation doses in cancer treatment process. As the results they could be used in antitumor therapies very soon.
Collapse
|
13
|
Ambrose AJ, Pham NT, Sivinski J, Guimarães L, Mollasalehi N, Jimenez P, Abad MA, Jeyaprakash AA, Shave S, Costa-Lotufo LV, La Clair JJ, Auer M, Chapman E. A two-step resin based approach to reveal survivin-selective fluorescent probes. RSC Chem Biol 2021; 2:181-186. [PMID: 34458780 PMCID: PMC8342005 DOI: 10.1039/d0cb00122h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/07/2020] [Indexed: 01/24/2023] Open
Abstract
The identification of modulators for proteins without assayable biochemical activity remains a challenge in chemical biology. The presented approach adapts a high-throughput fluorescence binding assay and functional chromatography, two protein-resin technologies, enabling the discovery and isolation of fluorescent natural product probes that target proteins independently of biochemical function. The resulting probes also suggest targetable pockets for lead discovery. Using human survivin as a model, we demonstrate this method with the discovery of members of the prodiginine family as fluorescent probes to the cancer target survivin.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Nhan T Pham
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | - Jared Sivinski
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Larissa Guimarães
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
- Departamento de Farmacologia, Universidade de São Paulo São Paulo SP 05508-900 Brazil
| | - Niloufar Mollasalehi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Paula Jimenez
- Instituto do Mar, Universidade Federal de São Paulo Santos SP 11.070-100 Brazil
| | - Maria A Abad
- Wellcome Centre for Cell Biology, University of Edinburgh Edinburgh EH9 3BF UK
| | | | - Steven Shave
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | | | - James J La Clair
- Xenobe Research Institute P. O. Box 3052 San Diego CA 92163-1052 USA
| | - Manfred Auer
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
14
|
Niakani M, Majd A, Pakzad P, Malekinejad H. Prodigiosin induced the caspase-dependent apoptosis in human chronic myelogenous leukemia K562 cell. Res Pharm Sci 2020; 16:26-34. [PMID: 33953772 PMCID: PMC8074807 DOI: 10.4103/1735-5362.305186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 11/05/2022] Open
Abstract
Background and purpose: Chronic myeloid leukemia (CML) as a myeloproliferative disease is characterized by increased cellularity of bone marrow. Implementing the latest treatment protocols is currently accompanied by serious and life-threatening side effects. There are worldwide attempts to find new effective and potent therapeutic agents with minimal side effects on CML patients. This in vitro study was carried out to discover the potential antiproliferative and apoptotic effects of naturally produced prodigiosin (PDG) on K562 cells as an accepted model of CML. Experimental approach: The anti-proliferative effect of PDG was measured by MTT assay. To highlight the mechanism of cytotoxicity, the apoptotic cell death pathway was investigated by morphological and biochemical assessments. The dual acridine orange/ethidium bromide staining technique and western blotting method were applied to assess the mechanism of the potential apoptotic impact of PDG on K562 cells. Findings/Results: PDG-induced time- and concentration-dependent anti-proliferative effects were revealed with an estimated IC50 value of 54.06 μM. The highest cell viability reduction (60%) was recorded in cells, which were exposed to 100 μM concentration. Further assays demonstrated that in the dual acridine orange/ethidium bromide staining method the cell population in the late apoptosis phase was increased in a concentration-dependent manner, which was confirmed with remarkable DNA fragmentation. Conclusion and implications: We found that the PDG-induced apoptosis in K562 cells is mediated through the caspase-3 activation both in mRNA and protein levels. Our results suggest that PDG could be a potent compound for further pharmacokinetic and pharmacodynamics studies in the in vivo model of CML.
Collapse
Affiliation(s)
- Maryam Niakani
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Tehran North Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Ahmad Majd
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Tehran North Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Parviz Pakzad
- Department of Microbiology, Faculty of Biological Sciences, Tehran North Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, I.R. Iran.,Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, I.R. Iran
| |
Collapse
|
15
|
Lang DK, Kaur R, Arora R, Saini B, Arora S. Nitrogen-Containing Heterocycles as Anticancer Agents: An Overview. Anticancer Agents Med Chem 2020; 20:2150-2168. [DOI: 10.2174/1871520620666200705214917] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/31/2020] [Accepted: 04/26/2020] [Indexed: 01/14/2023]
Abstract
Background:
Cancer is spreading all over the world, and it is becoming the leading cause of major
deaths. Today’s most difficult task for every researcher is to invent a new drug that can treat cancer with minimal
side effects. Many factors, including pollution, modern lifestyle and food habits, exposure to oncogenic
agents or radiations, enhanced industrialization, etc. can cause cancer. Treatment of cancer is done by various
methods that include chemotherapy, radiotherapy, surgery and immunotherapy in combination or singly along
with kinase inhibitors. Most of the anti-cancer drugs use the concept of kinase inhibition.
Objective:
The number of drugs being used in chemotherapy has heterocycles as their basic structure in spite of
various side effects. Medicinal chemists are focusing on nitrogen-containing heterocyclic compounds like pyrrole,
pyrrolidine, pyridine, imidazole, pyrimidines, pyrazole, indole, quinoline, oxadiazole, azole, benzimidazole,
etc. as the key building blocks to develop active biological compounds. The aim of this study is to attempt
to compile a dataset of nitrogen-containing heterocyclic anti-cancer drugs.
Methods:
We adopted a structural search on notorious journal publication websites and electronic databases
such as Bentham Science, Science Direct, PubMed, Scopus, USFDA, etc. for the collection of peer-reviewed
research and review articles for the present review. The quality papers were retrieved, studied, categorized into
different sections, analyzed and used for article writing.
Conclusion:
As per FDA databases, nitrogen-based heterocycles in the drug design are almost 60% of unique
small-molecule drugs. Some of the nitrogen-containing heterocyclic anti-cancer drugs are Axitinib, Bosutinib,
Cediranib, Dasatanib (Sprycel®), Erlotinib (Tarceva®), Gefitinib (Iressa®), Imatinib (Gleevec®), Lapatinib (Tykerb
®), Linifanib, Sorafenib (Nexavar®), Sunitinib (Sutent®), Tivozanib, etc. In the present review, we shall focus
on the overview of nitrogen-containing heterocyclic active compounds as anti-cancer agents.
Collapse
Affiliation(s)
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
16
|
Wang SL, Nguyen VB, Doan CT, Tran TN, Nguyen MT, Nguyen AD. Production and Potential Applications of Bioconversion of Chitin and Protein-Containing Fishery Byproducts into Prodigiosin: A Review. Molecules 2020; 25:E2744. [PMID: 32545769 PMCID: PMC7356639 DOI: 10.3390/molecules25122744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
The technology of microbial conversion provides a potential way to exploit compounds of biotechnological potential. The red pigment prodigiosin (PG) and other PG-like pigments from bacteria, majorly from Serratia marcescens, have been reported as bioactive secondary metabolites that can be used in the broad fields of agriculture, fine chemicals, and pharmacy. Increasing PG productivity by investigating the culture conditions especially the inexpensive carbon and nitrogen (C/N) sources has become an important factor for large-scale production. Investigations into the bioactivities and applications of PG and its related compounds have also been given increased attention. To save production cost, chitin and protein-containing fishery byproducts have recently been investigated as the sole C/N source for the production of PG and chitinolytic/proteolytic enzymes. This strategy provides an environmentally-friendly selection using inexpensive C/N sources to produce a high yield of PG together with chitinolytic and proteolytic enzymes by S. marcescens. The review article will provide effective references for production, bioactivity, and application of S. marcescens PG in various fields such as biocontrol agents and potential pharmaceutical drugs.
Collapse
Affiliation(s)
- San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Minh Trung Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| |
Collapse
|
17
|
Lin SR, Chen YH, Tseng FJ, Weng CF. The production and bioactivity of prodigiosin: quo vadis? Drug Discov Today 2020; 25:828-836. [PMID: 32251776 DOI: 10.1016/j.drudis.2020.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Prodigiosin (PG), a red tripyrrole pigment, belongs to a member of the prodiginine family and is normally secreted by various sources including Serratia marcescens and other Gram-negative bacteria. The studies of PG have received innovative devotion as a result of reported antimicrobial, larvicidal and anti-nematoid immunomodulation and antitumor properties, owing to its antibiotic and cytotoxic activities. This review provides a comprehensive summary of research undertaken toward the isolation and structural elucidation of the prodiginine family of natural products. Additionally, the current evidence-based understanding of the biological activities and medicinal potential of PG is employed to determine the efficacy, with some reports of information related to pharmacokinetics, pharmacodynamics and toxicology.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduated Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11041, Taiwan
| | - Yu-Hsin Chen
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
| | - Feng-Jen Tseng
- Department of Orthopedics, Hualien Armed Force General Hospital, Hualien 97144, Taiwan
| | - Ching-Feng Weng
- The Center of Translational Medicine, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|
18
|
Abdelfattah MS, Elmallah MIY, Ebrahim HY, Almeer RS, Eltanany RMA, Abdel Moneim AE. Prodigiosins from a marine sponge-associated actinomycete attenuate HCl/ethanol-induced gastric lesion via antioxidant and anti-inflammatory mechanisms. PLoS One 2019; 14:e0216737. [PMID: 31194753 PMCID: PMC6563954 DOI: 10.1371/journal.pone.0216737] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
Gastric ulcer is sores that form in the stomach mucosal layer because of erosion caused by high acid secretion and excessive use of non-steroidal anti-inflammatory drugs. Prodigiosins (PdGs) are red-pigmented secondary metabolites produced by bacteria, including actinomycetes. Butylcycloheptylprodigiosin (1) and undecylprodigiosin (2) were identified and isolated from a crude extract of the actinomycete RA2 isolated from the Red Sea Sponge Spheciospongia mastoidea. Chemical structure of 1 and 2 was determined by NMR and mass spectroscopy. Although their antioxidant and anti-inflammatory properties are known, their effect on gastric lesion is unknown. Therefore, this study aimed to investigate gastroprotective effects of PdGs against HCl/ethanol-induced gastric lesion in rats. Oral pretreatment with PdGs (100, 200, and 300 mg/kg) attenuated severity of HCl/ethanol-induced gastric mucosal injury, as evidenced by decreases in gastric lesion index scores, ulceration area, histopathologic abnormality, and neutrophil infiltration. These effects were comparable to those of omeprazole, a standard anti-gastric ulcer agent. HCl/ethanol-induced gastric erosions was associated with tremendous increases in lipid peroxidation, nitric oxide, and pro-inflammatory cytokines and mediators (myeloperoxidase, interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2), and with significant decreases in enzymatic and non-enzymatic antioxidant activities. However, PdGs ameliorated gastric inflammation and oxidative stress by downregulating nuclear factor kappa B and inducible nitric oxide synthase expression and upregulating heme oxygenase-1 expression. PdGs prevented gastric mucosal apoptosis by downregulating Bax and caspase-3 expression and upregulating Bcl-2 expression, thereby increasing prostaglandin E2 production. Our results suggested that PdGs exerted gastroprotective effects by decreasing the levels of inflammatory mediators, apoptotic markers, and antioxidants.
Collapse
Affiliation(s)
- Mohamed S. Abdelfattah
- Natural Products Unit (NPRU), Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - Mohammed I. Y. Elmallah
- Natural Products Unit (NPRU), Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | | | - Rafa S. Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rasha M. A. Eltanany
- Natural Products Unit (NPRU), Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| |
Collapse
|
19
|
Davient B, Ng JPZ, Xiao Q, Li L, Yang L. Comparative Transcriptomics Unravels Prodigiosin's Potential Cancer-Specific Activity Between Human Small Airway Epithelial Cells and Lung Adenocarcinoma Cells. Front Oncol 2018; 8:573. [PMID: 30568916 PMCID: PMC6290060 DOI: 10.3389/fonc.2018.00573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: Non-Small Cell Lung Cancer (NSCLC) is extremely lethal upon metastasis and requires safe and effective systemic therapies to improve a patient's prognosis. Prodigiosin (PG) appears to selectively and effectively target cancer but not healthy cells. However, PG's cancer-specific activity has remained elusive until recently. Methods: PG's cancer-specific performance was compared to Docetaxel (DTX), Paclitaxel (PTX), and Doxorubicin (DOX) against human lung adenocarcinoma (A549) and human small airway epithelial cells (HSAEC). Combination of PG with DTX, PTX, or DOX in a 1:1 ED50 ratio was also evaluated. MTT assay was used to determine the post-treatment cell viability. RNA-sequencing was used for comparative transcriptomics analysis between A549 and HSAEC treated with 1.0 μM PG for 24 h. Results: PG reduced A549 cell viability by four-folds greater than HSAEC. In comparison to DTX, PTX and DOX, PG was ~1.7 times more toxic toward A549, and 2.5 times more protective toward HSAEC. Combination of PG in a 1:1 ED50 ratio with DTX, PTX, or DOX failed to exhibit synergistic toxicity toward A549 or protection toward HSAEC. In A549, genes associated in DNA replication were downregulated, while genes directly or indirectly associated in lipid and cholesterol biogenesis were upregulated. In HSAEC, co-upregulation of oncogenic and tumor-suppressive genes was observed. Conclusion: An overactive lipid and cholesterol biogenesis could have caused A549's autophagy, while a balancing-act between genes of oncogenic and tumor-suppressive nature could have conferred HSAEC heightened survival. Overall, PG appears to be a smart chemotherapeutic agent that may be both safe and effective for NSCLC patients.
Collapse
Affiliation(s)
- Bala Davient
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jessica Pei Zhen Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qiang Xiao
- Respiratory Medicine, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan, Foshan, China
| | - Liang Li
- Shenzhen Institute of Advance Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
20
|
Lin SR, Weng CF. PG-Priming Enhances Doxorubicin Influx to Trigger Necrotic and Autophagic Cell Death in Oral Squamous Cell Carcinoma. J Clin Med 2018; 7:jcm7100375. [PMID: 30347872 PMCID: PMC6210351 DOI: 10.3390/jcm7100375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022] Open
Abstract
Synergistic effects between natural compounds and chemotherapy drugs are believed to have fewer side effects with equivalent efficacy. However, the synergistic potential of prodigiosin (PG) with doxorubicin (Dox) chemotherapy is still unknown. This study explores the synergistic mechanism of PG and Dox against oral squamous cell carcinoma (OSCC) cells. Three OSCC cell lines were treated with different PG/Dox combinatory schemes for cytotoxicity tests and were further investigated for cell death characteristics by cell cycle flow cytometry and autophagy/apoptosis marker labelling. When OSCC cells were pretreated with PG, the cytotoxicity of the subsequent Dox-treatment was 30% higher than Dox alone. The cytotoxic efficacy of PG-pretreated was found better than those of PG plus Dox co-treatment and Dox-pretreatment. Increase of Sub-G1 phase and caspase-3/LC-3 levels without poly (ADP-ribose) polymeras (PARP) elevation indicated both autophagy and necrosis occurred in OSCC cells. Dox flux after PG-priming was further evaluated by rhodamine-123 accumulation and Dox transporters analysis to elucidate the PG-priming effect. PG-priming autophagy enhanced Dox accumulation according to the increase of rhodamine-123 accumulation without the alterations of Dox transporters. Additionally, the cause of PG-triggered autophagy was determined by co-treatment with endoplasmic reticulum (ER) stress or AMP-activated protein kinase (AMPK) inhibitor. PG-induced autophagy was not related to nutrient deprivation and ER stress was proved by co-treatment with specific inhibitor. Taken together, PG-priming autophagy could sensitize OSCC cells by promoting Dox influx without regulation of Dox transporter. The PG-priming might be a promising adjuvant approach for the chemotherapy of OSCC.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| |
Collapse
|
21
|
Chiu WJ, Lin SR, Chen YH, Tsai MJ, Leong MK, Weng CF. Prodigiosin-Emerged PI3K/Beclin-1-Independent Pathway Elicits Autophagic Cell Death in Doxorubicin-Sensitive and -Resistant Lung Cancer. J Clin Med 2018; 7:jcm7100321. [PMID: 30282915 PMCID: PMC6210934 DOI: 10.3390/jcm7100321] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 01/26/2023] Open
Abstract
Prodigiosin (PG) belongs to a family of prodiginines isolated from gram-negative bacteria. It is a water insoluble red pigment and a potent proapoptotic compound. This study elucidates the anti-tumor activity and underlying mechanism of PG in doxorubicin-sensitive (Dox-S) and doxorubicin-resistant (Dox-R) lung cancer cells. The cytotoxicity and cell death characteristics of PG in two cells were measured by MTT assay, cell cycle analysis, and apoptosis/autophagic marker analysis. Then, the potential mechanism of PG-induced cell death was evaluated through the phosphatidylinositol-4,5-bisphosphate 3-kinase-p85/Protein kinase B /mammalian target of rapamycin (PI3K-p85/Akt/mTOR) and Beclin-1/phosphatidylinositol-4,5-bisphosphate 3-kinase-Class III (Beclin-1/PI3K-Class III) signaling. Finally, in vivo efficacy was examined by intratracheal inoculation and treatment. There was similar cytotoxicity with PG in both Dox-S and Dox-R cells, where the half maximal inhibitory concentrations (IC50) were all in 10 μM. Based on a non-significant increase in the sub-G1 phase with an increase of microtubule-associated proteins 1A/1B light chain 3B-phosphatidylethanolamine conjugate (LC3-II), the cell death of both cells was categorized to achieve autophagy. Interestingly, an increase in cleaved-poly ADP ribose polymerase (cleaved-PARP) also showed the existence of an apoptosis-sensitive subpopulation. In both Dox-S and Dox-R cells, PI3K-p85/Akt/mTOR signaling pathways were reduced, which inhibited autophagy initiation. However, Beclin-1/PI3K-Class III downregulation implicated non-canonical autophagy pathways were involved in PG-induced autophagy. At completion of the PG regimen, tumors accumulated in the mice trachea and were attenuated by PG treatment, which indicated the efficacy of PG for both Dox-S and Dox-R lung cancer. All the above results concluded that PG is a potential chemotherapeutic agent for lung cancer regimens regardless of doxorubicin resistance.
Collapse
Affiliation(s)
- Wei-Jun Chiu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Yu-Hsin Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - May-Jwan Tsai
- Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Max K Leong
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| |
Collapse
|
22
|
Sam MR, Ghoreishi S. Prodigiosin produced by Serratia marcescens inhibits expression of MMP-9 and survivin and promotes caspase-3 activation with induction of apoptosis in acute lymphoblastic leukaemia cells. J Appl Microbiol 2018; 125:1017-1029. [PMID: 29896797 DOI: 10.1111/jam.13949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
AIMS Matrix metalloproteinase-9 (MMP-9) and survivin are involved in several steps of carcinogenesis in acute lymphoblastic leukaemia (ALL). Yet, no MMP-9 and survivin-modulating drugs with low toxicity on normal cells but high efficacy against high MMP-9- and survivin-expressing leukaemia cells have been approved for clinical application in ALL. Prodigiosin, a secondary metabolite of Serratia marcescens, induces apoptosis in different kinds of cancer cells with low toxicity on normal cells. However, little is known about the effects of this compound on the high MMP-9- and survivin-expressing leukaemia cells. METHODS AND RESULTS CCRF-CEM cells as a model for high MMP-9- and survivin-expressing ALL cells were treated with 100, 200 and 400 nmol l-1 prodigiosin after which cell number, proliferation rate, MMP-9 and survivin expression, caspase-3 activation and apoptosis were evaluated. After 24-, 48-, and 72-h treatments with 100, 200 and 400 nmol l-1 prodigiosin, proliferation rates were measured to be 92·3-76·7%, 82-63% and 63·7-46·6% respectively. Treatment with prodigiosin for 48 h decreased MMP-9 mRNA levels followed by decreases in secreted (S) and intracellular (I) MMP-9 protein levels by 20-22% and 69-72% for 100-400 nmol l-1 prodigiosin respectively. Prodigiosin decreased survivin protein levels from 40 to 26% followed by 3·7-5·6-fold increases in caspase-3 activation for the aforementioned prodigiosin concentration ranges. Treatment with 100-400 nmol l-1 prodigiosin increased the caspase-3/survivin, caspase-3/I-MMP-9 and caspase-3/S-MMP-9 ratios by 6-7·3-, 11·5-19·1- and 4·9-6·8-fold increases respectively. A dramatic increase in the number of apoptotic cells was also observed with increasing prodigiosin concentrations. CONCLUSION The inhibitory effects of prodigiosin on MMP-9 and survivin expression, as well as its pro-apoptotic capacity, represent a novel therapeutic avenue against ALL cells. SIGNIFICANCE AND IMPACT OF THE STUDY These findings provide an important and interesting basis to develop a new therapeutic compound with high potential against ALL cells.
Collapse
Affiliation(s)
- M R Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - S Ghoreishi
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| |
Collapse
|
23
|
Riaz Rajoka MS, Zhao H, Lu Y, Lian Z, Li N, Hussain N, Shao D, Jin M, Li Q, Shi J. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct 2018; 9:2705-2715. [DOI: 10.1039/c8fo00547h] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The CFCS of Lactobacilli strains from human breast milk induced apoptosis in HeLa cells ROS related mitochondrial pathway.
Collapse
|
24
|
Di W, Zhang L, Wang S, Yi H, Han X, Fan R, Zhang Y. Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk. Carbohydr Polym 2017; 171:307-315. [DOI: 10.1016/j.carbpol.2017.03.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 11/26/2022]
|
25
|
Cheng MF, Lin CS, Chen YH, Sung PJ, Lin SR, Tong YW, Weng CF. Inhibitory Growth of Oral Squamous Cell Carcinoma Cancer via Bacterial Prodigiosin. Mar Drugs 2017; 15:md15070224. [PMID: 28714874 PMCID: PMC5532666 DOI: 10.3390/md15070224] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/02/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy drugs for oral cancers always cause side effects and adverse effects. Currently natural sources and herbs are being searched for treated human oral squamous carcinoma cells (OSCC) in an effort to alleviate the causations of agents in oral cancers chemotherapy. This study investigates the effect of prodigiosin (PG), an alkaloid and natural red pigment as a secondary metabolite of Serratia marcescens, to inhibit human oral squamous carcinoma cell growth; thereby, developing a new drug for the treatment of oral cancer. In vitro cultured human OSCC models (OECM1 and SAS cell lines) were used to test the inhibitory growth of PG via cell cytotoxic effects (MTT assay), cell cycle analysis, and Western blotting. PG under various concentrations and time courses were shown to effectively cause cell death and cell-cycle arrest in OECM1 and SAS cells. Additionally, PG induced autophagic cell death in OECM1 and SAS cells by LC3-mediated P62/LC3-I/LC3-II pathway at the in vitro level. These findings elucidate the role of PG, which may target the autophagic cell death pathways as a potential agent in cancer therapeutics.
Collapse
Affiliation(s)
- Ming-Fang Cheng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 10086, Taiwan.
- Division of Histology and Clinical Pathology, Hualian Army Forces General Hospital, Hualien 97144, Taiwan.
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 10086, Taiwan.
| | - Yu-Hsin Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
| | - Ping-Jyun Sung
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Yi-Wen Tong
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
| |
Collapse
|
26
|
Sam MR, Pourpak RS. Regulation of p53 and survivin by prodigiosin compound derived from Serratia marcescens contribute to caspase-3-dependent apoptosis in acute lymphoblastic leukemia cells. Hum Exp Toxicol 2017; 37:608-617. [PMID: 28681618 DOI: 10.1177/0960327117718052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tumor suppressor p53 and proto-oncogene survivin are challenging targets for anticancer drugs in acute lymphoblastic leukemia (ALL) which are associated with chemoresistance. Yet, no p53 and survivin-modulating drug with low toxicity and high efficacy has been approved for clinical application in ALL. Consequently, the search for novel compounds which target p53 or survivin is needed to further advance ALL treatment. Prodigiosin, a secondary metabolite of Serratia marcescens induces apoptosis in cancer cells with no toxicity on normal cells. However, the possible potential of prodigiosin as p53- and survivin-modulating agent in ALL cells has not been investigated. Wt-p53 Molt-4 cells were treated with 100 to 600 nM prodigiosin, after which, viability, cell proliferation rates, survivin and p53 protein levels, caspase-3 activation, and apoptosis were evaluated. After 24-, 48-, and 72-h treatments with 100 to 600 nM prodigiosin, cell proliferation rates were measured to be 93.7-77.3%, 75.5-58.3%, and 55-23.3%, respectively. Treatment for 48 hours with 100 to 600 nM prodigiosin resulted in 41-19% decrease in survivin protein levels followed by 450-950% increases in caspase-3 activation levels. Prodigiosin induced remarkably p53 accumulation and increased p53/survivin and caspase-3/survivin ratios by 6.1 to 11.3 and 10.3 to 47.5-fold at 100 to 600 nM, respectively. Survivin protein levels were inversely proportional to p53 accumulation levels. Low survivin protein levels combined with high levels of p53 accumulation were correlated to higher apoptotic rates. P53 and survivin as molecular targets of prodigiosin contribute to caspase-3-dependent apoptosis in ALL cells and this compound represents an attractive p53- and survivin-modulating agent in ALL.
Collapse
Affiliation(s)
- M R Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - R S Pourpak
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| |
Collapse
|
27
|
Lin SR, Fu YS, Tsai MJ, Cheng H, Weng CF. Natural Compounds from Herbs that can Potentially Execute as Autophagy Inducers for Cancer Therapy. Int J Mol Sci 2017; 18:ijms18071412. [PMID: 28671583 PMCID: PMC5535904 DOI: 10.3390/ijms18071412] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 01/07/2023] Open
Abstract
Accumulated evidence indicates that autophagy is a response of cancer cells to various anti-cancer therapies. Autophagy is designated as programmed cell death type II, and is characterized by the formation of autophagic vacuoles in the cytoplasm. Numerous herbs, including Chinese herbs, have been applied to cancer treatments as complementary and alternative medicines, supplements, or nutraceuticals to dampen the side or adverse effects of chemotherapy drugs. Moreover, the tumor suppressive actions of herbs and natural products induced autophagy that may lead to cell senescence, increase apoptosis-independent cell death or complement apoptotic processes. Hereby, the underlying mechanisms of natural autophagy inducers are cautiously reviewed in this article. Additionally, three natural compounds—curcumin, 16-hydroxycleroda-3,13-dien-15,16-olide, and prodigiosin—are presented as candidates for autophagy inducers that can trigger cell death in a supplement or alternative medicine for cancer therapy. Despite recent advancements in therapeutic drugs or agents of natural products in several cancers, it warrants further investigation in preclinical and clinical studies.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, 97401 Hualien, Taiwan.
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 807 Kaohsiung city, Taiwan.
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 11221 Taipei, Taiwan.
- Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, 11221 Taipei, Taiwan.
| | - Henrich Cheng
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 11221 Taipei, Taiwan.
- Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, 11221 Taipei, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, 97401 Hualien, Taiwan.
| |
Collapse
|
28
|
Sam S, Sam MR, Esmaeillou M, Safaralizadeh R. Effective Targeting Survivin, Caspase-3 and MicroRNA-16-1 Expression by Methyl-3-pentyl-6-methoxyprodigiosene Triggers Apoptosis in Colorectal Cancer Stem-Like Cells. Pathol Oncol Res 2016; 22:715-723. [PMID: 27055667 DOI: 10.1007/s12253-016-0055-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/28/2016] [Indexed: 01/05/2023]
Abstract
Over-expression of the proto-oncogene survivin in colorectal cancer stem cells (CCSCs) is thought to be one the primary causes for therapy failure. It has also been reported that tumor suppressor miR-16-1 is down-regulated in colorectal cancer (CRC) cells. Therefore, the search for new anti-proliferative agents which target survivin or miR-16-1 in CCSCs is warranted. Several studies have shown that prodigiosin isolated from cell wall of Serratia marcescens induces apoptosis in different kinds of cancer cells. Here, we investigated the effects of prodigiosin on HCT-116 cells that serve as a model for CRC initiating cells with stem-like cells properties. HCT-116 cells were treated with 100, 200 and 400 nM prodigiosin after which cell number, viability, growth-rate, survivin and miRNA-16-1 expression, caspase-3 activation and apoptotic rate were evaluated. Prodigiosin decreased significantly growth-rate in a dose-and time-dependent manner. After a 48 h treatment with 100, 200 and 400 nM prodigiosin, growth-rates were measured to be 84.4 ± 9.2 %, 58 ± 6.5 % and 46.3 ± 5.2 %, respectively, compared to untreated cells. We also found that treatment for 48 h with indicated concentrations of prodigiosin resulted in 41 %, 54.5 % and 63 % decrease in survivin mRNA levels and induced 32 %, 48 % and 61 % decrease in survivin protein levels as well as resulted in 128.3 ± 10 %, 178.7 ± 6.1 % and 205 ± 7.6 % increase in caspase-3 activation respectively compared to untreated cells. Prodigiosin caused a significant increase in miRNA-16-1 expression at a concentration of 100 nM and treatment with different concentrations of prodigiosin resulted in 2.2- to 3-fold increase in miRNA-16-1/survivin ratios compared to untreated cells. An increase in number of apoptotic cells ranging from 28.2 % to 86.8 % was also observed with increasing prodigiosin concentrations. Our results provide the first evidence that survivin and miRNA-16-1 as potential biomarkers could be targeted in CRC initiating cells with stem-like cells properties by prodigiosin and this compound with high pro-apoptotic capacity represents the possibility of its therapeutic application directed against CCSCs.
Collapse
Affiliation(s)
- Sohrab Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Mohammad Reza Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran.
- Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Mohammad Esmaeillou
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
29
|
Kimyon Ö, Das T, Ibugo AI, Kutty SK, Ho KK, Tebben J, Kumar N, Manefield M. Serratia Secondary Metabolite Prodigiosin Inhibits Pseudomonas aeruginosa Biofilm Development by Producing Reactive Oxygen Species that Damage Biological Molecules. Front Microbiol 2016; 7:972. [PMID: 27446013 PMCID: PMC4922266 DOI: 10.3389/fmicb.2016.00972] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/06/2016] [Indexed: 11/13/2022] Open
Abstract
Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA) in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 μM) (extracted from Serratia marcescens culture) and a prodigiosin/copper(II) (100 μM each) complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II) complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosinto cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms.
Collapse
Affiliation(s)
- Önder Kimyon
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| | - Theerthankar Das
- School of Biotechnology and Biomolecular Sciences, The University of New South WalesSydney, NSW, Australia; Department of Infectious Diseases and Immunology, Sydney Medical School, The University of SydneySydney, NSW, Australia
| | - Amaye I Ibugo
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| | - Samuel K Kutty
- School of Chemistry, The University of New South Wales Sydney, NSW, Australia
| | - Kitty K Ho
- School of Chemistry, The University of New South Wales Sydney, NSW, Australia
| | - Jan Tebben
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research Institute Bremerhaven, Germany
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales Sydney, NSW, Australia
| | - Mike Manefield
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
30
|
Yenkejeh RA, Sam MR, Esmaeillou M. Targeting survivin with prodigiosin isolated from cell wall of Serratia marcescens induces apoptosis in hepatocellular carcinoma cells. Hum Exp Toxicol 2016; 36:402-411. [PMID: 27334973 DOI: 10.1177/0960327116651122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Abnormal activation of the Wnt/β-catenin signaling pathway increases survivin expression that is involved in hepatocarcinogenesis. Therefore, downregulation of survivin may provide an attractive strategy for treatment of hepatocellular carcinoma. In this regard, little is known about the anticancer effects of prodigiosin isolated from cell wall of Serratia marcescens on the survivin expression and induction of apoptosis in hepatocellular carcinoma cells. METHODS Human hepatocellular carcinoma (HepG2) cells were treated with 100-, 200-, 400-, and 600-nM prodigiosin after which morphology of cells, cell number, growth inhibition, survivin expression, caspase-3 activation, and apoptotic rate were evaluated by inverted microscope, hemocytometer, MTT assay, RT-PCR, fluorometric immunosorbent enzyme assay, and flow cytometric analysis, respectively. RESULTS Prodigiosin changed morphology of cells to apoptotic forms and disrupted cell connections. This compound significantly increased growth inhibition rate and decreased metabolic activity of HepG2 cells in a dose- and time-dependent manner. After 24-, 48-, and 72-h treatments with prodigiosin at concentrations ranging from 100 nM to 600 nM, growth inhibition rates were measured to be 1.5-10%, 24-47.5%, and 55.5-72.5%, respectively, compared to untreated cells. At the same conditions, metabolic activities were measured to be 91-83%, 74-53%, and 47-31% for indicated concentrations of prodigiosin, respectively, compared to untreated cells. We also found that treatment of HepG2 cells for 48 h decreased significantly cell number and survivin expression and increased caspase-3 activation in a dose-dependent manner. Specifically, treatment with 600-nM prodigiosin resulted in 77% decrease in cell number, 88.5% decrease in survivin messenger RNA level, and 330% increase in caspase-3 activation level compared to untreated cells. An increase in the number of apoptotic cells (late apoptosis) ranging from 36.9% to 97.4% was observed with increasing prodigiosin concentrations. CONCLUSION From our data, prodigiosin is an attractive compound that turns the profile of high-level survivin expression in hepatocellular carcinoma cells into that of normal cells and may provide a novel approach to the hepatocellular carcinoma-targeted therapy.
Collapse
Affiliation(s)
- R A Yenkejeh
- 1 Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Islamic Republic of Iran
| | - M R Sam
- 1 Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Islamic Republic of Iran.,2 Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Islamic Republic of Iran
| | - M Esmaeillou
- 1 Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Islamic Republic of Iran
| |
Collapse
|
31
|
Domröse A, Klein AS, Hage-Hülsmann J, Thies S, Svensson V, Classen T, Pietruszka J, Jaeger KE, Drepper T, Loeschcke A. Efficient recombinant production of prodigiosin in Pseudomonas putida. Front Microbiol 2015; 6:972. [PMID: 26441905 PMCID: PMC4569968 DOI: 10.3389/fmicb.2015.00972] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022] Open
Abstract
Serratia marcescens and several other bacteria produce the red-colored pigment prodigiosin which possesses bioactivities as an antimicrobial, anticancer, and immunosuppressive agent. Therefore, there is a great interest to produce this natural compound. Efforts aiming at its biotechnological production have so far largely focused on the original producer and opportunistic human pathogen S. marcescens. Here, we demonstrate efficient prodigiosin production in the heterologous host Pseudomonas putida. Random chromosomal integration of the 21 kb prodigiosin biosynthesis gene cluster of S. marcescens in P. putida KT2440 was employed to construct constitutive prodigiosin production strains. Standard cultivation parameters were optimized such that titers of 94 mg/L culture were obtained upon growth of P. putida at 20°C using rich medium under high aeration conditions. Subsequently, a novel, fast and effective protocol for prodigiosin extraction and purification was established enabling the straightforward isolation of prodigiosin from P. putida growth medium. In summary, we describe here a highly efficient method for the heterologous biosynthetic production of prodigiosin which may serve as a basis to produce large amounts of this bioactive natural compound and may provide a platform for further in-depth studies of prodiginine biosynthesis.
Collapse
Affiliation(s)
- Andreas Domröse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Andreas S Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Vera Svensson
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany ; Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany ; Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| |
Collapse
|
32
|
Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 2015; 99:6197-214. [PMID: 26099332 PMCID: PMC4495716 DOI: 10.1007/s00253-015-6745-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 10/30/2022]
Abstract
The biosynthesis of natural products by heterologous expression of biosynthetic pathways in amenable production strains enables biotechnological access to a variety of valuable compounds by conversion of renewable resources. Pseudomonas putida has emerged as a microbial laboratory work horse, with elaborated techniques for cultivation and genetic manipulation available. Beyond that, this bacterium offers several particular advantages with regard to natural product biosynthesis, notably a versatile intrinsic metabolism with diverse enzymatic capacities as well as an outstanding tolerance to xenobiotics. Therefore, it has been applied for recombinant biosynthesis of several valuable natural products. This review provides an overview of applications of P. putida as a host organism for the recombinant biosynthesis of such natural products, including rhamnolipids, terpenoids, polyketides and non-ribosomal peptides, and other amino acid-derived compounds. The focus is on de novo natural product synthesis from intrinsic building blocks by means of heterologous gene expression and strain engineering. Finally, the future potential of the bacterium as a chassis organism for synthetic microbiology is pointed out.
Collapse
|
33
|
Cheng G, Zhang L, Lv W, Dong C, Wang Y, Zhang J. Overexpression of cyclin D1 in meningioma is associated with malignancy grade and causes abnormalities in apoptosis, invasion and cell cycle progression. Med Oncol 2014; 32:439. [DOI: 10.1007/s12032-014-0439-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022]
|