1
|
Wang Q, Song X, Bi Y, Zhu H, Wu X, Guo Z, Liu M, Pan C. Detection distribution of CNVs of SNX29 in three goat breeds and their associations with growth traits. Front Vet Sci 2023; 10:1132833. [PMID: 37706075 PMCID: PMC10495836 DOI: 10.3389/fvets.2023.1132833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/17/2023] [Indexed: 09/15/2023] Open
Abstract
As a member of the SNX family, the goat sorting nexin 29 (SNX29) is initially identified as a myogenesis gene. Therefore, this study aimed to examine the polymorphism in the SNX29 gene and its association with growth traits. In this study, we used an online platform to predict the structures of the SNX29 protein and used quantitative real-time PCR to detect potential copy number variation (CNV) in Shaanbei white cashmere (SBWC) goats (n = 541), Guizhou black (GB) goats (n = 48), and Nubian (NB) goats (n = 39). The results showed that goat SNX29 protein belonged to non-secretory protein. Then, five CNVs were detected, and their association with growth traits was analyzed. In SBWC goats, CNV1, CNV3, CNV4, and CNV5 were associated with chest width and body length (P < 0.05). Among them, the CNV1 individuals with gain and loss genotypes were superior to those individuals with a median genotype, but CNV4 and CNV5 of individuals with the median genotype were superior to those with the loss and gain genotypes. In addition, individuals with the gain genotype had superior growth traits in CNV3. In brief, this study suggests that the CNV of SNX29 can be used as a molecular marker in goat breeding.
Collapse
Affiliation(s)
- Qian Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Yi Bi
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhengang Guo
- Animal Husbandry and Veterinary Science Institute of Bijie City, Bijie, Guizhou, China
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Chuanying Pan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Ceglia N, Sethna Z, Freeman SS, Uhlitz F, Bojilova V, Rusk N, Burman B, Chow A, Salehi S, Kabeer F, Aparicio S, Greenbaum BD, Shah SP, McPherson A. Identification of transcriptional programs using dense vector representations defined by mutual information with GeneVector. Nat Commun 2023; 14:4400. [PMID: 37474509 PMCID: PMC10359421 DOI: 10.1038/s41467-023-39985-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time.
Collapse
Affiliation(s)
- Nicholas Ceglia
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Zachary Sethna
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel S Freeman
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florian Uhlitz
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viktoria Bojilova
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Rusk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bharat Burman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab Salehi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Farhia Kabeer
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Chen JH, Zhao Y, Khan RAW, Li ZQ, Zhou J, Shen JW, Xiang SY, Li NN, Wen ZJ, Jian XM, Song ZJ, Stewart R, Wang Z, Pan D, He L, Xu YF, Shi YY. SNX29, a new susceptibility gene shared with major mental disorders in Han Chinese population. World J Biol Psychiatry 2021; 22:526-534. [PMID: 33143498 DOI: 10.1080/15622975.2020.1845793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Environmental and genetic factors play important roles in the development of schizophrenia (SCZ), bipolar disorder (BPD) or major depressive disorder (MDD). Some risk loci are identified with shared genetic effects on major psychiatric disorders. To investigate whether SNX29 gene played a significant role in these psychiatric disorders in the Han Chinese population. METHODS We focussed on 11 single-nucleotide polymorphisms (SNPs) harbouring SNX29 gene and carried out case-control studies in patients with SCZ (n = 1248), BPD (n = 1344), or MDD (n = 1056), and 1248 healthy controls (HC) recruited from the Han Chinese population. We constructed weighted gene co-expression network analysis (WGCNA) and extracted significant modules by R package. RESULTS We found that rs3743592 was significantly associated with MDD and rs6498263 with BPD in both allele and genotype distributions. Before correction, rs3743592 showed allelic and genotypic significance with SCZ, rs6498263 showed allelic significance with SCZ. WGCNA identified top 10 modules of co-expressed genes. Gene Ontology (GO) and pathway analysis were used to examine the functions of SNX29, which revealed that SNX29 was involved in the regulation of a number of biological processes, such as TGF-beta, ErbB, and Wnt signalling pathway, etc. CONCLUSIONS Our results supported common risk factors in SNX29 might share among these three mental disorders in the Han Chinese population.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China
| | - Ying Zhao
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Raja Amjad Waheed Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Zhi-Qiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P. R. China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jia-Wei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Si-Ying Xiang
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Ning-Ning Li
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zu-Jia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xue-Min Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhi-Jian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Robert Stewart
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yi-Feng Xu
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yong-Yong Shi
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China
- The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P. R. China
- Shanghai Changning Mental Health Center, Shanghai, P. R. China
- Department of Psychiatry, The First Teaching Hospital of Xinjiang Medical University, Urumqi, P. R. China
| |
Collapse
|
4
|
Hossian AKMN, Zahra FT, Poudel S, Abshire CF, Polk P, Garai J, Zabaleta J, Mikelis CM, Mattheolabakis G. Advanced bioinformatic analysis and pathway prediction of NSCLC cells upon cisplatin resistance. Sci Rep 2021; 11:6520. [PMID: 33753779 PMCID: PMC7985311 DOI: 10.1038/s41598-021-85930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/05/2021] [Indexed: 11/08/2022] Open
Abstract
This study aims to identify pathway involvement in the development of cisplatin (cis-diamminedichloroplatinum (II); CDDP) resistance in A549 lung cancer (LC) cells by utilizing advanced bioinformatics software. We developed CDDP-resistant A549 (A549/DDP) cells through prolonged incubation with the drug and performed RNA-seq on RNA extracts to determine differential mRNA and miRNA expression between A549/DDP and A549 cells. We analyzed the gene dysregulation with Ingenuity Pathway Analysis (IPA; QIAGEN) software. In contrast to prior research, which relied on the clustering of dysregulated genes to pathways as an indication of pathway activity, we utilized the IPA software for the dynamic evaluation of pathway activity depending on the gene dysregulation levels. We predicted 15 pathways significantly contributing to the chemoresistance, with several of them to have not been previously reported or analyzed in detail. Among them, the PKR signaling, cholesterol biosynthesis, and TEC signaling pathways are included, as well as genes, such as PIK3R3, miR-34c-5p, and MDM2, among others. We also provide a preliminary analysis of SNPs and indels, present exclusively in A549/DDP cells. This study's results provide novel potential mechanisms and molecular targets that can be explored in future studies and assist in improving the understanding of the chemoresistance phenotype.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sagun Poudel
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Camille F Abshire
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paula Polk
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jone Garai
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA.
| |
Collapse
|
5
|
Thomas PB, Jeffery P, Gahete MD, Whiteside E, Walpole C, Maugham M, Jovanovic L, Gunter J, Williams E, Nelson C, Herington A, Luque RM, Veedu R, Chopin LK, Seim I. The long non-coding RNA GHSROS reprograms prostate cancer cell lines toward a more aggressive phenotype. PeerJ 2021; 9:e10280. [PMID: 33585078 PMCID: PMC7860111 DOI: 10.7717/peerj.10280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/09/2020] [Indexed: 12/27/2022] Open
Abstract
It is now appreciated that long non-coding RNAs (lncRNAs) are important players in orchestrating cancer progression. In this study we characterized GHSROS, a human lncRNA gene on the opposite DNA strand (antisense) to the ghrelin receptor gene, in prostate cancer. The lncRNA was upregulated by prostate tumors from different clinical datasets. Transcriptome data revealed that GHSROS alters the expression of cancer-associated genes. Functional analyses in vitro showed that GHSROS mediates tumor growth, migration and survival, and resistance to the cytotoxic drug docetaxel. Increased cellular proliferation of GHSROS-overexpressing PC3, DU145, and LNCaP prostate cancer cell lines in vitro was recapitulated in a subcutaneous xenograft model. Conversely, in vitro antisense oligonucleotide inhibition of the lncRNA reciprocally regulated cell growth and migration, and gene expression. Notably, GHSROS modulates the expression of PPP2R2C, the loss of which may drive androgen receptor pathway-independent prostate tumor progression in a subset of prostate cancers. Collectively, our findings suggest that GHSROS can reprogram prostate cancer cells toward a more aggressive phenotype and that this lncRNA may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Patrick B. Thomas
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Penny Jeffery
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Manuel D. Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Campus de Excelencia Internacional Agroalimentario (ceiA3), Cordoba, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Eliza Whiteside
- Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Carina Walpole
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michelle Maugham
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lidija Jovanovic
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jennifer Gunter
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Elizabeth Williams
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Colleen Nelson
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adrian Herington
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Raul M. Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Campus de Excelencia Internacional Agroalimentario (ceiA3), Cordoba, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Rakesh Veedu
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
| | - Lisa K. Chopin
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Inge Seim
- Ghrelin Research Group, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
Yang L, Tan W, Yang X, You Y, Wang J, Wen G, Zhong J. Sorting nexins: A novel promising therapy target for cancerous/neoplastic diseases. J Cell Physiol 2020; 236:3317-3335. [PMID: 33090492 DOI: 10.1002/jcp.30093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Sorting nexins (SNXs) are a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins containing the PX domain proteins. The function of SNX proteins in regulating intracellular protein trafficking consists of endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX proteins are demonstrated to be involved in several cancerous/neoplastic diseases. Here, we review the accumulated evidence of the molecular structure and biological function of SNX proteins and discuss the regulatory role of SNX proteins in distinct cancerous/neoplastic diseases. SNX family proteins may be a valuable potential biomarker and therapeutic strategy for diagnostics and treatment of cancerous/neoplastic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Weihua Tan
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Emergency Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinzhi Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yong You
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jing Wang
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gebo Wen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Zhong
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Overton IM, Sims AH, Owen JA, Heale BSE, Ford MJ, Lubbock ALR, Pairo-Castineira E, Essafi A. Functional Transcription Factor Target Networks Illuminate Control of Epithelial Remodelling. Cancers (Basel) 2020; 12:cancers12102823. [PMID: 33007944 PMCID: PMC7652213 DOI: 10.3390/cancers12102823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cell identity is governed by gene expression, regulated by transcription factor (TF) binding at cis-regulatory modules. Decoding the relationship between TF binding patterns and gene regulation is nontrivial, remaining a fundamental limitation in understanding cell decision-making. We developed the NetNC software to predict functionally active regulation of TF targets; demonstrated on nine datasets for the TFs Snail, Twist, and modENCODE Highly Occupied Target (HOT) regions. Snail and Twist are canonical drivers of epithelial to mesenchymal transition (EMT), a cell programme important in development, tumour progression and fibrosis. Predicted "neutral" (non-functional) TF binding always accounted for the majority (50% to 95%) of candidate target genes from statistically significant peaks and HOT regions had higher functional binding than most of the Snail and Twist datasets examined. Our results illuminated conserved gene networks that control epithelial plasticity in development and disease. We identified new gene functions and network modules including crosstalk with notch signalling and regulation of chromatin organisation, evidencing networks that reshape Waddington's epigenetic landscape during epithelial remodelling. Expression of orthologous functional TF targets discriminated breast cancer molecular subtypes and predicted novel tumour biology, with implications for precision medicine. Predicted invasion roles were validated using a tractable cell model, supporting our approach.
Collapse
Affiliation(s)
- Ian M. Overton
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Correspondence:
| | - Andrew H. Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Jeremy A. Owen
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bret S. E. Heale
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Matthew J. Ford
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Alexander L. R. Lubbock
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Erola Pairo-Castineira
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Abdelkader Essafi
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| |
Collapse
|
8
|
Zhu L, Gou R, Guo Q, Wang J, Liu Q, Lin B. High expression and potential synergy of human epididymis protein 4 and Annexin A8 promote progression and predict poor prognosis in epithelial ovarian cancer. Am J Transl Res 2020; 12:4017-4030. [PMID: 32774755 PMCID: PMC7407702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most common cause of gynecological cancer-related deaths. Aberrant expression of human epididymis protein 4 (HE4) and Annexin A8 (ANXA8) plays crucial roles in some malignancies; however, their functions in EOC remain unclear. In this study, we utilized immunohistochemistry, real-time PCR, western blotting, immunofluorescence labeling, and gene interaction and enrichment pathway analyses to explore the roles of HE4 and ANXA8 in EOC. They were highly expressed in EOC tissues, which significantly correlated with higher tumor burden, advanced FIGO stages, poor differentiation, presence of > 1 cm residual tumor, and tumor recurrence. The expression patterns of HE4 and ANXA8 were similar, and Spearman's correlation analysis showed that they were positively correlated (r=0.671, P < 0.001). Large sample database analyses also showed significant positive correlation between their mRNA expression (R=0.304, 0.321, and 0.304 in TCGA, CCLE and GTEx, respectively, all P < 0.001). Kaplan-Meier survival analysis demonstrated that advanced FIGO stages, lymph node metastasis, residual tumor size > 1 cm, and high HE4 and ANXA8 expression were significantly associated with poor overall survival (all P < 0.05). Moreover, multivariate Cox analysis showed that advanced FIGO stages and HE4 expression were independent factors for poor survival (P < 0.001, 0.012, respectively). Interaction network analysis of genes associated with ANXA8, expressed in response to HE4, revealed that these genes participated in TP53 expression, autophagy regulation, and the PID FOXO pathway. In conclusion, the potential synergy between HE4 and ANXA8 may exacerbate the disease condition. Thus, targeting HE4 and ANXA8 could be a novel therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Liancheng Zhu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| | - Rui Gou
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| | - Jing Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| | - Qing Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, China
| |
Collapse
|
9
|
Bioinformatics analysis of the genes involved in the extension of prostate cancer to adjacent lymph nodes by supervised and unsupervised machine learning methods: The role of SPAG1 and PLEKHF2. Genomics 2020; 112:3871-3882. [PMID: 32619574 DOI: 10.1016/j.ygeno.2020.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The present study aimed to identify the genes associated with the involvement of adjunct lymph nodes of patients with prostate cancer (PCa) and to provide valuable information for the identification of potential diagnostic biomarkers and pathological genes in PCa metastasis. The most important candidate genes were identified through several machine learning approaches including K-means clustering, neural network, Naïve Bayesian classifications and PCA with or without downsampling. In total, 21 genes associated with lymph nodes involvement were identified. Among them, nine genes have been identified in metastatic prostate cancer, six have been found in the other metastatic cancers and four in other local cancers. The amplification of the candidate genes was evaluated in the other PCa datasets. Besides, we identified a validated set of genes involved in the PCa metastasis. The amplification of SPAG1 and PLEKHF2 genes were associated with decreased survival in patients with PCa.
Collapse
|
10
|
Benvenuto G, Todeschini P, Paracchini L, Calura E, Fruscio R, Romani C, Beltrame L, Martini P, Ravaggi A, Ceppi L, Sales G, Donati F, Perego P, Zanotti L, Ballabio S, Grassi T, Delle Marchette M, Tognon G, Sartori E, Adorni M, Odicino F, D'Incalci M, Bignotti E, Romualdi C, Marchini S. Expression profiles of PRKG1, SDF2L1 and PPP1R12A are predictive and prognostic factors for therapy response and survival in high-grade serous ovarian cancer. Int J Cancer 2020; 147:565-574. [PMID: 32096871 DOI: 10.1002/ijc.32935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
High-grade serous ovarian cancer (HGS-EOCs) is generally sensitive to front-line platinum (Pt)-based chemotherapy although most patients at an advanced stage relapse with progressive resistant disease. Clinical or molecular data to identify primary resistant cases at diagnosis are not yet available. HGS-EOC biopsies from 105 Pt-sensitive (Pt-s) and 89 Pt-resistant (Pt-r) patients were retrospectively selected from two independent tumor tissue collections. Pathway analysis was done integrating miRNA and mRNA expression profiles. Signatures were further validated in silico on a cohort of 838 HGS-EOC cases from a published dataset. In all, 131 mRNAs and 5 miRNAs belonging to different functionally related molecular pathways distinguish Pt-s from Pt-r cases. Then, 17 out of 23 selected elements were validated by orthogonal approaches (SI signature). As resistance to Pt is associated with a short progression-free survival (PFS) and overall survival (OS), the prognostic role of the SI signature was assessed, and 14 genes associated with PFS and OS, in multivariate analyses (SII signature). The prognostic value of the SII signature was validated in a third extensive cohort. The expression profiles of SDF2L1, PPP1R12A and PRKG1 genes (SIII signature) served as independent prognostic biomarkers of Pt-response and survival. The study identified a prognostic molecular signature based on the combined expression profile of three genes which had never been associated with the clinical outcome of HGS-EOC. This may lead to early identification, at the time of diagnosis, of patients who would not greatly benefit from standard chemotherapy and are thus eligible for novel investigational approaches.
Collapse
Affiliation(s)
| | - Paola Todeschini
- 'Angelo Nocivelli' Institute of Molecular Medicine, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Lara Paracchini
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Enrica Calura
- Department of Biology, University of Padova, Padova, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Chiara Romani
- 'Angelo Nocivelli' Institute of Molecular Medicine, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Beltrame
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Paolo Martini
- Department of Biology, University of Padova, Padova, Italy
| | - Antonella Ravaggi
- 'Angelo Nocivelli' Institute of Molecular Medicine, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, Division of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Lorenzo Ceppi
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | - Federica Donati
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | | | - Laura Zanotti
- 'Angelo Nocivelli' Institute of Molecular Medicine, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Sara Ballabio
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Tommaso Grassi
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Martina Delle Marchette
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Germana Tognon
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Enrico Sartori
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marco Adorni
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Franco Odicino
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio D'Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Eliana Bignotti
- 'Angelo Nocivelli' Institute of Molecular Medicine, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Sergio Marchini
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| |
Collapse
|
11
|
Gou R, Zhu L, Zheng M, Guo Q, Hu Y, Li X, Liu J, Lin B. Annexin A8 can serve as potential prognostic biomarker and therapeutic target for ovarian cancer: based on the comprehensive analysis of Annexins. J Transl Med 2019; 17:275. [PMID: 31474227 PMCID: PMC6717992 DOI: 10.1186/s12967-019-2023-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Annexins are involved in vesicle trafficking, cell proliferation and apoptosis, but their functional mechanisms in ovarian cancer remain unclear. In this study, we analyzed Annexins in ovarian cancer using different databases and selected Annexin A8 (ANXA8), which showed the greatest prognostic value, for subsequent validation in immunohistochemical (IHC) assays. METHODS The mRNA expression levels, genetic variations, prognostic values and gene-gene interaction network of Annexins in ovarian cancer were analyzed using the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, Kaplan-Meier plotter and GeneMANIA database. ANXA8 was selected for analyzing the biological functions and pathways of its co-expressed genes, and its correlation with immune system responses via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and the TISIDB database, respectively. We validated the expression of ANXA8 in ovarian cancer via IHC assays and analyzed its correlation with clinicopathological parameters and prognosis. RESULTS ANXA2/3/8/11 mRNA expression levels were significantly upregulated in ovarian cancer, and ANXA5/6/7 mRNA expression levels were significantly downregulated. Prognostic analysis suggested that significant correlations occurred between ANXA2/4/8/9 mRNA upregulation and poor overall survival, and between ANXA8/9/11 mRNA upregulation and poor progression-free survival in patients with ovarian serous tumors. Taken together, results suggested that ANXA8 was most closely associated with ovarian cancer tumorigenesis and progression. Further analyses indicated that ANXA8 may be involved in cell migration, cell adhesion, and vasculature development, as well as in the regulation of PI3K-Akt, focal adhesion, and proteoglycans. Additionally, ANXA8 expression was significantly correlated with lymphocytes and immunomodulators. The IHC results showed that ANXA8 expression was higher in the malignant tumor group than in the borderline and benign tumor groups and normal ovary group, and high ANXA8 expression was an independent risk factor for survival and prognosis of ovarian cancer patients (P = 0.013). CONCLUSIONS Members of the Annexin family display varying degrees of abnormal expressions in ovarian cancer. ANXA8 was significantly highly expressed in ovarian cancer, and high ANXA8 expression was significantly correlated with poor prognosis. Therefore, ANXA8 is a high candidate as a novel biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China. .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
12
|
Nie X, Liu C, Guo Q, Zheng MJ, Gao LL, Li X, Liu DW, Zhu LC, Liu JJ, Lin B. TMEFF1 overexpression and its mechanism for tumor promotion in ovarian cancer. Cancer Manag Res 2019; 11:839-855. [PMID: 30697076 PMCID: PMC6340504 DOI: 10.2147/cmar.s186080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Transmembrane protein with epidermal growth factor-like and two follistatin-like domains 1 (TMEFF1) has an anticarcinogenic effect in brain tumors. However, little is known about the role of TMEFF1 in epithelial ovarian cancer (EOC). Materials and methods TMEFF1 expression in EOC was detected by immunohistochemistry; its relationship with clinical pathological parameters and its influence on prognosis were analyzed. The MTT, scratch, Transwell assays, and flow cytometry were used to assess the malignant behavior of ovarian cancer cell. Changes in node proteins in MAPK and PI3K/AKT signaling pathways and the expression of epithelial–mesenchymal transformation markers were measured by Western blot. The regulatory effect of p53 on TMEFF1 was verified by chromatin immunoprecipitation (ChIP) assay and Western blot. Results TMEFF1 expression was higher in the EOC group than in the borderline and benign tumor groups and normal ovary group; its high expression was significantly related to International Federation of Gynecology and Obstetrics stage (P=0.024) and independently predicted shorter overall survival (P<0.01). TMEFF1 overexpression in ovarian cancer cells induced increased cellular proliferation, migration, and invasion but reduced apoptosis. In addition, the percentage of phosphorylated node proteins in MAPK and PI3K/AKT signaling pathways increased significantly. The expression of E-cadherin decreased but that of vimentin and N-cadherin increased. After the addition of MAPK (PD98059) and PI3K (GDC-0941) pathway inhibitors, ovarian cancer cells overexpressing TMEFF1 showed suppressed malignant behavior. TMEFF1 protein expression in an ovarian cancer cell lines (CAOV3 and ES-2) was downregulated after the inhibition of TP53. The transcription factor, p53, bound the promoter region of the TMEFF1 gene according to ChIP. Conclusion TMEFF1 is a carcinogenic gene in ovarian cancer and can be regulated by p53 transcription. Through MAPK and PI3K/AKT signaling pathways, TMEFF1 promotes the malignant behavior in EOC. Therefore, TMEFF1 may be considered as a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Xin Nie
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Cong Liu
- Department of Obstetrics and Gynaecology, Wuxi Materal and Child Health Hospital, Jiangsu, China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Ming-Jun Zheng
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Ling-Ling Gao
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Da-Wo Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Lian-Cheng Zhu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Juan-Juan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| |
Collapse
|
13
|
Liu J, Zheng M, Qi Y, Wang H, Liu M, Liu Q, Lin B. Lewis(y) antigen-mediated positive feedback loop induces and promotes chemotherapeutic resistance in ovarian cancer. Int J Oncol 2018; 53:1774-1786. [PMID: 30066907 DOI: 10.3892/ijo.2018.4496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/25/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the association between Lewis(y) antigen and chemoresistance in ovarian cancer and to elucidate the underlying molecular mechanisms. Lewis(y) expression in chemoresistant ovarian cancer tissues and cells was detected by immunohistochemistry. α1,2‑fucosyltransferase (FUT1) expression in different ovarian cancer chemotherapy-resistant cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR). Genes differentially expressed in the chemoresistant and sensitive groups were screened using a gene chip followed by validation using RT-qPCR and western blot analysis. We found that Lewis(y) and FUT1 expression in ovarian cancer cells was significantly increased following the induction of drug resistance. The positive expression rate and intensity of Lewis(y) in ovarian cancer chemoresistant tissues were also significantly higher than those in the sensitive group. Compared with the non-resistant cell lines, the differentially expressed genes were mainly enriched in the terms related to the transmembrane receptor protein tyrosine kinase signaling pathway and positive regulation of cell proliferation. Interaction network analysis predicted genes participating in the regulation of apoptotic processes. The highly differential expression of Annexin A4 (ANXA4), BCL2 interacting killer (BIK), transmembrane 4 L six family member 4 (TM4SF4) and pleckstrin homology-like domain family A member 1 (PHLDA1) was validated using RT-qPCR in ovarian cancer cell lines. Finally, ANXA4 expression was increased at both the mRNA and protein level in the drug‑resistant cells, and in addition, ANXA4 contained a Lewis(y) structure. The expression of Bcl-2 and other anti-apoptotic proteins increased with the increase of Lewis(y) expression. After blocking Lewis(y) using an antibody, the expression of the involved signaling pathway and apoptosis-related proteins decreased significantly. These findings provide strong evidence that Lewis(y) is a component of the structure of the ANXA4 membrane protein. Its overexpression can abnormally activate signaling pathways and regulate the expression of a number of factors, forming a positive feedback loop to induce the chemoresistance of ovarian cancer cells, and ultimately promoting the progression of ovarian cancer.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Yue Qi
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Huimin Wang
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Miao Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Qing Liu
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| | - Bei Lin
- Department of Obstetrics and Gynecology, China Medical University Shengjing Hospital, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
14
|
Ellwanger K, Becker E, Kienes I, Sowa A, Postma Y, Cardona Gloria Y, Weber ANR, Kufer TA. The NLR family pyrin domain-containing 11 protein contributes to the regulation of inflammatory signaling. J Biol Chem 2018; 293:2701-2710. [PMID: 29301940 DOI: 10.1074/jbc.ra117.000152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/14/2017] [Indexed: 11/06/2022] Open
Abstract
Mammalian Nod-like receptor (NLR) proteins contribute to the regulation and induction of innate and adaptive immunity in mammals, although the function of about half of the currently identified NLR proteins remains poorly characterized. Here we analyzed the function of the primate-specific NLRP11 gene product. We show that NLRP11 is highly expressed in immune cells, including myeloid cells, B cells, and some B cell lymphoma lines. Overexpression of NLRP11 in human cells did not trigger key innate immune signaling pathways, including NF-κB and type I interferon responses. NLRP11 harbors a pyrin domain, which is responsible for inflammasome formation in related NLR proteins. However, NLRP11 did not interact with the inflammasome adaptor protein ASC, and it did not trigger caspase-1 activation. By contrast, expression of NLRP11 specifically repressed NF-κB and type I interferon responses, two key innate immune pathways involved in inflammation. This effect was independent of the pyrin domain and ATPase activity of NLRP11. siRNA-mediated knockdown of NLRP11 in human myeloid THP1 cells validated these findings and revealed enhanced lipopolysaccharide and Sendai virus-induced cytokine and interferon responses, respectively, in cells with reduced NLRP11 expression. In summary, our work identifies a novel role of NLRP11 in the regulation of inflammatory responses in human cells.
Collapse
Affiliation(s)
- Kornelia Ellwanger
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Emily Becker
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Ioannis Kienes
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Anna Sowa
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Yvonne Postma
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
15
|
Tu SH, Chiou YS, Kalyanam N, Ho CT, Chen LC, Pan MH. Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA 2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct 2017; 8:1067-1079. [PMID: 28145547 DOI: 10.1039/c6fo01588c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Breast cancer is a significant threat to women's health and has high incidence and mortality. Metastasis in breast cancer patients is a major cause of cancer deaths among women worldwide. Clinical experience suggests that patients with metastatic triple-negative breast cancer (TNBC) relapse quickly and often have chemotherapy resistance. Taxol (paclitaxel) is an effective chemotherapeutic agent for treating metastatic breast cancer, but Taxol at high doses can cause adverse effects and recurrent resistance. Thus, the selection of a synergistic combination therapy is recommended, which is safer and has a more significant response rate than monotherapy. In this study, our strategy is to combine a low dose of Taxol (5 mg kg-1, i.p.) and garcinol (1 mg kg-1, i.g.) to investigate the synergistic antitumor and anti-metastasis effects and to determine the underlying mechanisms of these effects in vivo. For the in vivo study, metastasis-specific mouse mammary carcinoma 4T1 cells were inoculated in Balb/c mice to establish an orthotopic primary tumor and spontaneous metastasis model. Tumor growth and metastases were monitored. The mechanisms of synergistic efficacies were evaluated at different signaling pathways, including proliferation, survival, and epithelial-mesenchymal transition (EMT)-regulated metastatic propensity. We demonstrated that garcinol combined with Taxol significantly increased the therapeutic efficacy when compared with either treatment alone. The synergistic antitumor and anti-metastasis effects were enhanced primarily through the induction of Taxol-stimulated G2/M phase arrest and the inhibition of caspase-3/cytosolic Ca2+-independent phospholipase A2 (iPLA2) and nuclear factor-κB (NF-κB)/Twist-related protein 1 (Twist1) drive downstream events including tumor cell repopulation, survival, inflammation, angiogenesis, invasion, and EMT. Our current findings provide the first experimental evidence that a combination of a low dose of Taxol and garcinol is a promising therapeutic strategy for controlling advanced or metastatic breast cancer. Finally, our results also point to the possible role of NF-κB/Twist1 and caspase-3/iPLA2 signaling pathways as biomarkers to predict the tumor response to treatment.
Collapse
Affiliation(s)
- Shih-Hsin Tu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan and Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan and Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Yi-Shiou Chiou
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Li-Ching Chen
- Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan and TMU Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan. and Cancer Translational Center, Taipei Medical University, Taipei, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan. and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan and Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
16
|
Luo X, Yang Z, Liu X, Liu Z, Miao X, Li D, Zou Q, Yuan Y. The clinicopathological significance of forkhead box P1 and forkhead box O3a in pancreatic ductal adenocarcinomas. Tumour Biol 2017; 39:1010428317699129. [PMID: 28466777 DOI: 10.1177/1010428317699129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is a highly malignant tumor with poor prognosis, and the biomarkers for the early diagnosis, targeting therapy, and prognosis are still not clinically available. This study investigated the expression of forkhead box P1 and forkhead box O3a proteins in human pancreatic ductal adenocarcinoma tumor tissues and pancreatic tissues with and without benign lesions using immunohistochemical staining. Results showed that the positive rates of forkhead box P1 and forkhead box O3a protein expression were significantly lower in pancreatic ductal adenocarcinoma tumors compared to peritumoral tissues, benign pancreatic tissues, and normal pancreatic tissues (p < 0.01). Pancreatic tissues with negative forkhead box P1 and forkhead box O3a protein expression exhibited dysplasia or intraepithelial neoplasia. The positive rates of forkhead box P1 and forkhead box O3a expression were significantly lower in cases with tumor mass >5 cm, lymph node metastasis, invasion to surrounding tissues and organs, and tumor-node-metastasis III + IV stage disease compared to cases with tumor mass ⩽5 cm (p < 0.05), no lymph node metastasis (p < 0.001 and p = 0.001, respectively), no invasion (p = 0.003 and p = 0.004, respectively), and tumor-node-metastasis I or II stage disease (p < 0.05). Kaplan-Meier survival analysis showed that pancreatic ductal adenocarcinoma patients with negative forkhead box P1 and forkhead box O3a expression survived significantly shorter than patients with positive forkhead box P1 and forkhead box O3a expression (p = 0.000). Cox multivariate analysis revealed that negative forkhead box P1 and forkhead box O3a expression was an independent poor prognosis factor in pancreatic ductal adenocarcinoma patients. The area under the curve of a receiver operating characteristic curve was 0.642 for forkhead box P1 (95% confidence interval: 0.553-0.730) and 0.655 for forkhead box O3a (95% confidence interval: 0.6568-0.742). Loss of forkhead box P1 and forkhead box O3a protein expression is associated with carcinogenesis, progression, and poor prognosis in patients with pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Xin Luo
- 1 Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhulin Yang
- 2 Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiao Liu
- 2 Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ziru Liu
- 2 Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiongying Miao
- 2 Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Daiqiang Li
- 1 Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Qiong Zou
- 3 Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yuan Yuan
- 3 Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
17
|
Wright F, Hammer M, Paul SM, Aouizerat BE, Kober KM, Conley YP, Cooper BA, Dunn LB, Levine JD, DEramo Melkus G, Miaskowski C. Inflammatory pathway genes associated with inter-individual variability in the trajectories of morning and evening fatigue in patients receiving chemotherapy. Cytokine 2017; 91:187-210. [PMID: 28110208 DOI: 10.1016/j.cyto.2016.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/05/2016] [Accepted: 12/25/2016] [Indexed: 01/28/2023]
Abstract
Fatigue, a highly prevalent and distressing symptom during chemotherapy (CTX), demonstrates diurnal and interindividual variability in severity. Little is known about the associations between variations in genes involved in inflammatory processes and morning and evening fatigue severity during CTX. The purposes of this study, in a sample of oncology patients (N=543) with breast, gastrointestinal (GI), gynecological (GYN), or lung cancer who received two cycles of CTX, were to determine whether variations in genes involved in inflammatory processes were associated with inter-individual variability in initial levels as well as in the trajectories of morning and evening fatigue. Patients completed the Lee Fatigue Scale to determine morning and evening fatigue severity a total of six times over two cycles of CTX. Using a whole exome array, 309 single nucleotide polymorphisms SNPs among the 64 candidate genes that passed all quality control filters were evaluated using hierarchical linear modeling (HLM). Based on the results of the HLM analyses, the final SNPs were evaluated for their potential impact on protein function using two bioinformational tools. The following inflammatory pathways were represented: chemokines (3 genes); cytokines (12 genes); inflammasome (11 genes); Janus kinase/signal transducers and activators of transcription (JAK/STAT, 10 genes); mitogen-activated protein kinase/jun amino-terminal kinases (MAPK/JNK, 3 genes); nuclear factor-kappa beta (NFkB, 18 genes); and NFkB and MAP/JNK (7 genes). After controlling for self-reported and genomic estimates of race and ethnicity, polymorphisms in six genes from the cytokine (2 genes); inflammasome (2 genes); and NFkB (2 genes) pathways were associated with both morning and evening fatigue. Polymorphisms in six genes from the inflammasome (1 gene); JAK/STAT (1 gene); and NFkB (4 genes) pathways were associated with only morning fatigue. Polymorphisms in three genes from the inflammasome (2 genes) and the NFkB (1 gene) pathways were associated with only evening fatigue. Taken together, these findings add to the growing body of evidence that suggests that morning and evening fatigue are distinct symptoms.
Collapse
Affiliation(s)
- Fay Wright
- Yale School of Nursing, New Haven, CT, USA
| | - Marilyn Hammer
- Department of Nursing, Mount Sinai Hospital, New York, NY, USA
| | - Steven M Paul
- Department of Physiologic Nursing, School of Nursing, University of California at San Francisco, San Francisco, CA, USA
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
| | - Kord M Kober
- Department of Physiologic Nursing, School of Nursing, University of California at San Francisco, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Cooper
- Department of Physiologic Nursing, School of Nursing, University of California at San Francisco, San Francisco, CA, USA
| | - Laura B Dunn
- Department of Psychiatry, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of California at San Francisco, San Francisco, CA, USA
| | - Gail DEramo Melkus
- Florence S. Downs PhD Program in Nursing Research and Theory Development, College of Nursing, New York University, New York, NY, USA
| | - Christine Miaskowski
- Department of Physiologic Nursing, School of Nursing, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Choi EJ, Seo EJ, Kim DK, Lee SI, Kwon YW, Jang IH, Kim KH, Suh DS, Kim JH. FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells. Oncotarget 2016; 7:3506-19. [PMID: 26654944 PMCID: PMC4823123 DOI: 10.18632/oncotarget.6510] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/21/2015] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer has the highest mortality rate of all gynecological cancers with a high recurrence rate. It is important to understand the nature of recurring cancer cells to terminally eliminate ovarian cancer. The winged helix transcription factor Forkhead box P1 (FOXP1) has been reported to function as either oncogene or tumor-suppressor in various cancers. In the current study, we show that FOXP1 promotes cancer stem cell-like characteristics in ovarian cancer cells. Knockdown of FOXP1 expression in A2780 or SKOV3 ovarian cancer cells decreased spheroid formation, expression of stemness-related genes and epithelial to mesenchymal transition-related genes, cell migration, and resistance to Paclitaxel or Cisplatin treatment, whereas overexpression of FOXP1 in A2780 or SKOV3 ovarian cancer cells increased spheroid formation, expression of stemness-related genes and epithelial to mesenchymal transition-related genes, cell migration, and resistance to Paclitaxel or Cisplatin treatment. In addition, overexpression of FOXP1 increased promoter activity of ABCG2, OCT4, NANOG, and SOX2, among which the increases in ABCG2, OCT4, and SOX2 promoter activity were dependent on the presence of FOXP1-binding site. In xenotransplantation of A2780 ovarian cancer cells into nude mice, knockdown of FOXP1 expression significantly decreased tumor size. These results strongly suggest FOXP1 functions as an oncogene by promoting cancer stem cell-like characteristics in ovarian cancer cells. Targeting FOXP1 may provide a novel therapeutic opportunity for developing a relapse-free treatment for ovarian cancer patients.
Collapse
Affiliation(s)
- Eun Jung Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Eun Jin Seo
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Dae Kyoung Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Su In Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Yang Woo Kwon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Il Ho Jang
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Ki-Hyung Kim
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Dong-Soo Suh
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
19
|
van Keimpema M, Grüneberg LJ, Schilder-Tol EJM, Oud MECM, Beuling EA, Hensbergen PJ, de Jong J, Pals ST, Spaargaren M. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells. Haematologica 2016; 102:573-583. [PMID: 27909217 PMCID: PMC5394978 DOI: 10.3324/haematol.2016.156455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/24/2016] [Indexed: 12/23/2022] Open
Abstract
The forkhead transcription factor FOXP1 is generally regarded as an oncogene in activated B cell-like diffuse large B-cell lymphoma. Previous studies have suggested that a small isoform of FOXP1 rather than full-length FOXP1, may possess this oncogenic activity. Corroborating those studies, we herein show that activated B cell-like diffuse large B-cell lymphoma cell lines and primary activated B cell-like diffuse large B-cell lymphoma cells predominantly express a small FOXP1 isoform, and that the 5′-end of the Foxp1 gene is a common insertion site in murine lymphomas in leukemia virus- and transposon-mediated insertional mutagenesis screens. By combined mass spectrometry, (quantative) reverse transcription polymerase chain reaction/sequencing, and small interfering ribonucleic acid-mediated gene silencing, we determined that the small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma lacks the N-terminal 100 amino acids of full-length FOXP1. Aberrant overexpression of this FOXP1 isoform (ΔN100) in primary human B cells revealed its oncogenic capacity; it repressed apoptosis and plasma cell differentiation. However, no difference in potency was found between this small FOXP1 isoform and full-length FOXP1. Furthermore, overexpression of full-length FOXP1 or this small FOXP1 isoform in primary B cells and diffuse large B-cell lymphoma cell lines resulted in similar gene regulation. Taken together, our data indicate that this small FOXP1 isoform and full-length FOXP1 have comparable oncogenic and transcriptional activity in human B cells, suggesting that aberrant expression or overexpression of FOXP1, irrespective of the specific isoform, contributes to lymphomagenesis. These novel insights further enhance the value of FOXP1 for the diagnostics, prognostics, and treatment of diffuse large B-cell lymphoma patients.
Collapse
Affiliation(s)
- Martine van Keimpema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Leonie J Grüneberg
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Esther J M Schilder-Tol
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Monique E C M Oud
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Esther A Beuling
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Johann de Jong
- Division of Molecular Carcinogenesis, Netherlands Cancer institute, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Zhu L, Zhuang H, Wang H, Tan M, Schwab CL, Deng L, Gao J, Hao Y, Li X, Gao S, Liu J, Lin B. Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer. Oncotarget 2016; 7:729-44. [PMID: 26575020 PMCID: PMC4808029 DOI: 10.18632/oncotarget.6327] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/30/2015] [Indexed: 12/16/2022] Open
Abstract
Overexpression of Human epididymis protein 4 (HE4) related with a role in ovarian cancer tumorigenesis while little is known about the molecular mechanism alteration by HE4 up regulation. Here we reported that overexpressed HE4 promoted ovarian cancer cells proliferation, invasion and metastasis. Furthermore, human whole genome gene expression profile microarrays revealed that 231 differentially expressed genes (DEGs) were altered in response to HE4, in which MAPK signaling, ECM receptor, cell cycle, steroid biosynthesis pathways were involved. The findings suggested that overexpressed HE4 played an important role in ovarian cancer progression and metastasis and that HE4 has the potential to serve as a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China
| | - Huiyu Zhuang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China.,Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Huimin Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China
| | - Mingzi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China
| | - Carlton L Schwab
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520-8063, USA
| | - Lu Deng
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China
| | - Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
21
|
Zhao L, Ren Y, Tang H, Wang W, He Q, Sun J, Zhou X, Wang A. Deregulation of the miR-222-ABCG2 regulatory module in tongue squamous cell carcinoma contributes to chemoresistance and enhanced migratory/invasive potential. Oncotarget 2016; 6:44538-50. [PMID: 26517090 PMCID: PMC4792574 DOI: 10.18632/oncotarget.6253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022] Open
Abstract
Chemoresistance is often associated with other clinical characteristics such as enhanced migratory/invasive potential. However, the correlation and underlying molecular mechanisms remain unclear. The aim of this study was to elucidate the function of the miR-222-ABCG2 pathway in the correlation between cisplatin (DDP) resistance and enhanced cell migration/invasion in tongue squamous cell carcinoma (TSCC). Using TSCC cell lines and primary cultures from TSCC cases, we first confirmed the correlation among DDP resistance (measured by IC50 values and ABCG2/ERCC1 expression), migratory/invasive potential (assessed by migration/invasion assays) and miR-222 expression. In TSCC cells, siRNA-mediated ABCG2 knockdown led to enhanced DDP responsiveness and reduced migratory/invasive potential, whereas ABCG2 overexpression induced DDP resistance and enhanced cell migration/invasion. Luciferase assays revealed that ABCG2 is a direct target of miR-222. In addition to reducing cell migration/invasion, functional analyses in TSCC cells indicated that miR-222 can reduce expression of the ABCG2 gene and enhance DDP responsiveness. However, co-transfection with ABCG2 cDNA restored both DDP resistance and migration/invasion. Moreover, miR-222 mimics and ABCG2 siRNA inhibited tumor growth and lung metastasis in vivo. Thus, our results verified that DDP resistance is correlated with enhanced migratory/invasive potential in TSCC. ABCG2 is a direct target of miR-222,and deregulation of the miR-222-ABCG2 regulatory module in TSCC contributes to both DDP resistance and enhanced migratory/invasive potential.
Collapse
Affiliation(s)
- Luodan Zhao
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuexin Ren
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haikuo Tang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Sun
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Yin L, Liu S, Li C, Ding S, Bi D, Niu Z, Han L, Li W, Gao D, Liu Z, Lu J. CYLD downregulates Livin and synergistically improves gemcitabine chemosensitivity and decreases migratory/invasive potential in bladder cancer: the effect is autophagy-associated. Tumour Biol 2016; 37:12731-12742. [PMID: 27448305 DOI: 10.1007/s13277-016-5157-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Although GC (gemcitabine and cisplatin) chemotherapy remains an effective method for treating bladder cancer (BCa), chemoresistance is a major obstacle in chemotherapy. In this study, we determined whether gemcitabine resistance correlates with migratory/invasive potential in BCa and whether this relationship is regulated by the cylindromatosis (CYLD)-Livin module. First, we independently investigated the correlation of CYLD/Livin and gemcitabine resistance with the potential for tumor migration and invasiveness. Second, we found that co-transfected CYLD and Livin dramatically improved sensitivity to gemcitabine chemotherapy and decreased migration/invasion potential. Next, we determined that CYLD may regulate Livin by the NF-κB-dependent pathway. We also found that CYLD overexpression and Livin knockdown might improve gemcitabine chemosensitivity by decreasing autophagy and increasing apoptosis in BCa cells. Finally, the effects of CYLD-Livin on tumor growth in vivo were evaluated. Our study demonstrates that CYLD-Livin might represent a potential therapeutic for chemoresistant BCa.
Collapse
Affiliation(s)
- Lei Yin
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Chensheng Li
- Department of Digestive Diseases, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Dongbin Bi
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Zhihong Niu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Liping Han
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China
| | - Wenjia Li
- Shandong University, Jinan, 250000, China
| | - Dexuan Gao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Zheng Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China.
| |
Collapse
|
23
|
Ren X, Liu Y, Tao Y, Zhu G, Pei M, Zhang J, Liu J. Downregulation of SASH1 correlates with tumor progression and poor prognosis in ovarian carcinoma. Oncol Lett 2016; 11:3123-3130. [PMID: 27123075 DOI: 10.3892/ol.2016.4345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/24/2016] [Indexed: 01/23/2023] Open
Abstract
SAM- and SH3-domain containing 1 (SASH1) is a recently identified tumor suppressor gene that is required in the tumorigenesis of breast and other solid carcinomas. The SASH1 protein contains SH3 and SAM domains, indicating that it may serve an important role in intracellular signal transduction. The purpose of the present study was to investigate the expression of SASH1 in ovarian carcinoma and the correlation between its expression with clinical pathological features and clinical significance, and the effect of SASH1 on cell proliferation, apoptosis and migration of ovarian SKOV3 cells. The human ovarian carcinoma tissues and adjacent normal tissues were collected following surgery. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression levels of SASH1 mRNA and protein, respectively. The expression levels of SASH1 mRNA and protein in ovarian carcinoma tissues were significantly lower than that observed in adjacent normal tissues (P<0.05). The expression levels of SASH1 in samples from patients without lymph nodes metastasis and patients with early FIGO stage was lower than those with lymph nodes metastasis and patients with advanced FIGO stage (P<0.05). Flow cytometry analysis and Transwell invasion chamber experiments were used to investigate the effect of SASH1 on the cell proliferation, apoptosis and migration of SKOV3 cells. The recombinant plasmid pcDNA3.1-SASH1 was constructed and transfected into SKOV3 cells. In addition, the SKOV3 cells in the pcDNA3.1-SASH1 group exhibited significantly reduced cell growth, proliferation, and migration ability compared to the empty vector group and normal group (P<0.01). There were a greater number of apoptotic cells in the pcDNA3.1-SASH1 group compared to the empty vector group and normal group (P<0.01). Taken together, these results indicated that SASH1 may be a tumor suppressor gene in ovarian carcinoma, and SASH1 expression inhibited growth, proliferation and migration, and enhanced apoptosis of SKOV3 cells.
Collapse
Affiliation(s)
- Xiaoyan Ren
- Department of Pathology, Maternal and Child Health Care Hospital of Nantong, Nantong, Jiangsu 226018, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yumei Tao
- Department of Pathology, Maternal and Child Health Care Hospital of Nantong, Nantong, Jiangsu 226018, P.R. China
| | - Guoxiang Zhu
- Department of Pathology, Maternal and Child Health Care Hospital of Nantong, Nantong, Jiangsu 226018, P.R. China
| | - Meilan Pei
- Department of Obstetrics, Maternal and Child Health Care Hospital of Nantong, Nantong, Jiangsu 226018, P.R. China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|