1
|
Yang F, Song H, Wu W, Guo J. Targets and promising adjuvants for improving breast tumor response to radiotherapy. Bioorg Chem 2025; 162:108582. [PMID: 40393355 DOI: 10.1016/j.bioorg.2025.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/22/2025]
Abstract
Breast cancer ranks among the most common cancers globally, with significant mortality rates in advanced stages. Despite progress in treatment, therapy resistance, particularly to radiotherapy, remains a major challenge. Radiosensitization offers a promising solution to enhance radiotherapy effectiveness. This approach specifically increases tumor cells' vulnerability to IR. Recent research has explored molecular targets and strategies to improve radiosensitivity in breast cancer. Examples include inhibiting DNA repair pathways, altering the TME, targeting signaling pathways, and using immunomodulators. These strategies not only amplify destructive effects of IR but may also reduce required radiation doses, thereby minimizing normal tissue injury. This review examines promising molecular targets and combination therapies to boost radiosensitivity in breast cancer. It also highlights recent advances in immune modulation, TME remodeling, targeted molecular therapy, and metabolic pathway targeting. These advancements offer insights into the future of radiosensitization research. By systematically analyzing these strategies, the article aims to provide a comprehensive understanding of radiosensitization's current state and future potential in breast cancer treatment.
Collapse
Affiliation(s)
- Fusen Yang
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Hui Song
- Department of Traditional Chinese Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Weihong Wu
- Chinese Medicine Teaching and Research Group, Medical Advanced Vocational School of Shandong, Jinan, Shandong 250002, China
| | - Junmei Guo
- Department of Traditional Chinese Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| |
Collapse
|
2
|
Capatina AL, Malcolm JR, Stenning J, Moore RL, Bridge KS, Brackenbury WJ, Holding AN. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment. Front Cell Dev Biol 2024; 12:1421629. [PMID: 39282472 PMCID: PMC11392762 DOI: 10.3389/fcell.2024.1421629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The events that control breast cancer progression and metastasis are complex and intertwined. Hypoxia plays a key role both in oncogenic transformation and in fueling the metastatic potential of breast cancer cells. Here we review the impact of hypoxia on epigenetic regulation of breast cancer, by interfering with multiple aspects of the tumour microenvironment. The co-dependent relationship between oxygen depletion and metabolic shift to aerobic glycolysis impacts on a range of enzymes and metabolites available in the cell, promoting posttranslational modifications of histones and chromatin, and changing the gene expression landscape to facilitate tumour development. Hormone signalling, particularly through ERα, is also tightly regulated by hypoxic exposure, with HIF-1α expression being a prognostic marker for therapeutic resistance in ER+ breast cancers. This highlights the strong need to understand the hypoxia-endocrine signalling axis and exploit it as a therapeutic target. Furthermore, hypoxia has been shown to enhance metastasis in TNBC cells, as well as promoting resistance to taxanes, radiotherapy and even immunotherapy through microRNA regulation and changes in histone packaging. Finally, several other mediators of the hypoxic response are discussed. We highlight a link between ionic dysregulation and hypoxia signalling, indicating a potential connection between HIF-1α and tumoural Na+ accumulation which would be worth further exploration; we present the role of Ca2+ in mediating hypoxic adaptation via chromatin remodelling, transcription factor recruitment and changes in signalling pathways; and we briefly summarise some of the findings regarding vesicle secretion and paracrine induced epigenetic reprogramming upon hypoxic exposure in breast cancer. By summarising these observations, this article highlights the heterogeneity of breast cancers, presenting a series of pathways with potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Jodie R Malcolm
- Department of Biology, University of York, York, United Kingdom
| | - Jack Stenning
- Department of Biology, University of York, York, United Kingdom
| | - Rachael L Moore
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Katherine S Bridge
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew N Holding
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
3
|
Akhunzianov AA, Filina JV, Zolotykh MA, Rizvanov AA, Miftakhova RR. Long-term Hypoxia Inhibits Sphere Formation on PC-3 and MDA-MB-231 Cell Line Models. Open Biochem J 2024; 18. [DOI: 10.2174/011874091x307243240513092933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/30/2024] [Accepted: 04/17/2024] [Indexed: 01/04/2025] Open
Abstract
Background
Cancer stem cells (CSCs) represent a relatively small subset of cells within tumors, capable of self-renewal and associated with metastasis and cancer recurrence. While conventional chemotherapy targets actively dividing bulk tumor cells, dormant CSCs remain unaffected and survive. Hypoxia or deprivation of oxygen supply is a common feature of solid tumors, which plays a critical role in metastatic progression and CSC maintenance. However, the cellular responses to hypoxia might be influenced by many factors, including the severity, duration, and other specific characteristics of this stress.
Objective
In our study, we assessed the impact of long-term hypoxia on the CSCs population in 5 cell lines representing 5 different tumor types.
Methods
We assessed and characterized the effect of oxygen concentration on CSC population using the sphere formation assay. The protein levels in tumor spheres were examined by western blot analysis.
Results
Long-term hypoxia inhibited sphere formation by PC-3 and MDA-MB-231 CSCs. Moreover, chronic hypoxic stress suppressed cell proliferation in tumor spheres in all 5 tested cell lines: SNB-19, HCT116, MDA-MB-231, NCI-H460 and PC-3. This effect was accompanied by PCNA downregulation in tumorspheres derived from NCI-H460 and PC-3 cells.
Conclusion
The prolonged hypoxic conditions impede tumor sphere formation by PC-3 prostate CSCs, primarily through the downregulation of PCNA levels. The specific cellular response to hypoxia depends on the duration and, supposedly, other specific features of this stress.
Collapse
|
4
|
Alshehade SA, Almoustafa HA, Alshawsh MA, Chik Z. Flow cytometry-based quantitative analysis of cellular protein expression in apoptosis subpopulations: A protocol. Heliyon 2024; 10:e33665. [PMID: 39040270 PMCID: PMC11260931 DOI: 10.1016/j.heliyon.2024.e33665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Flow cytometry techniques utilizing dual staining with annexin V and propidium iodide (PI) provide a robust method for quantitatively analyzing apoptosis induction. Annexin V binds phosphatidylserine exposed on the outer leaflet of the plasma membrane during early apoptosis, while PI permeates late apoptotic/necrotic cells. Simultaneous staining allows differentiation of viable, early apoptotic, and late apoptotic/necrotic populations. This approach can be enhanced by using fluorochrome-conjugated antibodies to stain specific proteins, enabling the simultaneous tracking of protein expression changes in defined cell subpopulations during apoptosis. This multiparametric approach provides key insights into signaling regulation and the mechanisms underlying the apoptotic response to cytotoxic treatments. Here we present a protocol that combines annexin V-FITC/PI staining with APC-conjugated antibody labeling in MDA-MB-231 breast cancer cells treated with doxorubicin. This protocol enables both the quantitative assessment of apoptosis induction and the tracking of decreased CD44 expression from viable to apoptotic cells. This protocol also provides guidelines for appropriate filter selection, compensation controls, gating strategies, and troubleshooting. This robust protocol holds significant potential for elucidating signaling networks involved in apoptosis and therapeutic resistance across various cellular models.
Collapse
Affiliation(s)
- Salah Abdalrazak Alshehade
- Department of Pharmacology, Faculty of Pharmacy & Bio Medical Sciences, MAHSA University, 42610, Selangor, Malaysia
| | - Hassan A. Almoustafa
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Universiti Malaya Bioequivalence and Testing Centre (UBAT), Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Universiti Malaya Bioequivalence and Testing Centre (UBAT), Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Panahi Meymandi AR, Akbari B, Soltantoyeh T, Shahosseini Z, Hosseini M, Hadjati J, Mirzaei HR. PX-478, an HIF-1α inhibitor, impairs mesoCAR T cell antitumor function in cervical cancer. Front Oncol 2024; 14:1357801. [PMID: 38425341 PMCID: PMC10903365 DOI: 10.3389/fonc.2024.1357801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated remarkable success in treating hematological malignancies. However, its efficacy against solid tumors, including cervical cancer, remains a challenge. Hypoxia, a common feature of the tumor microenvironment, profoundly impacts CAR T cell function, emphasizing the need to explore strategies targeting hypoxia-inducible factor-1α (HIF-1α). Methods In this study, we evaluated the effects of the HIF-1α inhibitor PX-478 on mesoCAR T cell function through in-silico and in vitro experiments. We conducted comprehensive analyses of HIF-1α expression in cervical cancer patients and examined the impact of PX-478 on T cell proliferation, cytokine production, cytotoxicity, and exhaustion markers. Results Our in-silico analyses revealed high expression of HIF-1α in cervical cancer patients, correlating with poor prognosis. PX-478 effectively reduced HIF-1α levels in T and HeLa cells. While PX-478 exhibited dose-dependent inhibition of antigen-nonspecific T and mesoCAR T cell proliferation, it had minimal impact on antigen-specific mesoCAR T cell proliferation. Notably, PX-478 significantly impaired the cytotoxic function of mesoCAR T cells and induced terminally exhausted T cells. Discussion Our results underscore the significant potential and physiological relevance of the HIF-1α pathway in determining the fate and function of both T and CAR T cells. However, we recognize the imperative for further molecular investigations aimed at unraveling the intricate downstream targets associated with HIF-1α and its influence on antitumor immunity, particularly within the context of hypoxic tumors. These insights serve as a foundation for the careful development of combination therapies tailored to counter immunosuppressive pathways within hypoxic environments and fine-tune CAR T cell performance in the intricate tumor microenvironment.
Collapse
Affiliation(s)
- Ahmad Reza Panahi Meymandi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahosseini
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Delgado JM, Shepard LW, Lamson SW, Liu SL, Shoemaker CJ. The ER membrane protein complex restricts mitophagy by controlling BNIP3 turnover. EMBO J 2024; 43:32-60. [PMID: 38177312 PMCID: PMC10883272 DOI: 10.1038/s44318-023-00006-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
Lysosomal degradation of autophagy receptors is a common proxy for selective autophagy. However, we find that two established mitophagy receptors, BNIP3 and BNIP3L/NIX, are constitutively delivered to lysosomes in an autophagy-independent manner. This alternative lysosomal delivery of BNIP3 accounts for nearly all its lysosome-mediated degradation, even upon mitophagy induction. To identify how BNIP3, a tail-anchored protein in the outer mitochondrial membrane, is delivered to lysosomes, we performed a genome-wide CRISPR screen for factors influencing BNIP3 flux. This screen revealed both known modifiers of BNIP3 stability as well as a pronounced reliance on endolysosomal components, including the ER membrane protein complex (EMC). Importantly, the endolysosomal system and the ubiquitin-proteosome system regulated BNIP3 independently. Perturbation of either mechanism is sufficient to modulate BNIP3-associated mitophagy and affect underlying cellular physiology. More broadly, these findings extend recent models for tail-anchored protein quality control and install endosomal trafficking and lysosomal degradation in the canon of pathways that tightly regulate endogenous tail-anchored protein localization.
Collapse
Affiliation(s)
- Jose M Delgado
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Logan Wallace Shepard
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Sarah W Lamson
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Samantha L Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
- Dartmouth Cancer Center, Lebanon, NH, USA.
| |
Collapse
|
7
|
Moharamipour S, Aminifar M, Foroughi-Gilvaee MR, Faranoush P, Mahdavi R, Abadijoo H, Parniani M, Abbasvandi F, Mansouri S, Abdolahad M. Hydroelectric actuator for 3-dimensional analysis of electrophoretic and dielectrophoretic behavior of cancer cells; suitable in diagnosis and invasion studies. BIOMATERIALS ADVANCES 2023; 151:213476. [PMID: 37276690 DOI: 10.1016/j.bioadv.2023.213476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023]
Abstract
Cancer is a cellular-based disease, so cytological diagnosis is one of the main challenges for its early detection. An extensive number of diagnostic methods have been developed to separate cancerous cells from normal ones, in electrical methods attract progressive attention. Identifying and specifying different cells requires understanding their dielectric and electric properties. This study evaluated MDA-MB-231, HUVEC, and MCF-10A cell lines, WBCs isolated from blood, and patient-derived cell samples with a cylindrical body with two transparent FTO (fluorine-doped tin oxide) plate electrodes. Cell mobility rates were recorded in response to these stimuli. It was observed that cancer cells demonstrate drastic changes in their motility in the presence and absence of an electric field (DC/AC). Also, solution viscosity's effect on cancer cells' capturing efficacy was evaluated. This research's main distinguished specification uses a non-microfluidic platform to detect and pathologically evaluate cytological samples with a simple, cheap, and repeatable platform. The capturing procedure was carried out on a cytological slide without any complicated electrode patterning with the ability of cytological staining. Moreover, this platform successfully designed and experimented with the invasion assay (the ability of captured cancer cells to invade normal cells).
Collapse
Affiliation(s)
- Shima Moharamipour
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mina Aminifar
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Reza Foroughi-Gilvaee
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Faranoush
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Reihane Mahdavi
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamed Abadijoo
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Parniani
- Pathology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fereshteh Abbasvandi
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
| | - Sepideh Mansouri
- Radiation Oncology Research Center (RORC), Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Banerjee M, Devi Rajeswari V. A novel cross-communication of HIF-1α and HIF-2α with Wnt signaling in TNBC and influence of hypoxic microenvironment in the formation of an organ-on-chip model of breast cancer. Med Oncol 2023; 40:245. [PMID: 37454033 DOI: 10.1007/s12032-023-02112-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The microenvironment role is very important in cancer development. The epithelial-mesenchymal transition of the cancer cells depends upon specific signaling and microenvironmental conditions, such as hypoxic conditions. The crosstalk between hypoxia and Wnt signaling through some molecular mechanism in TNBC is related. Cross-communication between hypoxia and Wnt signaling in cancer cells is known, but the detailed mechanism in TNBC is unknown. This review includes the role of the hypoxia microenvironment in TNBC and the novel crosstalk of the Wnt signaling and hypoxia. When targeted, the new pathway and crosstalk link may be a solution for metastatic TNBC and chemoresistance. The microenvironment influences cancer's metastasis, which changes from person to person. Therefore, organ-on-a-chip is a very novel model to test the drugs clinically before going for human trials, focusing on personalized medications can be done. The effect of the hypoxia microenvironment on breast cancer stem cells is still unknown. Apart from all the published papers, this paper mainly focuses only on the hypoxic microenvironment and its association with the growth of TNBC. The medicines or small proteins, drugs, mimics, and inhibitors targeting wnt and hypoxia genes are consolidated in this review paper.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Li M, Lin C, Cai Z. Downregulation of the long noncoding RNA DSCR9 (Down syndrome critical region 9) delays breast cancer progression by modulating microRNA-504-5p-dependent G protein-coupled receptor 65. Hum Cell 2023:10.1007/s13577-023-00916-4. [PMID: 37248366 DOI: 10.1007/s13577-023-00916-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Possible roles of long noncoding RNAs (lncRNAs) in cancer stem cells (CSCs) have often been reported. Here, we focused on the regulatory function of the lncRNA Down syndrome critical region 9 (DSCR9) in breast cancer stem cells (BCSCs). Through bioinformatics analysis, DSCR9, microRNA-504-5p (miR-504-5p), and G protein-coupled receptor 65 (GPR65) were identified as targets implicated in breast cancer development. Then, clinical tissue samples, breast cancer cells, and isolated BCSCs were used to determine the expression of DSCR9, miR-504-5p, and GPR65. The results confirmed the overexpression of DSCR9 and GPR65 but low expression of miR-504-5p in breast cancer tissues and cells as well as in BCSCs. Following mechanistic investigation, it was found that DSCR9 targeted miR-504-5p, and that silencing DSCR9 inhibited the proliferation of BCSCs by elevating the expression of miR-504-5p. Additionally, miR-504-5p targeted GPR65 and inhibited its expression. Moreover, GPR65 activated the MEK/ERK signaling pathway to regulate BCSC proliferation. Finally, animal study verified that depletion of DSCR9 inhibited the proliferation of BCSCs in vivo and that BCSC proliferation was restored by overexpression of GPR65. Altogether, our findings revealed that DSCR9 elevated GPR65 expression by targeting miR-504-5p to exacerbate breast cancer, highlighting a new treatment modality for breast cancer.
Collapse
Affiliation(s)
- Mingzhu Li
- Area N4 of Surgical Oncology, Quanzhou First Hospital Affiliated Fujian Medical University, No. 1028, Anji South Road, Fengze District, Quanzhou, 362000, Fujian Province, China.
| | - Conglin Lin
- Area N4 of Surgical Oncology, Quanzhou First Hospital Affiliated Fujian Medical University, No. 1028, Anji South Road, Fengze District, Quanzhou, 362000, Fujian Province, China
| | - Zhibing Cai
- Area N4 of Surgical Oncology, Quanzhou First Hospital Affiliated Fujian Medical University, No. 1028, Anji South Road, Fengze District, Quanzhou, 362000, Fujian Province, China
| |
Collapse
|
10
|
Ream C, Sabitsky M, Huang R, Hammelef E, Yeo TP, Lavu H, Yeo CJ, Bowne W, Nevler A. Association of Smoking and Respiratory Disease History with Pancreatic Pathologies Requiring Surgical Resection. Cancers (Basel) 2023; 15:cancers15112935. [PMID: 37296897 DOI: 10.3390/cancers15112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND The purpose of this study was to examine the relationship between various respiratory conditions, including hypercapnic respiratory disease, and a multitude of resected pancreatic lesions. METHODS This retrospective case-control study queried a prospectively maintained database of patients who underwent pancreaticoduodenectomy between January 2015 and October 2021. Patient data, including smoking history, medical history, and pathology reports, were recorded. Patients with no smoking history and no concomitant respiratory conditions were designated as the control group. RESULTS A total of 723 patients with complete clinical and pathological data were identified. Male current smokers showed increased rates of PDAC (OR 2.33, 95% CI 1.07-5.08, p = 0.039). Male patients with COPD had a markedly increased association with IPMN (OR 3.02, CI 1.08-8.41, p = 0.039), while females with obstructive sleep apnea had a four-fold increase in risk of IPMN compared to women in the control group (OR 3.89, CI 1.46-10.37, p = 0.009). Surprisingly, female patients with asthma had a decreased incidence of pancreatic and periampullary adenocarcinoma (OR 0.36, 95% CI 0.18-0.71. p < 0.01). CONCLUSION This large cohort study reveals possible links between respiratory pathologies and various pancreatic mass-forming lesions.
Collapse
Affiliation(s)
- Carolyn Ream
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthew Sabitsky
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rachel Huang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Emma Hammelef
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Theresa P Yeo
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Philadelphia, PA 19107, USA
| | - Harish Lavu
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Philadelphia, PA 19107, USA
| | - Charles J Yeo
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Philadelphia, PA 19107, USA
| | - Wilbur Bowne
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Philadelphia, PA 19107, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Nevler A, Khalilieh S, Lavu H, Bowne W, Yeo CJ. Hypercapnic Tissue Gene Expression and Survival in Early-Stage Pancreatic Ductal Adenocarcinoma. J Am Coll Surg 2023; 236:913-922. [PMID: 36728372 DOI: 10.1097/xcs.0000000000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer. Hypercapnic tumor microenvironments were previously shown to promote cancer chemoresistance. In this study, we aimed to investigate the impact of tissue hypercapnia on PDAC prognosis. STUDY DESIGN PDAC cancer-cell lines were cultured in normocapnic (5% CO 2 ) and hypercapnic conditions (10% CO 2 ). RNA was extracted, and whole-exome transcriptome was sequenced. Differentially expressed genes were identified and used to construct a "hypercapnic gene set." PDAC transcriptomic patient data from the Tumor Cancer Genome Atlas was used to calculate single-sample gene set enrichment scores based on each patient's tissue expression of the hypercapnic gene set. Tissue hypercapnic scores (HSs) in PDAC patients (TMN stages Ia-IIb) were determined and correlated with clinicopathological parameters and overall survival. RESULTS A cohort of 135 resected stage I-II PDAC patients were assessed in this study. The average age was 65 ± 11.0 years, and the male:female ratio was 74:61. Median overall survival was 19.5 ± 1.4 months. High HSs were associated with increased tumor stage (p < 0.05) and higher lymph-node ratio (p < 0.05). In active smokers, high HS also correlated with smoking pack-years (p < 0.05). Cox regression analysis revealed high HS to be an independent prognostic factor for overall survival (hazard ratio [HR] 2.66, p = 0.004), along with lymph-node ratio (HR 4.2, p = 0.002) and age at diagnosis (HR 2.63, p = 0.01). CONCLUSIONS The pancreatic tumor microenvironment plays an integral role in tumor aggressiveness, and our previous in vitro data suggest that hypercapnia promotes an aggressive, more resistant phenotype. Herein, we show that in early-stage pancreatic cancer, hypercapnic tissue signatures corresponded with a worse overall survival.
Collapse
Affiliation(s)
- Avinoam Nevler
- From the Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | | | | | | | | |
Collapse
|
12
|
Delgado JM, Wallace Shepard L, Lamson SW, Liu SL, Shoemaker CJ. The ER membrane protein complex governs lysosomal turnover of a mitochondrial tail-anchored protein, BNIP3, to restrict mitophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533681. [PMID: 36993512 PMCID: PMC10055395 DOI: 10.1101/2023.03.22.533681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lysosomal degradation of autophagy receptors is a common proxy for selective autophagy. However, we find that two established mitophagy receptors, BNIP3 and BNIP3L/NIX, violate this assumption. Rather, BNIP3 and NIX are constitutively delivered to lysosomes in an autophagy-independent manner. This alternative lysosomal delivery of BNIP3 accounts for nearly all of its lysosome-mediated degradation, even upon mitophagy induction. To identify how BNIP3, a tail-anchored protein in the outer mitochondrial membrane, is delivered to lysosomes, we performed a genome-wide CRISPR screen for factors influencing BNIP3 flux. By this approach, we revealed both known modifiers of BNIP3 stability as well as a pronounced reliance on endolysosomal components, including the ER membrane protein complex (EMC). Importantly, the endolysosomal system regulates BNIP3 alongside, but independent of, the ubiquitin-proteosome system (UPS). Perturbation of either mechanism is sufficient to modulate BNIP3-associated mitophagy and affect underlying cellular physiology. In short, while BNIP3 can be cleared by parallel and partially compensatory quality control pathways, non-autophagic lysosomal degradation of BNIP3 is a strong post-translational modifier of BNIP3 function. More broadly, these data reveal an unanticipated connection between mitophagy and TA protein quality control, wherein the endolysosomal system provides a critical axis for regulating cellular metabolism. Moreover, these findings extend recent models for tail-anchored protein quality control and install endosomal trafficking and lysosomal degradation in the canon of pathways that ensure tight regulation of endogenous TA protein localization.
Collapse
Affiliation(s)
- Jose M Delgado
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Logan Wallace Shepard
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Sarah W Lamson
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Samantha L Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH
- Dartmouth Cancer Center, Lebanon, NH, USA
| |
Collapse
|
13
|
The Potential of PSMA as a Vascular Target in TNBC. Cells 2023; 12:cells12040551. [PMID: 36831218 PMCID: PMC9954547 DOI: 10.3390/cells12040551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Recent studies proving prostate-specific membrane antigen (PSMA) expression on triple-negative breast cancer (TNBC) cells and adjacent endothelial cells suggest PSMA as a promising target for therapy of until now not-targetable cancer entities. In this study, PSMA and its isoform expression were analyzed in different TNBC cells, breast cancer stem cells (BCSCs), and tumor-associated endothelial cells. PSMA expression was detected in 91% of the investigated TNBC cell lines. The PSMA splice isoforms were predominantly found in the BCSCs. Tumor-conditioned media from two TNBC cell lines, BT-20 (high full-length PSMA expression, PSMAΔ18 expression) and Hs578T (low full-length PSMA expression, no isoform expression), showed significant pro-angiogenic effect with induction of tube formation in endothelial cells. All TNBC cell lines induced PSMA expression in human umbilical vein endothelial cells (HUVEC). Significant uptake of radiolabeled ligand [68Ga]Ga-PSMA was detected in BCSC1 (4.2%), corresponding to the high PSMA expression. Moreover, hypoxic conditions increased the uptake of radiolabeled ligand [177Lu]Lu-PSMA in MDA-MB-231 (0.4% vs. 3.4%, under hypoxia and normoxia, respectively) and MCF-10A (0.3% vs. 3.0%, under normoxia and hypoxia, respectively) significantly (p < 0.001). [177Lu]Lu-PSMA-induced apoptosis rates were highest in BT-20 and MDA-MB-231 associated endothelial cells. Together, these findings demonstrate the potential of PSMA-targeted therapy in TNBC.
Collapse
|
14
|
Pachane BC, Nunes ACC, Cataldi TR, Micocci KC, Moreira BC, Labate CA, Selistre-de-Araujo HS, Altei WF. Small Extracellular Vesicles from Hypoxic Triple-Negative Breast Cancer Cells Induce Oxygen-Dependent Cell Invasion. Int J Mol Sci 2022; 23:ijms232012646. [PMID: 36293503 PMCID: PMC9604480 DOI: 10.3390/ijms232012646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Hypoxia, a condition of low oxygenation frequently found in triple-negative breast tumors (TNBC), promotes extracellular vesicle (EV) secretion and favors cell invasion, a complex process in which cell morphology is altered, dynamic focal adhesion spots are created, and ECM is remodeled. Here, we investigated the invasive properties triggered by TNBC-derived hypoxic small EV (SEVh) in vitro in cells cultured under hypoxic (1% O2) and normoxic (20% O2) conditions, using phenotypical and proteomic approaches. SEVh characterization demonstrated increased protein abundance and diversity over normoxic SEV (SEVn), with enrichment in pro-invasive pathways. In normoxic cells, SEVh promotes invasive behavior through pro-migratory morphology, invadopodia development, ECM degradation, and matrix metalloprotease (MMP) secretion. The proteome profiling of 20% O2-cultured cells exposed to SEVh determined enrichment in metabolic processes and cell cycles, modulating cell health to escape apoptotic pathways. In hypoxia, SEVh was responsible for proteolytic and catabolic pathway inducement, interfering with integrin availability and gelatinase expression. Overall, our results demonstrate the importance of hypoxic signaling via SEV in tumors for the early establishment of metastasis.
Collapse
Affiliation(s)
- Bianca Cruz Pachane
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos—UFSCar, São Carlos 13565-905, SP, Brazil
| | - Ana Carolina Caetano Nunes
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos—UFSCar, São Carlos 13565-905, SP, Brazil
| | - Thais Regiani Cataldi
- Max Feffer Plant Genetics Laboratory, Department of Genetics, University of São Paulo—ESALQ, Piracicaba 13418-900, SP, Brazil
| | - Kelli Cristina Micocci
- Center for the Study of Social Insects, São Paulo State University “Julio de Mesquita Filho”, Rio Claro 14884-900, SP, Brazil
| | - Bianca Caruso Moreira
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos—UFSCar, São Carlos 13565-905, SP, Brazil
| | - Carlos Alberto Labate
- Max Feffer Plant Genetics Laboratory, Department of Genetics, University of São Paulo—ESALQ, Piracicaba 13418-900, SP, Brazil
| | - Heloisa Sobreiro Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos—UFSCar, São Carlos 13565-905, SP, Brazil
| | - Wanessa Fernanda Altei
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
- Radiation Oncology Department, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
- Correspondence:
| |
Collapse
|
15
|
Demeule M, Charfi C, Currie JC, Zgheib A, Danalache BA, Béliveau R, Marsolais C, Annabi B. The TH1902 Docetaxel Peptide-Drug Conjugate Inhibits Xenografts Growth of Human SORT1-Positive Ovarian and Triple-Negative Breast Cancer Stem-like Cells. Pharmaceutics 2022; 14:1910. [PMID: 36145658 PMCID: PMC9503230 DOI: 10.3390/pharmaceutics14091910] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Breast and ovarian cancer stem cells (CSC) can contribute to the invasive and chemoresistance phenotype of tumors. TH1902, a newly developed sortilin (SORT1)-targeted peptide-docetaxel conjugate is currently in phase-1 clinical trial. Whether TH1902 impacts the chemoresistance phenotype of human triple-negative breast CSC (hTNBCSC) and ovarian CSC (hOvCSC) is unknown. Methods and Results: Immunophenotyping of hTNBCSC and hOvCSC was performed by flow cytometry and confirmed the expression of SORT1, and of CSC markers CD133, NANOG, and SOX2. Western blotting demonstrated the expression of the drug efflux pumps from the P-gp family members, ABCB1 and ABCB5. The cellular uptake of the fluorescent Alexa488-peptide from TH1902 was inhibited upon siRNA-mediated repression of SORT1 or upon competition with SORT1 ligands. In contrast to docetaxel, TH1902 inhibited in vitro migration, induced cell apoptosis and lead to G2/M cell cycle arrest of the hTNBCSC. These events were unaffected by the presence of the P-gp inhibitors cyclosporine A or PSC-833. In vivo, using immunosuppressed nude mice xenografts, TH1902 significantly inhibited the growth of hTNBCSC and hOvCSC xenografts (~80% vs. ~35% for docetaxel) when administered weekly as intravenous bolus for three cycles at 15 mg/kg, a dose equivalent to the maximal tolerated dose of docetaxel. Therapeutic efficacy was further observed when carboplatin was combined to TH1902. Conclusions: Overall, TH1902 exerts a superior anticancer activity than the unconjugated docetaxel, in part, by circumventing the CSC drug resistance phenotype that could potentially reduce cancer recurrence attributable to CSC.
Collapse
Affiliation(s)
| | - Cyndia Charfi
- Theratechnologies Inc., Montréal, QC H3A 1T8, Canada
| | | | - Alain Zgheib
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Bogdan Alexandru Danalache
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Richard Béliveau
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | | | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
16
|
Reimche I, Yu H, Ariantari NP, Liu Z, Merkens K, Rotfuß S, Peter K, Jungwirth U, Bauer N, Kiefer F, Neudörfl JM, Schmalz HG, Proksch P, Teusch N. Phenanthroindolizidine Alkaloids Isolated from Tylophora ovata as Potent Inhibitors of Inflammation, Spheroid Growth, and Invasion of Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms231810319. [PMID: 36142230 PMCID: PMC9499467 DOI: 10.3390/ijms231810319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC), representing the most aggressive form of breast cancer with currently no targeted therapy available, is characterized by an inflammatory and hypoxic tumor microenvironment. To date, a broad spectrum of anti-tumor activities has been reported for phenanthroindolizidine alkaloids (PAs), however, their mode of action in TNBC remains elusive. Thus, we investigated six naturally occurring PAs extracted from the plant Tylophora ovata: O-methyltylophorinidine (1) and its five derivatives tylophorinidine (2), tylophoridicine E (3), 2-demethoxytylophorine (4), tylophoridicine D (5), and anhydrodehydrotylophorinidine (6). In comparison to natural (1) and for more-in depth studies, we also utilized a sample of synthetic O-methyltylophorinidine (1s). Our results indicate a remarkably effective blockade of nuclear factor kappa B (NFκB) within 2 h for compounds (1) and (1s) (IC50 = 17.1 ± 2.0 nM and 3.3 ± 0.2 nM) that is different from its effect on cell viability within 24 h (IC50 = 13.6 ± 0.4 nM and 4.2 ± 1 nM). Furthermore, NFκB inhibition data for the additional five analogues indicate a structure–activity relationship (SAR). Mechanistically, NFκB is significantly blocked through the stabilization of its inhibitor protein kappa B alpha (IκBα) under normoxic as well as hypoxic conditions. To better mimic the TNBC microenvironment in vitro, we established a 3D co-culture by combining the human TNBC cell line MDA-MB-231 with primary murine cancer-associated fibroblasts (CAF) and type I collagen. Compound (1) demonstrates superiority against the therapeutic gold standard paclitaxel by diminishing spheroid growth by 40% at 100 nM. The anti-proliferative effect of (1s) is distinct from paclitaxel in that it arrests the cell cycle at the G0/G1 state, thereby mediating a time-dependent delay in cell cycle progression. Furthermore, (1s) inhibited invasion of TNBC monoculture spheroids into a matrigel®-based environment at 10 nM. In conclusion, PAs serve as promising agents with presumably multiple target sites to combat inflammatory and hypoxia-driven cancer, such as TNBC, with a different mode of action than the currently applied chemotherapeutic drugs.
Collapse
Affiliation(s)
- Irene Reimche
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Haiqian Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ni Putu Ariantari
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Udayana University, Bali 80361, Indonesia
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kay Merkens
- Department of Chemistry, University of Cologne, 50923 Cologne, Germany
| | - Stella Rotfuß
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
| | - Karin Peter
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
| | - Ute Jungwirth
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Nadine Bauer
- European Institute of Molecular Imaging, University of Münster, 48149 Münster, Germany
| | - Friedemann Kiefer
- European Institute of Molecular Imaging, University of Münster, 48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | | | | | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nicole Teusch
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-81-14163
| |
Collapse
|
17
|
Ayob AZ, Ramasamy TS. Prolonged hypoxia switched on cancer stem cell-like plasticity in HepG2 tumourspheres cultured in serum-free media. In Vitro Cell Dev Biol Anim 2021; 57:896-911. [PMID: 34750738 DOI: 10.1007/s11626-021-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/29/2021] [Indexed: 10/19/2022]
Abstract
Tumour hypoxia drives resistance and aggressiveness, and in large part, contributes to treatment failure thereby causing cancer-related deaths. The rapid and uncontrolled tumour growth develops not only a hypoxic niche but also a nutrient-deprived condition due to insufficient blood supply; together, these create a stressful tumour niche, further promoting higher aggressiveness and resistance features of cancer. However, how cellular responses in the prolonged stress is associated with cancer stem cells (CSCs), which is linked to these features, remains unclear. Here, we established HepG2 tumoursphere culture in a hypoxic and serum-free condition that recapitulated differential responses to prolonged tumour growth pressures, evident by their progressive changes in the morphology of tumoursphere formation over a course of 15-day culture. HepG2 tumourspheres formed larger sphere sizes of > 200 μm in hypoxic conditions, concomitant with higher cell yield and upregulation of PCNA marker at day 7, corresponding with higher self-renewal capacity when cultured in SFM compared to SM. Notably, prolonged growth of HepG2 tumourspheres for 15 days under hypoxic and SFM condition increased their sphere counts, yet significantly reduced their cell yield along with downregulation of PCNA expression. Gene expression analysis showed that HepG2 tumourspheres on day 15 exhibited enhanced expression of markers of quiescence, stemness, EMT, and chemoresistance. Interestingly, analysis of HIF1α and HIF2α and their target gene expression indicated complementary HIF expression with preferential upregulation of HIF2α was observed in HepG2 tumourspheres in prolonged hypoxic and serum-free conditions, suggesting HIF2α-dependency and plausibility of the HIF1α-HIF2α switch that govern their survival by promoting CSC-like programmes. Altogether, these findings suggest the implication of prolonged hypoxia and nutrient deprivation stress in promoting CSC-like programmes in cancer cells recapitulating their plasticity, hence having opened many research directions that enable development of effective targeting of CSCs and precision medicine for treating cancer.
Collapse
Affiliation(s)
- Ain Zubaidah Ayob
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Wang Y, Lv Z, Chen F, Wang X, Gou S. Conjugates Derived from Lapatinib Derivatives with Cancer Cell Stemness Inhibitors Effectively Reversed Drug Resistance in Triple-Negative Breast Cancer. J Med Chem 2021; 64:12877-12892. [PMID: 34435487 DOI: 10.1021/acs.jmedchem.1c01013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that the cancer stem cell (CSC) subpopulation contributes to the therapeutic resistance and metastasis of tumors, leading to patient recurrence and death. Herein, we designed and synthesized several compounds by conjugating lapatinib derivatives with different CSC inhibitors to treat with lapatinib-induced MDA-MB-231 drug-resistant cells. In vitro biological studies indicated that 3a showed strong cytotoxicity and EGFR enzyme inhibitory activity and effectively reversed lapatinib-mediated resistance of MDA-MB-231 cells via inhibiting triple-negative breast cancer (TNBC) cell stemness and the AKT/ERK signaling pathway. In addition, 3a was capable of strongly suppressing the invasion and migration of TNBC cells by inhibiting the Wnt/β-catenin signaling pathway and MMP-2 and MMP-9 protein expression. In vivo tumorigenicity tests showed that 3a could inhibit the occurrence of TNBC by inhibiting BCSCs, proving 3a is a potential EGFR and CSC dual inhibitor for TNBC treatment.
Collapse
Affiliation(s)
- Yuanjiang Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, People's Republic of China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhaodan Lv
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, People's Republic of China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Xing Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, People's Republic of China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
19
|
Almoustafa HA, Alshawsh MA, Chik Z. Targeted polymeric nanoparticle for anthracycline delivery in hypoxia-induced drug resistance in metastatic breast cancer cells. Anticancer Drugs 2021; 32:745-754. [PMID: 33675612 DOI: 10.1097/cad.0000000000001065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Poly lactic-co-glycolic acid (PLGA) nanoparticles are intensively studied nanocarriers in drug delivery because of their biodegradability and biochemical characteristics. Polyethylene glycol (PEG) coating for nanocarriers gives them long circulation time in blood and makes them invisible to the reticuloendothelial system. Breast cancer cells have greater uptake of hyaluronic acid compared to normal cells as it binds to their overexpressed CD44 receptors. Since hypoxia plays an important role in cancer metastasis; we formulated PEG-PLGA nanoparticles coated with hyaluronic acid as targeted delivery system for doxorubicin (DOX) using nanoprecipitation method, and characterized them for chemical composition, size, surface charge, shape, and encapsulation efficiency. Then we tested them in vitro on hypoxia-optimized metastatic breast cancer cells. The nanoparticles were spherical with an average size of about 106 ± 53 nm, a negative surface charge (-15 ± 3 mV), and high encapsulation efficiency (73.3 ± 4.1%). In vitro investigation with hypoxia-elevated CD44 MDA-MB-231 cells showed that hyaluronic acid-targeted nanoparticles maintained their efficacy despite hypoxia-induced drug resistance unlike free DOX and nontargeted nanoparticles. In conclusion, this study revealed a simple third generation nanoparticle formulation for targeted treatment of hypoxia-induced drug resistance in breast cancer metastatic cells. Further, optimization is needed including In vivo efficacy and nanoparticle-specific pharmacokinetic studies.
Collapse
Affiliation(s)
- Hassan A Almoustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Bioequivalence and Testing Centre (UBAT), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Khan S, Suryavanshi M, Kaur J, Nayak D, Khurana A, Manchanda RK, Tandon C, Tandon S. Stem cell therapy: A paradigm shift in breast cancer treatment. World J Stem Cells 2021; 13:841-860. [PMID: 34367480 PMCID: PMC8316873 DOI: 10.4252/wjsc.v13.i7.841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
As per the latest Globocan statistics, the high prevalence rate of breast cancer in low- and middle-income countries has led to it becoming the most common cancer to be diagnosed, hence posing a major public health challenge. As per this data, more than 11.7% of the estimated new cancer cases in 2020 were due to breast cancer. A small but significant subpopulation of cells with self- renewing ability are present in the tumor stroma and have been given the nomenclature of cancer stem cells (CSCs). These cells display a high degree of plasticity owing to their ability to transition from the slowly cycling quiescent phase to the actively proliferating phenotype. This attribute of CSCs allows them to differentiate into various cell types having diverse functions. Breast CSCs have a pivotal role in development, metastasis, treatment resistance and relapse of breast cancers. This review focuses on the pathways regulating breast CSC maintenance and the current strategies that are being explored for directing the development of novel, targeted, therapeutic approaches for limiting and eradicating this aberrant stem cell population.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India
| | - Moushumi Suryavanshi
- Department of Pathology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Jasamrit Kaur
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh 160030, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy, New Delhi 110058, India
| | - Anil Khurana
- Central Council for Research in Homeopathy, New Delhi 110058, India
| | | | - Chanderdeep Tandon
- Amity Institute of Biotechnology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
21
|
Rigamonti L, Reginato F, Ferrari E, Pigani L, Gigli L, Demitri N, Kopel P, Tesarova B, Heger Z. From solid state to in vitro anticancer activity of copper(II) compounds with electronically-modulated NNO Schiff base ligands. Dalton Trans 2021; 49:14626-14639. [PMID: 33057512 DOI: 10.1039/d0dt03038d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The copper(ii) complexes of general formula [Cu(GL)(Cl)] (1-3, G = OMe, H and NO2, respectively), bearing tridentate Schiff base ligands (GL-) and a chloride as a fourth labile one, are here reported. The Schiff bases derive from the monocondensation of ethylenediamine and substituted salicylaldehyde, where the electronic properties are modulated by the releasing or withdrawing power of the G group. The compounds were structurally characterized through single crystal Synchrotron X-ray diffraction experiments in the solid state, revealing that 1 (OMe) and 2 (H) adopt a dimeric assembly [Cu(μ-Cl)(GL)]2 through apical interaction of the chloride ions of two monomeric units, while 3 embraces a 1D polymeric chain structure [Cu(μ-Cl)(NO2L)]n with a similar bridging fashion, all supported by extended intramolecular or intrachain hydrogen bonds. The redox properties of the complexes were also studied by cyclic voltammetry with no marked effect of the substituent on the potential of the CuII/CuI redox system. UV/Vis spectroscopic studies in mimicked physiological conditions highlighted the intactness and stability of the coordinated NNO tridentate ligand in 1-3 and the lability of the coordinated chloride ion with the formation of the aquo-complexes [Cu(GL)(H2O)]+ in aqueous solution, as confirmed by conductance measurements with a 1 : 1 electrolyte molar conductivity. In vitro tests on cell viability were conducted on malignant cell lines typical for their poor prognosis and curability, revealing time-dependent and differential cytotoxicity given by the substituent G. All compounds were capable of formation of intracellular reactive oxygen species and DNA intercalation, acting as nuclease and producing double-strand DNA breaks. This is especially effective for 3 (NO2), which revealed the highest anticancer activity against malignant triple-negative breast cancer MDA-MB-231 cells, with a two-to-four-fold cytotoxicity enhancement with respect to 1 (OMe) and 2 (H), and, most important, substantial differentiation of cytotoxicity with respect to healthy endothelial HUVEC cell line.
Collapse
Affiliation(s)
- Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Francesco Reginato
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Erika Ferrari
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Laura Pigani
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Lara Gigli
- Elettra Synchrotron Trieste, Strada Statale 14 - km 163.5 - Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Nicola Demitri
- Elettra Synchrotron Trieste, Strada Statale 14 - km 163.5 - Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146, Olomouc, Czech Republic
| | - Barbora Tesarova
- Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, CZ-61300, Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612-00 Brno, Czech Republic
| |
Collapse
|
22
|
Jariyal H, Gupta C, Andhale S, Gadge S, Srivastava A. Comparative stemness and differentiation of luminal and basal breast cancer stem cell type under glutamine-deprivation. J Cell Commun Signal 2021; 15:207-222. [PMID: 33511560 PMCID: PMC7991029 DOI: 10.1007/s12079-020-00603-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Glutamine (gln) metabolism has emerged as a cancer therapeutic target in past few years, however, the effect of gln-deprivation of bCSCs remains elusive in breast cancer. In this study, effect of glutamine on stemness and differentiation potential of bCSCs isolated from MCF-7 and MDAMB-231 were studied. We have shown that bCSCs differentiate into CD24+ epithelial population under gln-deprivation and demonstrated increased expression of epithelial markers such as e-cadherin, claudin-1 and decreased expression of mesenchymal protein n-cadherin. MCF-7-bCSCs showed a decrease in EpCAMhigh population whereas MDAMB-231-bCSCs increased CD44high population in response to gln-deprivation. The expression of intracellular stem cell markers such sox-2, oct-4 and nanog showed a drastic decrease in gene expression under gln-deprived MDAMB-231-bCSCs. Finally, localization of β-catenin in MCF-7 and MDAMB-231 cells showed its accumulation in cytosol or perinuclear space reducing its efficiency to transcribe downstream genes. Conclusively, our study demonstrated that gln-deprivation induces differentiation of bCSCs into epithelial subtypes and also reduces stemness of bCSCs mediated by reduced nuclear localization of β-catenin. It also suggests that basal and luminal bCSCs respond differentially towards changes in extracellular and intracellular gln. This study could significantly affect the gln targeting regimen of breast cancer therapeutics.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Chanchal Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shambhavi Andhale
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Sonali Gadge
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
23
|
Sinomenine inhibits hypoxia induced breast cancer side population cells metastasis by PI3K/Akt/mTOR pathway. Bioorg Med Chem 2020; 31:115986. [PMID: 33412412 DOI: 10.1016/j.bmc.2020.115986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023]
Abstract
Sinomenine is an alkaloid derived from Chinese medicinal plant Sinomenium acutum. Our previous studies suggested that sinomenine can inhibit the metastasis of breast cancer. However, whether sinomenine can inhibit the metastasis characteristics of breast cancer side population (SP) cells is still unknown. In present study, we isolated the side population (SP) cells from MDA-MB-231 cells by fluorescence-activated cell sorting (FACS). MDA-MB-231 SP cells were treated with different concentrations of sinomenine at the absence or presence of hypoxia, and cell viability were measured by CCK-8 assay. The transwell invasive assay were conducted to assess of the effect of sinomenine on the invasion of hypoxic MDA-MB-231 SP cells. The protein expression was detected by Western blot assay. Sinomenine inhibited the cell viability and invasion of hypoxic MDA-MB-231 SP cells. Western blot assay results showed that the upregulation of MMP-2 and MMP-9 by hypoxia was inversed by sinomenine. Additionally, it was found that sinomenine suppressed the activation of PI3K/Akt/mTOR pathway under hypoxia in MDA-MB-231 SP cells. Moreover, the inhibiton of sinomenine on metastasis of hypoxic MDA-MB-231SP cells and PI3K/Akt/mTOR pathway could be rescued by PI3K activator IGF-1. Our study suggested that sinomenine inhibits invasion of breast cancer SP cells under hypoxia through PI3K/Akt/mTOR pathway.
Collapse
|
24
|
Mavingire N, Campbell P, Wooten J, Aja J, Davis MB, Loaiza-Perez A, Brantley E. Cancer stem cells: Culprits in endocrine resistance and racial disparities in breast cancer outcomes. Cancer Lett 2020; 500:64-74. [PMID: 33309858 DOI: 10.1016/j.canlet.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer stem cells (BCSCs) promote endocrine therapy (ET) resistance, also known as endocrine resistance in hormone receptor (HR) positive breast cancer. Endocrine resistance occurs via mechanisms that are not yet fully understood. In vitro, in vivo and clinical data suggest that signaling cascades such as Notch, hypoxia inducible factor (HIF), and integrin/Akt promote BCSC-mediated endocrine resistance. Once HR positive breast cancer patients relapse on ET, targeted therapy agents such as cyclin dependent kinase inhibitors are frequently implemented, though secondary resistance remains a threat. Here, we discuss Notch, HIF, and integrin/Akt pathway regulation of BCSC activity and potential strategies to target these pathways to counteract endocrine resistance. We also discuss a plausible link between elevated BCSC-regulatory gene levels and reduced survival observed among African American women with basal-like breast cancer which lacks HR expression. Should future studies reveal a similar link for patients with luminal breast cancer, then the use of agents that impede BCSC activity could prove highly effective in improving clinical outcomes among African American breast cancer patients.
Collapse
Affiliation(s)
- Nicole Mavingire
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Petreena Campbell
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Jonathan Wooten
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Joyce Aja
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine-New York Presbyterian Hospital Network, New York, NY, USA.
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin, 5481, C1417 DTB Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Eileen Brantley
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, USA.
| |
Collapse
|
25
|
Mendoza-Almanza G, Burciaga-Hernández L, Maldonado V, Melendez-Zajgla J, Olmos J. Role of platelets and breast cancer stem cells in metastasis. World J Stem Cells 2020; 12:1237-1254. [PMID: 33312396 PMCID: PMC7705471 DOI: 10.4252/wjsc.v12.i11.1237] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/23/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The high mortality rate of breast cancer is mainly caused by the metastatic ability of cancer cells, resistance to chemotherapy and radiotherapy, and tumor regression capacity. In recent years, it has been shown that the presence of breast cancer stem cells is closely associated with the migration and metastatic ability of cancer cells, as well as with their resistance to chemotherapy and radiotherapy. The tumor microenvironment is one of the main molecular factors involved in cancer and metastatic processes development, in this sense it is interesting to study the role of platelets, one of the main communicator cells in the human body which are activated by the signals they receive from the microenvironment and can generate more than one response. Platelets can ingest and release RNA, proteins, cytokines and growth factors. After the platelets interact with the tumor microenvironment, they are called "tumor-educated platelets." Tumor-educated platelets transport material from the tumor microenvironment to sites adjacent to the tumor, thus helping to create microenvironments conducive for the development of primary and metastatic tumors. It has been observed that the clone capable of carrying out the metastatic process is a cancer cell with stem cell characteristics. Cancer stem cells go through a series of processes, including epithelial-mesenchymal transition, intravasation into blood vessels, movement through blood vessels, extravasation at the site of the establishment of a metastatic focus, and site colonization. Tumor-educated platelets support all these processes.
Collapse
Affiliation(s)
| | | | - Vilma Maldonado
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Jorge Melendez-Zajgla
- Génómica funcional del cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Jorge Olmos
- Biotecnología Marina, Centro de Investigación Científica y de Estudios Superiores de Ensenada, Ensenada 22860, Mexico
| |
Collapse
|
26
|
Tumorigenesis and Progression As A Consequence of Hypoxic TME:A Prospective View upon Breast Cancer Therapeutic Targets. Exp Cell Res 2020; 395:112192. [PMID: 32738345 DOI: 10.1016/j.yexcr.2020.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Intratumoral hypoxia has a significant impact on the development and progression of breast cancer (BC). Rather than exerting limited regional impact, hypoxia create an aggressive macroenvironment for BC. Hypoxia-inducible factors-1(HIF-1) is extensively induced under hypoxia condition of BC, activating the transcription of multiple oncogenes. Thereinto, CD73 is the one which could be secreted into the microenvironment and is in favor of the growth, metastasis, resistance to therapies, as well as the stemness maintenance of BC. In this review, we address the significance of hypoxia/HIF-1/CD73 axis for BC, and provide a novel perspective into BC therapeutic strategies.
Collapse
|
27
|
Jariyal H, Gupta C, Srivastava A. Hyaluronic acid induction on breast cancer stem cells unfolds subtype specific variations in stemness and epithelial-to-mesenchymal transition. Int J Biol Macromol 2020; 160:1078-1089. [PMID: 32479949 DOI: 10.1016/j.ijbiomac.2020.05.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
The reoccurrence of breast cancer is a major concern due to presence of cancer stem cells (CSCs). Considering the key role of hyaluronic acid (HA) in modulating the inflammation and cellular migration in cancer, the response of high molecular weight (HMW) and low molecular weight (LMW) HA towards various subtypes of breast cancer and breast cancer stem cells remain elusive. The aim of this study is to determine the effect of exogenous HMW-HA and LMW-HA on stemness of CSCs and epithelial-to-mesenchymal transition which may help in designing HA based therapeutic strategies. LMW-HA induces EMT in MCF-7 more prominently as compared to MDA-MB-231. However, HMW-HA did not show significant changes in the expression of EMT genes. Surprisingly, both HMW-HA and LMW-HA have shown to decrease the expression of EpCAM in MCF-7 cells and decrease the expression of CD44 in MDAMB-231 cells. HA has maintained the native stem cells phenotype of bCSCs isolated from MCF-7 only. The bCSCs isolated form MDAMB-231 showed a decrease in CD44. Luminal subtype has shown to follow Wnt/β-catenin whereas in the basal subtype localization of CD44 from surface to cytosol was observed in response to HA. Our study has demonstrated that bCSCs in luminal and basal cells follow differential intracellular signaling mechanisms in response to HA. This study could significantly influence the therapeutics involving HA in breast cancer.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| | - Chanchal Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
28
|
Koens R, Tabata Y, Serrano JC, Aratake S, Yoshino D, Kamm RD, Funamoto K. Microfluidic platform for three-dimensional cell culture under spatiotemporal heterogeneity of oxygen tension. APL Bioeng 2020; 4:016106. [PMID: 32161836 PMCID: PMC7060087 DOI: 10.1063/1.5127069] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cells in a tumor microenvironment are exposed to spatial and temporal variations in oxygen tension due to hyperproliferation and immature vascularization. Such spatiotemporal oxygen heterogeneity affects the behavior of cancer cells, leading to cancer growth and metastasis, and thus, it is essential to clarify the cellular responses of cancer cells to oxygen tension. Herein, we describe a new double-layer microfluidic device allowing the control of oxygen tension and the behavior of cancer cells under spatiotemporal oxygen heterogeneity. Two parallel gas channels were located above the media and gel channels to enhance gas exchange, and a gas-impermeable polycarbonate film was embedded in the device to prevent the diffusion of atmospheric oxygen. Variations in oxygen tension in the device with the experimental parameters and design variables were investigated computationally and validated by using oxygen-sensitive nanoparticles. The present device can generate a uniform hypoxic condition at oxygen levels down to 0.3% O2, as well as a linear oxygen gradient from 3% O2 to 17% O2 across the gel channel within 15 min. Moreover, human breast cancer cells suspended in type I collagen gel were introduced in the gel channel to observe their response under controlled oxygen tension. Hypoxic exposure activated the proliferation and motility of the cells, which showed a local maximum increase at 5% O2. Under the oxygen gradient condition, the increase in the cell number was relatively high in the central mild hypoxia region. These findings demonstrate the utility of the present device to study cellular responses in an oxygen-controlled microenvironment.
Collapse
Affiliation(s)
- Rei Koens
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | | | - Jean C. Serrano
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | | | | | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
29
|
Zhang D, Yang L, Liu X, Gao J, Liu T, Yan Q, Yang X. Hypoxia modulates stem cell properties and induces EMT through N-glycosylation of EpCAM in breast cancer cells. J Cell Physiol 2019; 235:3626-3633. [PMID: 31584203 DOI: 10.1002/jcp.29252] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
Epithelial cell adhesion molecule (EpCAM), which is a transmembrane glycoprotein, is related to tumor progression. We demonstrated that EpCAM plays important roles in proliferation, apoptosis, and metastasis during breast cancer (BC) progression. But the role of N-glycosylation in EpCAM in tumor aggressiveness is not clear. Here, we evaluated the role of N-glycosylation of EpCAM in stemness and epithelial-mesenchymal transition (EMT) characteristics. EpCAM overexpression increases the expression of stemness markers (NANOG,SOX2, and OCT4) and EMT markers (N-cadherin and vimentin) under the condition of hypoxia in BC. Knockdown of EpCAM and mutation of N-glycosylation of EpCAM maintained in severe hypoxia lead to a significant reduction of stemness/EMT markers. In addition, we found that N-glycosylation of EpCAM is a crucial factor during this process. This demonstrates that EpCAM has a novel regulatory role in stemness/EMT dependence of hypoxia-inducible factor 1-alpha via regulating nuclear factor kappa B in BC cells. Hence, our study reveals EpCAM glycosylation modification as a new regulator of stemness/EMT under hypoxic in BC and points out EpCAM as a potential therapeutic target.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Liu Yang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Xue Liu
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Jiujiao Gao
- Department of Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Tingjiao Liu
- Section of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| |
Collapse
|
30
|
Macharia LW, Wanjiru CM, Mureithi MW, Pereira CM, Ferrer VP, Moura-Neto V. MicroRNAs, Hypoxia and the Stem-Like State as Contributors to Cancer Aggressiveness. Front Genet 2019; 10:125. [PMID: 30842790 PMCID: PMC6391339 DOI: 10.3389/fgene.2019.00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play key regulatory roles in cancer acting as both oncogenes and tumor suppressors. Due to their potential roles in improving cancer prognostic, predictive, diagnostic and therapeutic approaches, they have become an area of intense research focus in recent years. Several studies have demonstrated an altered expression of several miRNAs under hypoxic condition and even shown that the hypoxic microenvironment drives the selection of a more aggressive cancer cell population through cellular adaptations referred as the cancer stem-like cell. These minor fractions of cells are characterized by their self-renewal abilities and their ability to maintain the tumor mass, suggesting their crucial roles in cancer development. This review aims to highlight the interconnected role between miRNAs, hypoxia and the stem-like state in contributing to the cancer aggressiveness as opposed to their independent contributions, and it is based in four aggressive tumors, namely glioblastoma, cervical, prostate, and breast cancers.
Collapse
Affiliation(s)
- Lucy Wanjiku Macharia
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Muriithi Wanjiru
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Valéria Pereira Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
A 3D microvascular network model to study the impact of hypoxia on the extravasation potential of breast cell lines. Sci Rep 2018; 8:17949. [PMID: 30560881 PMCID: PMC6298998 DOI: 10.1038/s41598-018-36381-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023] Open
Abstract
Hypoxia is a common feature of the tumor microenvironment. Accumulating evidence has demonstrated hypoxia to be an important trigger of tumor cell invasion or metastasizes via hypoxia-signaling cascades, including hypoxia-inducible factors (HIFs). Microfluidic model can be a reliable in vitro tool for systematically interrogating individual factors and their accompanying downstream effects, which may otherwise be difficult to study in complex tumor tissues. Here, we used an in vitro model of microvascular networks in a microfluidic chip to measure the extravasation potential of breast cell lines subjected to different oxygen conditions. Through the use of HIF-1α knock-down cell lines, we also validated the importance of HIF-1α in the transmigration ability of human breast cell lines. Three human breast cell lines derived from human breast tissues (MCF10A, MCF-7 and MDA-MB-231) were used in this study to evaluate the role of hypoxia in promoting metastasis at different stages of cancer progression. Under hypoxic conditions, HIF-1α protein level was increased, and coincided with changes in cell morphology, viability and an elevated metastatic potential. These changes were accompanied by an increase in the rate of extravasation compared to normoxia (21% O2). siRNA knockdown of HIF-1α in hypoxic tumors significantly decreased the extravasation rates of all the cell lines tested and may have an effect on the function of metastatic and apoptotic-related cellular processes.
Collapse
|
32
|
MDA-MB-231 Breast Cancer Cells and Their CSC Population Migrate Towards Low Oxygen in a Microfluidic Gradient Device. Int J Mol Sci 2018; 19:ijms19103047. [PMID: 30301222 PMCID: PMC6215323 DOI: 10.3390/ijms19103047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
Most cancer deaths are caused by secondary tumors formed through metastasis, yet due to our limited understanding of this process, prevention remains a major challenge. Recently, cancer stem cells (CSCs) have been proposed as the source of metastases, but only little is known about their migratory behavior. Oxygen gradients in the tumor have been linked to directional migration of breast cancer cells. Here, we present a method to study the effect of oxygen gradients on the migratory behavior of breast CSCs using a microfluidic device. Our chip contains a chamber in which an oxygen gradient can be generated between hypoxic (<1%) and ambient (21%) conditions. We tracked the migration of CSCs obtained from MDA-MB-231 breast cancer cells, and found that their migration patterns do not differ from the average MDA-MB-231 population. Surprisingly, we found that the cells migrate towards low oxygen levels, in contrast with an earlier study. We hypothesize that in our device, migration is exclusively due to the pure oxygen gradient, whereas the effects of oxygen in earlier work were obscured by additional cues from the tumor microenvironment (e.g., nutrients and metabolites). These results open new research directions into the role of oxygen in directing cancer and CSC migration.
Collapse
|
33
|
Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol 2018; 53:59-74. [PMID: 30059727 DOI: 10.1016/j.semcancer.2018.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The current view is that breast cancer is a stem cell disease characterized by the existence of cancer cells with stem-like features and tumor-initiating potential. These cells are made responsible for tumor dissemination and metastasis. Common therapies by chemotherapeutic drugs fail to eradicate these cells and rather increase the pool of cancer stem cells in tumors, an effect that may increase the likelyhood of recurrence. Fifteen years after the first evidence for a small stem-like subpopulation playing a major role in breast cancer initiation has been published a large body of knowledge has been accumulated regarding the signaling cascades and proteins involved in maintaining stemness in breast cancer. Differences in the stem cell pool size and in mechanisms regulating stemness in the different breast cancer subtypes have emerged. Overall, this knowledge offers new approaches to intervene with breast cancer stem cell activity. New options are particularly needed for the treatment of triple-negative breast cancer subtype, which is particularly rich in cancer stem cells and is also the subtype for which specific therapies are still not available.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
34
|
Pacheco-Velázquez SC, Robledo-Cadena DX, Hernández-Reséndiz I, Gallardo-Pérez JC, Moreno-Sánchez R, Rodríguez-Enríquez S. Energy Metabolism Drugs Block Triple Negative Breast Metastatic Cancer Cell Phenotype. Mol Pharm 2018; 15:2151-2164. [DOI: 10.1021/acs.molpharmaceut.8b00015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080 Tlalpan, CDMX, Mexico
| | - Sara Rodríguez-Enríquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080 Tlalpan, CDMX, Mexico
- Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, 14080 Tlalpan, CDMX, Mexico
| |
Collapse
|
35
|
Chen DW, Wang H, Bao YF, Xie K. Notch signaling molecule is involved in the invasion of MiaPaCa2 cells induced by CoCl2 via regulating epithelial‑mesenchymal transition. Mol Med Rep 2018; 17:4965-4972. [PMID: 29393429 PMCID: PMC5865956 DOI: 10.3892/mmr.2018.8502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
Pancreatic cancer exhibits a high mortality rate resulting from metastasis and there is currently no effective treatment strategy. Hypoxia serves an important role in cancer cells, where cellular metabolic rate is high. The underlying mechanisms that trigger hypoxia and the invasion of pancreatic cancer cells remain unknown. Investigation of the importance of hypoxia in the invasion of pancreatic cancer cells for potential, novel treatment strategies is of primary concern. Cell Counting Kit-8 assay, invasion assay, western blotting and reverse transcription-quantitative polymerase chain reaction were used to investigate invasion and epithelial mesenchymal transition (EMT) and the expression of Notch1 in MiaPaCa2 cells treated with cobalt II chloride (CoCl2). Hypoxia-inducible factor 1α (HIF-1α) small interfering (si)RNA and Notch1 inhibitor N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) were also selected to investigate these mechanisms. Data indicated that CoCl2 increased the invasion ability and altered EMT in MiaPaCa2 cells. CoCl2 regulated the expression of HIF-1α and Notch1 in MiaPaCa2 cells. In addition, HIF-1α siRNA inhibited the effects of CoCl2 on the expression of Notch1 and decreased Snail, EMT and invasion in MiaPaCa2 cells. DAPT increased the expression of epithelial-cadherin and decreased the content of neural-cadherin, Snail and invasion in MiaPaCa2 cells in the presence or absence of CoCl2. CoCl2 promoted invasion by stimulating the expression of HIF-1α and regulating the expression of Notch1 and EMT in MiaPaCa2 cells. Targeting the Notch1 signaling molecule may be a novel treatment strategy for the prevention and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ding-Wei Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Hong Wang
- Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Ya-Fang Bao
- Caihe Street Community Health Service Center, Hangzhou, Zhejiang 310016, P.R. China
| | - Kun Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
36
|
STAT3 but Not HIF-1α Is Important in Mediating Hypoxia-Induced Chemoresistance in MDA-MB-231, a Triple Negative Breast Cancer Cell Line. Cancers (Basel) 2017; 9:cancers9100137. [PMID: 29036915 PMCID: PMC5664076 DOI: 10.3390/cancers9100137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022] Open
Abstract
Hypoxia-induced chemoresistance (HICR) is a well-recognized phenomenon, and in many experimental models, hypoxia inducible factor-1α (HIF-1α) is believed to be a key player. We aimed to better understand the mechanism underlying HICR in a triple negative breast cancer cell line, MDA-MB-231, with a focus on the role of HIF-1α. In this context, the effect of hypoxia on the sensitivity of MDA-MB-231 cells to cisplatin and their stem-like features was evaluated and the role of HIF-1α in both phenomena was assessed. Our results showed that hypoxia significantly increased MDA-MB-231 resistance to cisplatin. Correlating with this, intracellular uptake of cisplatin was significantly reduced under hypoxia. Furthermore, the stem-like features of MDA-MB-231 cells increased as evidenced by the significant increases in the expression of ATP-binding cassette (ABC) drug transporters, the proportion of CD44+/CD24− cells, clonogenic survival and cisplatin chemoresistance. Under hypoxia, both the protein level and DNA binding of HIF-1α was dramatically increased. Surprisingly, siRNA knockdown of HIF-1α did not result in an appreciable change to HICR. Instead, signal transducer and activator of transcription 3 (STAT3) activation was found to be important. STAT3 activation may confer HICR by upregulating ABC transporters, particularly ABCC2 and ABCC6. This study has demonstrated that, in MDA-MB-231 cells, STAT3 rather than HIF-1α is important in mediating HICR to cisplatin.
Collapse
|
37
|
Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY. Hypoxia-Inducible Factors and Cancer. CURRENT SLEEP MEDICINE REPORTS 2017. [PMID: 28944164 DOI: 10.1007/s40675-017-0062-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
PURPOSE OF REVIEW Hypoxia inducible factors (HIFs) mediate the transcription of hundreds of genes that allow cells to adapt to hypoxic environments. In this review, we summarize the current state of knowledge about mechanisms of HIF activation in cancer, as well as downstream cancer-promoting consequences such as altered substrate metabolism, angiogenesis, and cell differentiation. In addition, we examine the proposed relationship between respiratory-related hypoxia, HIFs, and cancer. RECENT FINDINGS HIFs are increased in many forms of cancer, and portend a poor prognosis and response to therapy. CONCLUSION HIFs play a critical role in various stages of carcinogenesis. HIF and its transcription targets may be useful as biomarkers of disease and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Jonathan C Jun
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Aman Rathore
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Haris Younas
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Daniele Gilkes
- Division of Breast Cancer, Department of Oncology, Johns Hopkins University, Baltimore, MD
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
38
|
Almendros I, Gozal D. Intermittent hypoxia and cancer: Undesirable bed partners? Respir Physiol Neurobiol 2017; 256:79-86. [PMID: 28818483 DOI: 10.1016/j.resp.2017.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022]
Abstract
The deleterious effects of intermittent hypoxia (IH) on cancer biology have been primarily evaluated in the context of the aberrant circulation observed in solid tumors which results in recurrent intra-tumoral episodic hypoxia. From those studies, IH has been linked to an accelerated tumor progression, metastasis and resistance to therapies. More recently, the role of IH in cancer has also been studied in the context of obstructive sleep apnea (OSA), since IH is a hallmark characteristic of this condition. Such recent studies are undoubtedly adding more information regarding the role of IH on tumor malignancy. In terms of the IH patterns associated with OSA, this altered oxygenation paradigm has been recently proposed as a determinant factor in fostering cancer incidence and progression from both in vitro and in vivo experimental models. Here, we summarize all the available evidence to date linking IH effects on several types of cancer.
Collapse
Affiliation(s)
- Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
39
|
Deficiency of CCN5/WISP-2-Driven Program in breast cancer Promotes Cancer Epithelial cells to mesenchymal stem cells and Breast Cancer growth. Sci Rep 2017; 7:1220. [PMID: 28450698 PMCID: PMC5430628 DOI: 10.1038/s41598-017-00916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer progression and relapse is conceivably due to tumor initiating cells (TICs)/cancer stem cells. EMT (epithelial-mesenchymal-transition)-signaling regulates TICs’ turnover. However, the mechanisms associated with this episode are unclear. We show that, in triple-negative-breast cancer (TNBC) cells enriched with TICs, CCN5 significantly blocks cellular growth via apoptosis, reversing EMT-signaling and impairing mammosphere formation, thereby blocking the tumor-forming ability and invasive capacity of these cells. To corroborate these findings, we isolated tumor-initiating side populations (SP) and non-side population (NSP or main population) from MCF-7 cell line, and evaluated the impact of CCN5 on these subpopulations. CCN5 was overexpressed in the NSP but downregulated in the SP. Characteristically, NSP cells are ER-α positive and epithelial type with little tumorigenic potency, while SP cells are very similar to triple-negative ones that do not express ER-α- and Her-2 and are highly tumorigenic in xenograft models. The overexpression of CCN5 in SP results in EMT reversion, ER-α upregulation and delays in tumor growth in xenograft models. We reasoned that CCN5 distinguishes SP and NSP and could reprogram SP to NSP transition, thereby delaying tumor growth in the xenograft model. Collectively, we reveal how CCN5-signaling underlies the driving force to prevent TNBC growth and progression.
Collapse
|
40
|
Yang F, Xu J, Tang L, Guan X. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci 2017; 74:951-966. [PMID: 27530548 PMCID: PMC11107600 DOI: 10.1007/s00018-016-2334-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
Breast cancers have been increasingly recognized as malignancies displaying frequent inter- and intra-tumor heterogeneity. This heterogeneity is represented by diverse subtypes and complexity within tumors, and impinges on response to therapy, metastasis, and prognosis. Cancer stem cells (CSCs), a subpopulation of cancer cells endowed with self-renewal and differentiation capacity, have been suggested to contribute to tumor heterogeneity. The CSC concept posits a hierarchical organization of tumors, at the apex of which are stem cells that drive tumor initiation, progression, and recurrence. In breast cancer, CSCs have been proposed to contribute to malignant progression, suggesting that targeting breast cancer stem cells (BCSCs) may improve treatment efficacy. Currently, several markers have been reported to identify BCSCs. However, there is objective variability with respect to the frequency and phenotype of BCSCs among different breast cancer cell lines and patients, and the regulatory mechanisms of BCSCs remain unclear. In this review, we summarize current literature about the diversity of BCSC markers, the roles of BCSCs in tumor development, and the regulatory mechanisms of BCSCs. We also highlight the most recent advances in BCSC targeting therapies and the challenges in translating the knowledge into clinical practice.
Collapse
Affiliation(s)
- Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jing Xu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Lin Tang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
41
|
Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY. Hypoxia-Inducible Factors and Cancer. CURRENT SLEEP MEDICINE REPORTS 2017; 3:1-10. [PMID: 28944164 DOI: 10.1007/s40675-017-0062-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hypoxia inducible factors (HIFs) mediate the transcription of hundreds of genes that allow cells to adapt to hypoxic environments. In this review, we summarize the current state of knowledge about mechanisms of HIF activation in cancer, as well as downstream cancer-promoting consequences such as altered substrate metabolism, angiogenesis, and cell differentiation. In addition, we examine the proposed relationship between respiratory-related hypoxia, HIFs, and cancer. RECENT FINDINGS HIFs are increased in many forms of cancer, and portend a poor prognosis and response to therapy. CONCLUSION HIFs play a critical role in various stages of carcinogenesis. HIF and its transcription targets may be useful as biomarkers of disease and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Jonathan C Jun
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Aman Rathore
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Haris Younas
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Daniele Gilkes
- Division of Breast Cancer, Department of Oncology, Johns Hopkins University, Baltimore, MD
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
42
|
Ham SL, Joshi R, Luker GD, Tavana H. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors. Adv Healthc Mater 2016; 5:2788-2798. [PMID: 27603912 PMCID: PMC5142748 DOI: 10.1002/adhm.201600644] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/03/2016] [Indexed: 01/11/2023]
Abstract
Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research.
Collapse
Affiliation(s)
- Stephanie L. Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| | - Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| | - Gary D. Luker
- Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| |
Collapse
|