1
|
Su X, Li R, Zhang Z, Lu L, Wang S, Liu T. Mechanism of Marsdenia tenacissima in treating breast cancer by targeting the MAPK signaling pathway: Utilising metabolomics, network pharmacology, and In vivo experiments for verification. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119477. [PMID: 39938764 DOI: 10.1016/j.jep.2025.119477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/25/2024] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia tenacissima dried stems have been used to treat asthma, trachitis, rheumatism, and carbuncles. M. Tenacissima extract is now available in China under the brand name "Xiao Ai Ping" and is commonly used in conjunction with chemotherapy to treat a number of diseases, including liver cancer, gastric cancer, colon cancer, and non-small cell lung cancer. PURPOSE OF THE STUDY The research focused on the potential mechanisms contributing to the in vivo therapeutic effects on breast cancer using the ethyl acetate portion of M. tenacissima extract (EMTE), demonstrating significant promise in treating lung cancer in our initial experiments. MATERIALS AND METHODS We examined the impact of EMTE on the growth of breast cancer through experiments on homoplastic breast cancer mice. Moreover, we utilized UPLC-Q-TOF/MS analysis to identify the components of EMTE and anticipate its potential therapeutic targets. Through network pharmacology, we predicted the potential targets and pathways affected by EMTE in relation to breast cancer. Additionally, we analysed the metabolic changes induced by EMTE during its anti-breast cancer effects. RESULTS The MAPK pathway was identified as the most likely route by which EMTE could influence breast cancer through network pharmacological enrichment of pathways. Research on animals showed that EMTE could successfully inhibit the development of breast tumours in the homoplastic breast cancer mouse model. We observed that EMTE treatment affected the metabolism of breast cancer mice, particularly in the biosynthesis of phenylalanine, tyrosine, tryptophan, linoleic acid metabolism, and pyrimidine metabolism. These metabolic alterations may have contributed to the effects of glycolysis, tumour immune evasion, and pyrimidine de novo synthesis. CONCLUSION Based on the results of network pharmacological and metabolomic analysis, we postulate that the inhibition of the MAPK/ERK pathway may have played a role in promoting apoptosis in breast cancer cells and confirmed relevant protein expression of the MAPK/ERK signaling pathway with Western blotting in tumour tissue of homoplastic breast cancer mice.
Collapse
Affiliation(s)
- Xinxin Su
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Runtian Li
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Zhiguang Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Lin Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Siqi Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| |
Collapse
|
2
|
Zhang J, Ruan K, Chu Z, Wang X, Gu Y, Jin H, Zhang X, Liu Q, Yang J. Reprogramming of fatty acid metabolism: a hidden force regulating the occurrence and progression of cholangiocarcinoma. Cell Death Discov 2025; 11:72. [PMID: 39984452 PMCID: PMC11845788 DOI: 10.1038/s41420-025-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that originates from the bile duct epithelium and with a poor outcome due to lack of effective early diagnostic methods. Surgical resection is the preferred method for cure, but treatment options are limited for advanced diseases, such as distant metastatic or locally progressive tumors. Therefore, it is urgent to explore other new treatment methods. As modern living standards rise, the acceptance of high-fat, high-protein, and high-carbohydrate diets is growing among the public, and the resulting metabolic abnormalities are intimately linked to the initiation and spread of tumors. Metabolic reprogramming is a key mechanism in the process of tumor development and progression and is closely related to cancer cell proliferation, metastasis and drug resistance. Fatty acid (FA) metabolism, an integral component of cancer cell metabolism, can provide an energy source for cancer cells and participate in cell signaling, the regulation of the immune response and the maintenance of homeostasis of the internal environment, which are closely linked to the development and progression of CCA. Therefore, a better understanding of FA metabolism may provide promising strategies for early diagnosis, prognostic assessment and targeted therapy for CCA patients. In this paper, we review the effects of FA metabolism on CCA development and progression, summarize related mechanisms and the existing clinical applications of targeted lipid metabolism in CCA, and explore new targets for CCA metabolic therapy.
Collapse
Affiliation(s)
- Jinglei Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Kaiyi Ruan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Zhuohuan Chu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
| | - Xiang Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China.
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China.
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China.
| |
Collapse
|
3
|
Neagu AN, Josan CL, Jayaweera TM, Weraduwage K, Nuru N, Darie CC. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. Int J Mol Sci 2024; 25:11078. [PMID: 39456858 PMCID: PMC11508170 DOI: 10.3390/ijms252011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental exposure to a mixture of chemical xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis and the development of breast cancer (BC). Before anything else, we are what we eat. In this review, we highlight both "the good" and "the bad" sides of the daily human diet and dietary patterns that could influence BC risk (BCR) and incidence. Thus, regularly eating new, diversified, colorful, clean, nutrient-rich, energy-boosting, and raw food, increases apoptosis and autophagy, antioxidation, cell cycle arrest, anti-inflammation, and the immune response against BC cells. Moreover, a healthy diet could lead to a reduction in or the inhibition of genomic instability, BC cell stemness, growth, proliferation, invasion, migration, and distant metastasis. We also emphasize that, in addition to beneficial compounds, our food is more and more contaminated by chemicals with harmful effects, which interact with each other and with endogenous proteins and lipids, resulting in synergistic or antagonistic effects. Thus, a healthy and diverse diet, combined with appropriate nutritional behaviors, can exert anti-carcinogenic effects and improve treatment efficacy, BC patient outcomes, and the overall quality of life of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| |
Collapse
|
4
|
Yan D, Wu X, Chen X, Wang J, Ge F, Wu M, Wu J, Zhang N, Xiao M, Wu X, Xue Q, Li X, Chen J, Wang P, Tang D, Wang X, Chen X, Liu J. Maternal linoleic acid-rich diet ameliorates bilirubin neurotoxicity in offspring mice. Cell Death Discov 2024; 10:329. [PMID: 39030174 PMCID: PMC11271588 DOI: 10.1038/s41420-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Hyperbilirubinaemia is a prevalent condition during the neonatal period, and if not promptly and effectively managed, it can lead to severe bilirubin-induced neurotoxicity. Sunflower seeds are a nutrient-rich food source, particularly abundant in linoleic acid. Here, we provide compelling evidence that lactating maternal mice fed a sunflower seed diet experience enhanced neurological outcomes and increased survival rates in hyperbilirubinemic offspring. We assessed histomorphological indices, including cerebellar Nissl staining, and Calbindin staining, and hippocampal hematoxylin and eosin staining. Furthermore, we observed the transmission of linoleic acid, enriched in sunflower seeds, to offspring through lactation. The oral administration of linoleic acid-rich sunflower seed oil by lactating mothers significantly prolonged the survival time of hyperbilirubinemic offspring mice. Mechanistically, linoleic acid counteracts the bilirubin-induced accumulation of ubiquitinated proteins and neuronal cell death by activating autophagy. Collectively, these findings elucidate the novel role of a maternal linoleic acid-supplemented diet in promoting child health.
Collapse
Affiliation(s)
- Ding Yan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - XinTian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xi Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Jiangtuan Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Feifei Ge
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Meixuan Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Jiawen Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Na Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Min Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xueheng Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qian Xue
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xiaofen Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Jinghong Chen
- Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Ping Wang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
5
|
Fu X, Li X, Wang W, Li J. DPP3 promotes breast cancer tumorigenesis by stabilizing FASN and promoting lipid synthesis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:805-818. [PMID: 38655619 PMCID: PMC11177116 DOI: 10.3724/abbs.2024054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/26/2024] Open
Abstract
DPP3, a dipeptidyl peptidase, participates in a variety of pathophysiological processes. DPP3 is upregulated in cancer and might serve as a key factor in the tumorigenesis and progression of various malignancies. However, its specific role and molecular mechanism are still unknown. In this study, the expression of DPP3 in breast cancer tissues is analyzed using TCGA database. Kaplan-Meier survival analysis is performed to estimate the effect of DPP3 on the survival outcomes. To explore the biological function and mechanisms of DPP3 in breast cancer, biochemical and cell biology assays are conducted in vitro. DPP3 expresses at a higher level in breast cancer tissues than that in adjacent tissues in both TCGA database and clinical samples. Patients with high expression of DPP3 have poor survival outcomes. The proliferation and migration abilities of tumor cells with stable DPP3 knockout in breast cancer cell lines are significantly inhibited, and apoptosis is increased in vitro. GSEA analysis shows that DPP3 can affect lipid metabolism and fatty acid synthesis in tumors. Subsequent experiments show that DPP3 could stabilize FASN expression and thus promote fatty acid synthesis in tumor cells. The results of the metabolomic analysis also confirm that DPP3 can affect the content of free fatty acids. This study demonstrates that DPP3 plays a role in the reprogramming of fatty acid metabolism in tumors and is associated with poor prognosis in breast cancer patients. These findings will provide a new therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
- Department of General SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Xu Li
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072China
| | - Weixing Wang
- Department of General SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Juanjuan Li
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| |
Collapse
|
6
|
Wang X, Chang L, Chen L, He Y, He T, Wang R, Wei S, Jing M, Zhou X, Li H, Zhao Y. Integrated network pharmacology and metabolomics to investigate the effects and possible mechanisms of Dehydroevodiamine against ethanol-induced gastric ulcers. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117340. [PMID: 37879508 DOI: 10.1016/j.jep.2023.117340] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetradium ruticarpum (A.Juss.) T.G.Hartley, a traditional Chinese medicine with thousands of years of medicinal history, has been employed to address issues such as indigestion, abdominal pain, and vomiting. Dehydroevodiamine (DHE) is a quinazoline alkaloid extracted from traditional Chinese medicine Tetradium ruticarpum (A.Juss.) T.G.Hartley. Previous studies have shown that DHE has anti-inflammatory, analgesic, and antioxidant activities. However, it is still unclear whether DHE has an effect on ethanol-induced gastric ulcers. AIM OF THE STUDY The objective of this study is to investigate the therapeutic efficacy and underlying mechanisms of action of DHE on ethanol-induced gastric ulcers using network pharmacology and metabolomics strategies. METHODS In this study, we used ethanol-induced rats as a model to assess the efficacy of DHE by biochemical indicator assays and pathological tissue detection. The integration of network pharmacology and metabolomics was used to explore possible mechanisms and was validated by western blot experiments. Finally, molecular docking was used to analyze the binding energy between DHE and the targets of PIK3CG and PLA2G2A. RESULTS DHE was able to reverse ethanol-induced abnormalities in biochemical indicators and improve pathological tissue. Network pharmacology results indicated that DHE may be involved in the regulation of gastric ulcers by modulating 79 targets, and metabolomics results showed that a total of 13 metabolites were changed before and after DHE administration. Integrating network pharmacology and metabolomics, PIK3CG and PLA2G2A were identified as possible targets to exert therapeutic effects. In addition, the MAPKs pathway may also be involved in the regulation of ethanol-induced gastric ulcers. Finally, molecular docking results showed that DHE had low binding energies with both PIK3CG and PLA2G2A. CONCLUSIONS These findings suggest that DHE was able to exert a protective effect against ethanol-induced gastric ulcers by modulating multiple metabolites with multiple targets. This study provides a valuable reference for the development of antiulcer drugs.
Collapse
Affiliation(s)
- Xin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Chang
- College of Pharmacy, Southern Medical University, Guangzhou, China
| | - Lisheng Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting He
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruilin Wang
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Shizhang Wei
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Manyi Jing
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Haotian Li
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
7
|
Zhou X, Su M, Lu J, Li D, Niu X, Wang Y. CD36: The Bridge between Lipids and Tumors. Molecules 2024; 29:531. [PMID: 38276607 PMCID: PMC10819246 DOI: 10.3390/molecules29020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
It has been found that the development of some cancers can be attributed to obesity, which is associated with the excessive intake of lipids. Cancer cells undergo metabolic reprogramming, shifting from utilizing glucose to fatty acids (FAs) for energy. CD36, a lipid transporter, is highly expressed in certain kinds of cancer cells. High expressions of CD36 in tumor cells triggers FA uptake and lipid accumulation, promoting rapid tumor growth and initiating metastasis. Meanwhile, immune cells in the tumor microenvironment overexpress CD36 and undergo metabolic reprogramming. CD36-mediated FA uptake leads to lipid accumulation and has immunosuppressive effects. This paper reviews the types of FAs associated with cancer, high expressions of CD36 that promote cancer development and progression, effects of CD36 on different immune cells in the tumor microenvironment, and the current status of CD36 as a therapeutic target for the treatment of tumors with high CD36 expression.
Collapse
Affiliation(s)
| | - Manman Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130012, China; (X.Z.); (J.L.); (D.L.); (X.N.)
| | | | | | | | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130012, China; (X.Z.); (J.L.); (D.L.); (X.N.)
| |
Collapse
|
8
|
Xu W, Jiang T, Shen K, Zhao D, Zhang M, Zhu W, Liu Y, Xu C. GADD45B regulates the carcinogenesis process of chronic atrophic gastritis and the metabolic pathways of gastric cancer. Front Endocrinol (Lausanne) 2023; 14:1224832. [PMID: 37608794 PMCID: PMC10441793 DOI: 10.3389/fendo.2023.1224832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Background Gastric cancer continues to be a significant global healthcare challenge, and its burden remains substantial. The development of gastric cancer (GC) is closely linked to chronic atrophic gastritis (CAG), yet there is a scarcity of research exploring the underlying mechanisms of CAG-induced carcinogenesis. Methods In this study, we conducted a comprehensive investigation into the oncogenes involved in CAG using both bulk transcriptome and single-cell transcriptome data. Our approach employed hdWGCNA to identify pathogenic genes specific to CAG, with non-atrophic gastritis (NAG) serving as the control group. Additionally, we compared CAG with GC, using normal gastric tissue as the control group in the single-cell transcriptome analysis. By intersecting the identified pathogenic genes, we pinpointed key network molecules through protein interaction network analysis. To further refine the gene selection, we applied LASSO, SVM-RFE, and RF techniques, which resulted in a set of cancer-related genes (CRGs) associated with CAG. To identify CRGs potentially linked to gastric cancer progression, we performed a univariate COX regression analysis on the gene set. Subsequently, we explored the relationship between CRGs and immune infiltration, drug sensitivity, and clinical characteristics in gastric cancer patients. We employed GSVA to investigate how CRGs regulated signaling pathways in gastric cancer cells, while an analysis of cell communication shed light on the impact of CRGs on signal transmission within the gastric cancer tumor microenvironment. Lastly, we analyzed changes in metabolic pathways throughout the progression of gastric cancer. Results Using hdWGCNA, we have identified a total of 143 pathogenic genes that were shared by CAG and GC. To further investigate the underlying mechanisms, we conducted protein interaction network analysis and employed machine learning screening techniques. As a result, we have identified 15 oncogenes that are specifically associated with chronic atrophic gastritis. By performing ROC reanalysis and prognostic analysis, we have determined that GADD45B is the most significant gene involved in the carcinogenesis of CAG. Immunohistochemical staining and differential analysis have revealed that GADD45B expression was low in GC tissues while high in normal gastric tissues. Moreover, based on prognostic analysis, high expression of GADD45B has been correlated with poor prognosis in GC patients. Additionally, an analysis of immune infiltration has shown a relationship between GADD45B and the infiltration of various immune cells. By correlating GADD45B with clinical characteristics, we have found that it primarily affects the depth of invasion in GC. Through cell communication analysis, we have discovered that the CD99 signaling pathway network and the CDH signaling pathway network are the main communication pathways that significantly alter the microenvironment of gastric tissue during the development of chronic atrophic gastritis. Specifically, GADD45B-low GC cells were predominantly involved in the network communication of the CDH signaling pathway, while GADD45B-high GC cells played a crucial role in both signaling pathways. Furthermore, we have identified several metabolic pathways, including D-Glutamine and D-glutamate metabolism and N-Glycan biosynthesis, among others, that played important roles in the occurrence and progression of GC, in addition to the six other metabolic pathways. In summary, our study highlighted the discovery of 143 pathogenic genes shared by CAG and GC, with a specific focus on 15 oncogenes associated with CAG. We have identified GADD45B as the most important gene in the carcinogenesis of CAG, which exhibited differential expression in GC tissues compared to normal gastric tissues. Moreover, GADD45B expression was correlated with patient prognosis and is associated with immune cell infiltration. Our findings also emphasized the impact of the CD99 and CDH signaling pathway networks on the microenvironment of gastric tissue during the development of CAG. Additionally, we have identified key metabolic pathways involved in GC progression. Conclusion GADD45B, an oncogene implicated in chronic atrophic gastritis, played a critical role in GC development. Decreased expression of GADD45B was associated with the onset of GC. Moreover, GADD45B expression levels were closely tied to poor prognosis in GC patients, influencing the infiltration patterns of various cells within the tumor microenvironment, as well as impacting the metabolic pathways involved in GC progression.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianxiao Jiang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kanger Shen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Man Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenxin Zhu
- Department of Gastroenterology, Kunshan Third People’s Hospital, Suzhou, Jiangsu, China
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Karmokar PF, Moniri NH. Free-Fatty Acid Receptor-4 (FFA4/GPR120) differentially regulates migration, invasion, proliferation and tumor growth of papillary renal cell carcinoma cells. Biochem Pharmacol 2023; 213:115590. [PMID: 37201877 DOI: 10.1016/j.bcp.2023.115590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Kidney cancer is among the 10 most common cancers, and renal cell carcinoma (RCC), which represent 90% of all kidney cancers, has the highest mortality rate of all genitourinary cancers. Papillary RCC (pRCC) is the second most frequent subtype of RCC and demonstrates distinct characteristics compared to other subtypes, including a high degree of metastasis and resistance to treatments against the more common clear cell RCC (ccRCC) subtype. Here, we demonstrate that the Free-Fatty Acid Receptor-4 (FFA4), a G protein-coupled receptor that is endogenously activated by medium-to-long chain free-fatty acids, is upregulated in pRCC compared to patient-matched normal kidney tissue, and that the expression of FFA4 increases with the degree of pathological grading of pRCC. Our data also show that FFA4 transcript is not expressed in ccRCC cell lines, but is expressed in the well-characterized metastatic pRCC cell line ACHN. Furthermore, we show that agonism of FFA4 with the selective agonist cpdA positively regulates ACHN cell migration and invasion in a manner dependent on PI3K/AKT/NF-κB signaling to COX-2 and MMP-9, with partial-dependence on EGFR transactivation. Our results also demonstrate that FFA4 agonism induces STAT-3-driven epithelial-mesenchymal transition, suggesting a significant role for FFA4 in pRCC metastasis. On the contrary, FFA4 agonism significantly reduces cell proliferation and tumor growth, suggesting that the receptor may have opposing effects on pRCC cell growth and migration. Together, our data demonstrate that FFA4 has significant functional roles in pRCC cells and may be an attractive target for study of pRCC and development of RCC pharmacotherapeutics.
Collapse
Affiliation(s)
- Priyanka F Karmokar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA; Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, GA 31207, USA.
| |
Collapse
|
10
|
Rodriguez-Ochoa N, Cortes-Reynosa P, Rodriguez-Rojas K, de la Garza M, Salazar EP. Bovine holo-lactoferrin inhibits migration and invasion in MDA-MB-231 breast cancer cells. Mol Biol Rep 2023; 50:193-201. [PMID: 36319786 DOI: 10.1007/s11033-022-07943-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Breast cancer is the most common malignancy in developed countries and the main cause of deaths in women worldwide. Lactoferrin (Lf) is an iron-binding protein constituted for a single polypeptide chain that is folded into two symmetrical lobes that bind Fe2+ or Fe3+. Lf has the ability to reversibly bind Fe3+ and is found free of Fe3+ (Apo-Lf) or associated with Fe3+ (Holo-Lf) with a different three-dimensional conformation. However, the role of bovine Apo-Lf (Apo-BLf) and bovine Holo-Lf (Holo-BLf) in the migration and invasion induced by linoleic acid (LA) and fetal bovine serum (FBS), as well as in the expression of mesenchymal and epithelial proteins in breast cancer cells has not been studied. METHODS AND RESULTS Scratch wound assays demonstrated that Holo-BLf and Apo-BLf do not induce migration, however they differentially inhibit the migration induced by FBS and LA in breast cancer cells MDA-MB-231. Western blot, invasion, zymography and immunofluorescence confocal microscopy assays demonstrated that Holo-BLf partly inhibit the invasion, FAK phosphorylation at tyrosine (Tyr)-397 and MMP-9 secretion, whereas it increased the number and size of focal adhesions induced by FBS in MDA-MB-231 cells. Moreover, Holo-BLf induced a slight increase of E-cadherin expression in MCF-7 cells, and inhibited vimentin expression in MCF-7 and MDA-MB-231 breast cancer cells. CONCLUSION Holo-BLf inhibits cellular processes that mediate the invasion process in breast cancer cells.
Collapse
Affiliation(s)
- Ninive Rodriguez-Ochoa
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Karem Rodriguez-Rojas
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Mireya de la Garza
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
11
|
Karmokar PF, Moniri NH. Oncogenic signaling of the free-fatty acid receptors FFA1 and FFA4 in human breast carcinoma cells. Biochem Pharmacol 2022; 206:115328. [PMID: 36309079 DOI: 10.1016/j.bcp.2022.115328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Globally, breast cancer is the most frequent type of cancer in women, and most breast cancer-associated deaths are due to metastasis and recurrence of the disease. Dietary habits, specifically dietary fat intake is a crucial risk factor involved in breast cancer development and progression. Decades of research has revealed that free-fatty acids (FFA) modulate carcinogenic processes through fatty acid metabolism and lipid peroxidation. The ground-breaking discovery of free-fatty acid receptors, which are members of the G-protein coupled receptor (GPCR) superfamily, has led to the realization that FFA can also act via these receptors to modulate carcinogenic effects. The long-chain free-fatty acid receptors FFA1 (previously termed GPR40) and FFA4 (previously termed GPR120) are activated by mono- and polyunsaturated fatty acids including ω-3, 6, and 9 fatty acids. Initial enthusiasm towards the study of these receptors focused on their insulin secretagogue and sensitization effects, and the downstream associated metabolic regulation. However, recent studies have demonstrated that abnormal expression and/or aberrant FFA1/FFA4 signaling are evident in human breast carcinomas, suggesting that FFA receptors could be a promising target in the treatment of breast cancer. The current review discusses the diverse roles of FFA1 and FFA4 in the regulation of cell proliferation, migration, invasion, and chemotherapy resistance in human breast carcinoma cells and tissue.
Collapse
Affiliation(s)
- Priyanka F Karmokar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA; Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, GA 31207, USA.
| |
Collapse
|
12
|
Crosstalk between Depression and Breast Cancer via Hepatic Epoxide Metabolism: A Central Comorbidity Mechanism. Molecules 2022; 27:molecules27217269. [PMID: 36364213 PMCID: PMC9655600 DOI: 10.3390/molecules27217269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Breast cancer (BC) is a serious global challenge, and depression is one of the risk factors and comorbidities of BC. Recently, the research on the comorbidity of BC and depression has focused on the dysfunction of the hypothalamic–pituitary–adrenal axis and the persistent stimulation of the inflammatory response. However, the further mechanisms for comorbidity remain unclear. Epoxide metabolism has been shown to have a regulatory function in the comorbid mechanism with scattered reports. Hence, this article reviews the role of epoxide metabolism in depression and BC. The comprehensive review discloses the imbalance in epoxide metabolism and its downstream effect shared by BC and depression, including overexpression of inflammation, upregulation of toxic diols, and disturbed lipid metabolism. These downstream effects are mainly involved in the construction of the breast malignancy microenvironment through liver regulation. This finding provides new clues on the mechanism of BC and depression comorbidity, suggesting in particular a potential relationship between the liver and BC, and provides potential evidence of comorbidity for subsequent studies on the pathological mechanism.
Collapse
|
13
|
Scuruchi M, D'Ascola A, Avenoso A, Zappone A, Mandraffino G, Campo S, Campo GM. miR9 inhibits 6-mer HA-induced cytokine production and apoptosis in human chondrocytes by reducing NF-kB activation. Arch Biochem Biophys 2022; 718:109139. [PMID: 35114139 DOI: 10.1016/j.abb.2022.109139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
The present study aimed to investigate the expression of miR9 and its correlation with cytokines, proteolytic enzymes and apoptosis in an experimental model of 6-mer HA induced inflammation in human chondrocytes. Human articular chondrocytes, transfected with a miR-9 mimic and miR-9 inhibitor, were stimulated with 6-mer HA in presence/absence of a specific NF-kB inhibitor. 6-mer HA induced a significant increase of TLR-4, CD44, IL-8, IL-18, MMP-9, ADAMTS-5, BAX and BCL-2 mRNAs expression and the related proteins, as well as NF-kB activation, associated with a significant up regulation of miR-9. In chondrocytes transfected with the miR-9 mimic before 6-mer HA treatment we found a decrease of such inflammatory cytokines, metalloproteases and pro-apoptotic molecules, while we found them increased in chondrocytes transfected with the miR9 inhibitor before 6-mer HA stimulation. The activities of TLR-4 and CD44, up regulated by 6-mer HA, were not modified by miR9 mimic/inhibitor, while the NF-kB activation was significantly affected. We suggested that the up regulation of miR9, induced by 6-mer HA, could be a cellular attempt to limit cell damage during inflammation.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy.
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Annie Zappone
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| |
Collapse
|
14
|
Li Y, Wang K, Chen Y, Cai J, Qin X, Lu A, Guan D, Qin G, Chen W. A System Pharmacology Model for Decoding the Synergistic Mechanisms of Compound Kushen Injection in Treating Breast Cancer. Front Pharmacol 2021; 12:723147. [PMID: 34899291 PMCID: PMC8660088 DOI: 10.3389/fphar.2021.723147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors among women worldwide and can be treated using various methods; however, side effects of these treatments cannot be ignored. Increasing evidence indicates that compound kushen injection (CKI) can be used to treat BC. However, traditional Chinese medicine (TCM) is characterized by “multi-components” and “multi-targets”, which make it challenging to clarify the potential therapeutic mechanisms of CKI on BC. Herein, we designed a novel system pharmacology strategy using differentially expressed gene analysis, pharmacokinetics synthesis screening, target identification, network analysis, and docking validation to construct the synergy contribution degree (SCD) and therapeutic response index (TRI) model to capture the critical components responding to synergistic mechanisms of CKI in BC. Through our designed mathematical models, we defined 24 components as a high contribution group of synergistic components (HCGSC) from 113 potentially active components of CKI based on ADME parameters. Pathway enrichment analysis of HCGSC targets indicated that Rhizoma Heterosmilacis and Radix Sophorae Flavescentis could synergistically target the PI3K-Akt signaling pathway and the cAMP signaling pathway to treat BC. Additionally, TRI analysis showed that the average affinity of HCGSC and targets involved in the key pathways reached -6.47 kcal/mmol, while in vitro experiments proved that two of the three high TRI-scored components in the HCGSC showed significant inhibitory effects on breast cancer cell proliferation and migration. These results demonstrate the accuracy and reliability of the proposed strategy.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kexin Wang
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China.,Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Jieqi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Bisht VS, Giri K, Kumar D, Ambatipudi K. Oxygen and metabolic reprogramming in the tumor microenvironment influences metastasis homing. Cancer Biol Ther 2021; 22:493-512. [PMID: 34696706 DOI: 10.1080/15384047.2021.1992233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Tumor metastasis is the leading cause of cancer mortality, often characterized by abnormal cell growth and invasion to distant organs. The cancer invasion due to epithelial to mesenchymal transition is affected by metabolic and oxygen availability in the tumor-associated micro-environment. A precise alteration in oxygen and metabolic signaling between healthy and metastatic cells is a substantial probe for understanding tumor progression and metastasis. Molecular heterogeneity in the tumor microenvironment help to sustain the metastatic cell growth during their survival shift from low to high metabolic-oxygen-rich sites and reinforces the metastatic events. This review highlighted the crucial role of oxygen and metabolites in metastatic progression and exemplified the role of metabolic rewiring and oxygen availability in cancer cell adaptation. Furthermore, we have also addressed potential applications of altered oxygen and metabolic networking with tumor type that could be a signature pattern to assess tumor growth and chemotherapeutics efficacy in managing cancer metastasis.
Collapse
Affiliation(s)
- Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepak Kumar
- Department of Cancer Biology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research, New Delhi, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
16
|
Pang L, Shah H, Xu Y, Qian S. Delta-5-desaturase: A novel therapeutic target for cancer management. Transl Oncol 2021; 14:101207. [PMID: 34438249 PMCID: PMC8390547 DOI: 10.1016/j.tranon.2021.101207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
D5D is an independent prognostic factor in cancer. D5D aggravates cancer progression via mediating AA/PGE2 production from DGLA. AA/PGE2 promotes cancer progression via regulating the tumor microenvironment. Inhibition of D5D redirects COX-2 catalyzed DGLA peroxidation, producing 8-HOA. 8-HOA suppress cancer by regulating proliferation, apoptosis, and metastasis.
Delta-5 desaturase (D5D) is a rate-limiting enzyme that introduces double-bonds to the delta-5 position of the n-3 and n-6 polyunsaturated fatty acid chain. Since fatty acid metabolism is a vital factor in cancer development, several recent studies have revealed that D5D activity and expression could be an independent prognostic factor in cancers. However, the mechanistic basis of D5D in cancer progression is still controversial. The classical concept believes that D5D could aggravate cancer progression via mediating arachidonic acid (AA)/prostaglandin E2 production from dihomo-γ-linolenic acid (DGLA), resulting in activation of EP receptors, inflammatory pathways, and immunosuppression. On the contrary, D5D may prevent cancer progression through activating ferroptosis, which is iron-dependent cell death. Suppression of D5D by RNA interference and small-molecule inhibitor has been identified as a promising anti-cancer strategy. Inhibition of D5D could shift DGLA peroxidation pattern from generating AA to a distinct anti-cancer free radical byproduct, 8-hydroxyoctanoic acid, resulting in activation of apoptosis pathway and simultaneously suppression of cancer cell survival, proliferation, migration, and invasion. Hence, understanding the molecular mechanisms of D5D on cancer may therefore facilitate the development of novel therapeutical applications. Given that D5D may serve as a promising target in cancer, in this review, we provide an updated summary of current knowledge on the role of D5D in cancer development and potentially useful therapeutic strategies.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA.
| | - Harshit Shah
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| | - Yi Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Steven Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| |
Collapse
|
17
|
Carullo G, Mazzotta S, Vega-Holm M, Iglesias-Guerra F, Vega-Pérez JM, Aiello F, Brizzi A. GPR120/FFAR4 Pharmacology: Focus on Agonists in Type 2 Diabetes Mellitus Drug Discovery. J Med Chem 2021; 64:4312-4332. [PMID: 33843223 PMCID: PMC8154576 DOI: 10.1021/acs.jmedchem.0c01002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The G-protein coupled receptors (GPCRs)
activated by free fatty
acids (FFAs) have emerged as new and exciting drug targets, due to
their plausible translation from pharmacology to medicines. This perspective
aims to report recent research about GPR120/FFAR4 and its involvement
in several diseases, including cancer, inflammatory conditions, and
central nervous system disorders. The focus is to highlight the importance
of GPR120 in Type 2 diabetes mellitus (T2DM). GPR120 agonists, useful
in T2DM drug discovery, have been widely explored from a structure–activity
relationship point of view. Since the identification of the first
reported synthetic agonist TUG-891, the research has paved the way
for the development of TUG-based molecules as well as new and different
chemical entities. These molecules might represent the starting point
for the future discovery of GPR120 agonists as antidiabetic drugs.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry, and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sarah Mazzotta
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, DoE 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende, Cosenza, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry, and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
18
|
Garcia-Hernandez A, Leal-Orta E, Ramirez-Ricardo J, Cortes-Reynosa P, Thompson-Bonilla R, Salazar EP. Linoleic acid induces secretion of extracellular vesicles from MDA-MB-231 breast cancer cells that mediate cellular processes involved with angiogenesis in HUVECs. Prostaglandins Other Lipid Mediat 2021; 153:106519. [PMID: 33238201 DOI: 10.1016/j.prostaglandins.2020.106519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are vesicles secreted by normal and malignant cells that are implicated in tumor progression. Linoleic acid (LA) is an essential polyunsaturated fatty acid that induces migration, invasion and an increase in phospholipase D activity in breast cancer cells. In this study, we determined whether stimulation of MDA-MB-231 breast cancer cells with LA induces the secretion of EVs, which can mediate cell processes related with angiogenesis in human umbilical vein endothelial cells (HUVECs). Our findings demonstrate that treatment of MDA-MB-231 cells with 90 μM LA for 48 h induce an increase in the number of EVs released. Moreover, EVs from MDA-MB-231 stimulated with 90 μM LA induce FAK and Src activation and migration via FAK and Src activity, whereas the secretion of these EVs is through FFAR1 and FFAR4 activation in HUVECs. The EVs from MDA-MB-231 cells treated with LA also increase proliferation, invasion, MMP-9 secretion, an increase of MMP-2 secretion and formation of new tubules in HUVECs. In summary, we demonstrate, for the first time, that treatment with LA induces the release of EVs from MDA-MB-231 cells that induce cellular processes involved with angiogenesis in HUVECs.
Collapse
|
19
|
Ramirez-Ricardo J, Leal-Orta E, Garcia-Hernandez A, Diaz-Aragon R, Cortes-Reynosa P, Thompson-Bonilla R, Salazar EP. Role of Src/FAK in migration and invasion mediated by extracellular vesicles from MDA-MB-231 cells stimulated with linoleic acid. Med Oncol 2021; 38:40. [PMID: 33728516 DOI: 10.1007/s12032-021-01485-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Linoleic acid (LA) is the most abundant polyunsaturated fatty acid in occidental diets, which mediate a variety of processes in human breast cancer cells, including migration and invasion. Extracellular vesicles (EVs) are vesicles released from endosomes and plasma membrane that are composed of a variety of molecules, including proteins, nucleic acids and lipids. EVs from cancer cells promote processes related with cancer progression. In the present study, we demonstrate that treatment of MDA-MB-231 cells with EVs from MDA-MB-231 cells stimulated with LA (LA EVs) promote migration and invasion via Src activity. LA EVs induce activation of FAK via Src activity and of Src and Akt2. LA EVs also induce the assembly of focal adhesions and MMP-9 secretion. These findings demonstrate that LA EVs mediate an autocrine and/or paracrine Src/FAK signaling pathway to promote migration and invasion.
Collapse
Affiliation(s)
- Javier Ramirez-Ricardo
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Elizabeth Leal-Orta
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Ricardo Diaz-Aragon
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
20
|
Enhanced migration of breast and lung cancer cells deficient for cN-II and CD73 via COX-2/PGE2/AKT axis regulation. Cell Oncol (Dordr) 2020; 44:151-165. [PMID: 32970317 DOI: 10.1007/s13402-020-00558-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Purine metabolism involves various intracellular and extracellular enzymes, including cN-II and CD73 that dephosphorylate intracellular and extracellular nucleoside monophosphates into their corresponding nucleosides. We conducted a study to better understand the biological roles of these enzymes in breast and lung cancer cells. METHODS We modified cN-II and/or CD73 expression in human breast cancer cells (MDA-MB-231), human lung cancer cells (NCI-H292) and murine breast cancer cells (4T1) using the CRISPR/Cas9 technique, and evaluated their impact on various cellular parameters such as proliferation, migration, invasion, intracellular nucleotide pools and nucleotide metabolism-related gene expression under extracellular nucleotide stress conditions. RESULTS Intracellular nucleotide contents were found to be altered in the modified cancer cell models both at their basal levels and after exposure to adenosine or AMP. Altered cN-II and CD73 levels were also found to be associated with cell migration and invasion alterations, involving TIMP-2, MMP-2 and MMP-9 expression, as well as alterations in the COX-2/PGE2/AKT pathway. CONCLUSION Our results highlight new cell-specific roles of cN-II and CD73 in cancer cell biology and provide insight into their interactions with different intracellular pathways.
Collapse
|
21
|
Gu JF, Fu W, Qian HX, Gu WX, Zong Y, Chen Q, Lu L. TBL1XR1 induces cell proliferation and inhibit cell apoptosis by the PI3K/AKT pathway in pancreatic ductal adenocarcinoma. World J Gastroenterol 2020; 26:3586-3602. [PMID: 32742128 PMCID: PMC7366057 DOI: 10.3748/wjg.v26.i25.3586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors. Identification of diagnostic and therapeutic biomarkers for PDAC is urgently needed. Transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) has been linked to the progression of various human cancers. Nevertheless, the function and role of TBL1XR1 in pancreatic cancers are unclear.
AIM To elucidate the function and potential mechanism of TBL1XR1 in the development of PDAC.
METHODS Ninety patients with histologically-confirmed PDAC were included in this study. PDAC tumor samples and cell lines were used to determine the expression of TBL1XR1. CCK-8 assays and colony formation assays were carried out to assess PDAC cell viability. Flow cytometry was performed to measure the changes in the cell cycle and cell apoptosis. Changes in related protein expression were measured by western blot analysis. Animal analysis was conducted to confirm the impact of TBL1XR1 in vivo.
RESULTS Patients with TBL1XR1-positive tumors had worse overall survival than those with TBL1XR1-negative tumors. Moreover, we found that TBL1XR1 strongly promoted PDAC cell proliferation and inhibited PDAC cell apoptosis. Moreover, knockdown of TBL1XR1 induced G0/G1 phase arrest. In vivo animal studies confirmed that TBL1XR1 accelerated tumor cell growth. The results of western blot analysis showed that TBL1XR1 might play a key role in regulating PDAC cell proliferation and apoptosis via the PI3K/AKT pathway.
CONCLUSION TBL1XR1 promoted PDAC cell progression and might be an effective diagnostic and therapeutic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Jian-Feng Gu
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Wei Fu
- Department of Oncology, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Hai-Xin Qian
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wen-Xiu Gu
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Yang Zong
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Qian Chen
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Long Lu
- Department of Oncology, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| |
Collapse
|
22
|
Bojková B, Winklewski PJ, Wszedybyl-Winklewska M. Dietary Fat and Cancer-Which Is Good, Which Is Bad, and the Body of Evidence. Int J Mol Sci 2020; 21:ijms21114114. [PMID: 32526973 PMCID: PMC7312362 DOI: 10.3390/ijms21114114] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
A high-fat diet (HFD) induces changes in gut microbiota leading to activation of pro-inflammatory pathways, and obesity, as a consequence of overnutrition, exacerbates inflammation, a known risk factor not only for cancer. However, experimental data showed that the composition of dietary fat has a greater impact on the pathogenesis of cancer than the total fat content in isocaloric diets. Similarly, human studies did not prove that a decrease in total fat intake is an effective strategy to combat cancer. Saturated fat has long been considered as harmful, but the current consensus is that moderate intake of saturated fatty acids (SFAs), including palmitic acid (PA), does not pose a health risk within a balanced diet. In regard to monounsaturated fat, plant sources are recommended. The consumption of plant monounsaturated fatty acids (MUFAs), particularly from olive oil, has been associated with lower cancer risk. Similarly, the replacement of animal MUFAs with plant MUFAs decreased cancer mortality. The impact of polyunsaturated fatty acids (PUFAs) on cancer risk depends on the ratio between ω-6 and ω-3 PUFAs. In vivo data showed stimulatory effects of ω-6 PUFAs on tumour growth while ω-3 PUFAs were protective, but the results of human studies were not as promising as indicated in preclinical reports. As for trans FAs (TFAs), experimental data mostly showed opposite effects of industrially produced and natural TFAs, with the latter being protective against cancer progression, but human data are mixed, and no clear conclusion can be made. Further studies are warranted to establish the role of FAs in the control of cell growth in order to find an effective strategy for cancer prevention/treatment.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 041 54 Košice, Slovakia;
| | - Pawel J. Winklewski
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Anatomy and Physiology, Pomeranian University of Slupsk, 76-200 Slupsk, Poland
- Correspondence: ; Tel./Fax: +48-58-3491515
| | | |
Collapse
|
23
|
Fan S, Shahid M, Jin P, Asher A, Kim J. Identification of Metabolic Alterations in Breast Cancer Using Mass Spectrometry-Based Metabolomic Analysis. Metabolites 2020; 10:E170. [PMID: 32344578 PMCID: PMC7241246 DOI: 10.3390/metabo10040170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is a major global health issue and remains the second leading cause of cancer-related death in women, contributing to approximately 41,760 deaths annually. BC is caused by a combination of genetic and environmental factors. Although various molecular diagnostic tools have been developed to improve diagnosis of BC in the clinical setting, better detection tools for earlier diagnosis can improve survival rates. Given that altered metabolism is a characteristic feature of BC, we aimed to understand the comparative metabolic differences between BC and healthy controls. Metabolomics, the study of metabolism, can provide incredible insight and create useful tools for identifying potential BC biomarkers. In this study, we applied two analytical mass spectrometry (MS) platforms, including hydrophilic interaction chromatography (HILIC) and gas chromatography (GC), to generate BC-associated metabolic profiles using breast tissue from BC patients. These metabolites were further analyzed to identify differentially expressed metabolites in BC and their associated metabolic networks. Additionally, Chemical Similarity Enrichment Analysis (ChemRICH), MetaMapp, and Metabolite Set Enrichment Analysis (MSEA) identified significantly enriched clusters and networks in BC tissues. Since metabolomic signatures hold significant promise in the clinical setting, more effort should be placed on validating potential BC biomarkers based on identifying altered metabolomes.
Collapse
Affiliation(s)
- Sili Fan
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA;
| | - Muhammad Shahid
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.); (P.J.)
| | - Peng Jin
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.); (P.J.)
| | - Arash Asher
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Jayoung Kim
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.); (P.J.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Urology, Ga Cheon University College of Medicine, Incheon 461-701, Korea
| |
Collapse
|
24
|
Fan R, Kim J, You M, Giraud D, Toney AM, Shin SH, Kim SY, Borkowski K, Newman JW, Chung S. α-Linolenic acid-enriched butter attenuated high fat diet-induced insulin resistance and inflammation by promoting bioconversion of n-3 PUFA and subsequent oxylipin formation. J Nutr Biochem 2020; 76:108285. [PMID: 31760228 PMCID: PMC6995772 DOI: 10.1016/j.jnutbio.2019.108285] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/01/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
α-Linolenic acid (ALA) is an essential fatty acid and the precursor for long-chain n-3 PUFA. However, biosynthesis of n-3 PUFA is limited in a Western diet likely due to an overabundance of n-6 PUFA. We hypothesized that dietary reduction of n-6/n-3 PUFA ratio is sufficient to promote the biosynthesis of long-chain n-3 PUFA, leading to an attenuation of high fat (HF) diet-induced obesity and inflammation. C57BL/6 J mice were fed a HF diet from ALA-enriched butter (n3Bu, n-6/n-3=1) in comparison with isocaloric HF diets from either conventional butter lacking both ALA and LA (Bu, n-6/n-3=6), or margarine containing a similar amount of ALA and abundant LA (Ma, n-6/n-3=6). Targeted lipidomic analyses revealed that n3Bu feeding promoted the bioconversion of long-chain n-3 PUFA and their oxygenated metabolites (oxylipins) derived from ALA and EPA. The n3Bu supplementation attenuated hepatic TG accumulation and adipose tissue inflammation, resulting in improved insulin sensitivity. Decreased inflammation by n3Bu feeding was attributed to the suppression of NF-κB activation and M1 macrophage polarization. Collectively, our work suggests that dietary reduction of the n-6/n-3 PUFA ratio, as well as total n-3 PUFA consumed, is a crucial determinant that facilitates n-3 PUFA biosynthesis and subsequent lipidomic modifications, thereby conferring metabolic benefits against obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Rong Fan
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Judy Kim
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Mikyoung You
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - David Giraud
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Ashley M Toney
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Seung-Ho Shin
- Sunseo Omega Inc, University of Nebraska Innovation Campus, Lincoln, NE
| | - So-Youn Kim
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA; Obesity and Metabolism Research Unit, USDA-ARS-WHNRC, Davis, CA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE.
| |
Collapse
|
25
|
Javadian M, Shekari N, Soltani ‐ Zangbar MS, Mohammadi A, Mansoori B, Maralbashi S, Shanehbandi D, Baradaran B, Darabi M, Kazemi T. Docosahexaenoic acid suppresses migration of triple‐negative breast cancer cell through targeting metastasis‐related genes and microRNA under normoxic and hypoxic conditions. J Cell Biochem 2019; 121:2416-2427. [DOI: 10.1002/jcb.29464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mahsa Javadian
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Najibeh Shekari
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Mohammad S. Soltani ‐ Zangbar
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Ali Mohammadi
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Behzad Mansoori
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Sepideh Maralbashi
- Department of Immunology, Faculty of Medicine Kermanshah University of Medical Sciences Kermanshah Iran
| | - Dariush Shanehbandi
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Masood Darabi
- Biochemistry & Clinical Laboratories School of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Tohid Kazemi
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
26
|
Gapeyev AB, Aripovsky AV, Kulagina TP. Fatty Acid Content and Tumor Growth Changes in Mice After Exposure to Extremely High-Frequency Electromagnetic Radiation and Consumption of N-3 Fatty Acids. Nutr Cancer 2019; 71:1325-1334. [PMID: 30990087 DOI: 10.1080/01635581.2019.1601746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The topical problem is to find new, more effective and safe treatments for cancer. The purpose of the present work was to study the combined effects of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) and consumption of n-3 polyunsaturated fatty acids (PUFAs) on tumor growth and the content of FAs in the thymus and tumor tissue in mice. Fatty acid composition was determined using gas chromatography. Exposure of tumor-bearing mice with solid Ehrlich carcinoma to EHF EMR with effective parameters (42.2 GHz, 0.1 mW/cm2, 20 min daily for 5 consecutive days beginning on the first day after the tumor inoculation) led to delaying the tumor growth and restored the content of almost all FAs in thymic tissue to the level of intact animals. Animal intake of the preparation enriched with n-3 PUFAs increased the content of n-3 PUFAs in thymic tissue significantly, but did not affect the tumor growth, even in combination with EHF EMR exposure. Combined action of EHF EMR exposure and n-3 preparation promoted recovery of thymus weight in tumor-bearing animals. The data obtained assume a complex interaction between the immune system and the tumor, and the important role of FAs in the regulation of this interaction.
Collapse
Affiliation(s)
- Andrew B Gapeyev
- Institute of Cell Biophysics of the Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Alexander V Aripovsky
- State Scientific Center of Applied Microbiology and Biotechnology , Obolensk , Moscow Region , Russia
| | - Tatyana P Kulagina
- Institute of Cell Biophysics of the Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| |
Collapse
|
27
|
Role of phospholipase D in migration and invasion induced by linoleic acid in breast cancer cells. Mol Cell Biochem 2019; 457:119-132. [PMID: 30877512 DOI: 10.1007/s11010-019-03517-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
Linoleic acid (LA) is an essential and omega-6 polyunsaturated fatty acid that mediates a variety of biological processes, including migration and invasion in breast cancer cells. Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. Increases of expression and activity of PLD are reported in several human cancers, including gastric, colorectal, renal, stomach, lung and breast. In this article, we demonstrate that LA induces an increase of PLD activity in MDA-MB-231 breast cancer cells. Particularly, PLD1 and/or PLD2 mediate migration and invasion induced by LA. Moreover, LA induces increases in number and size of spheroids via PLD activity. FFAR1 also mediates migration and invasion, whereas PLD activation induced by LA requires the activities of FFAR1, FFAR4 and EGFR in MDA-MB-231 cells. In summary, PLD plays a pivotal role in migration and invasion induced by LA in MDA-MB-231 breast cancer cells.
Collapse
|
28
|
Meng FT, Huang M, Shao F, Huang Q. Upregulated FFAR4 correlates with the epithelial-mesenchymal transition and an unfavorable prognosis in human cholangiocarcinoma. Cancer Biomark 2018; 23:353-361. [PMID: 30248044 DOI: 10.3233/cbm-181358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fu-Tao Meng
- Department of General Surgery, Affiliated Anhui Provincial Hospital, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Department of General Surgery, Affiliated Anhui Provincial Hospital, Hefei, Anhui, China
| | - Mei Huang
- Department of General Surgery, Affiliated Anhui Provincial Hospital, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Department of General Surgery, Affiliated Anhui Provincial Hospital, Hefei, Anhui, China
| | - Feng Shao
- Department of General Surgery, Affiliated Anhui Provincial Hospital, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
| | - Qiang Huang
- Department of General Surgery, Affiliated Anhui Provincial Hospital, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
| |
Collapse
|
29
|
Leal-Orta E, Ramirez-Ricardo J, Cortes-Reynosa P, Galindo-Hernandez O, Salazar EP. Role of PI3K/Akt on migration and invasion of MCF10A cells treated with extracellular vesicles from MDA-MB-231 cells stimulated with linoleic acid. J Cell Commun Signal 2018; 13:235-244. [PMID: 30361980 DOI: 10.1007/s12079-018-0490-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/04/2018] [Indexed: 12/30/2022] Open
Abstract
In breast cancer cells, the linoleic acid (LA), an ω-6 essential polyunsaturated fatty acid, induces a variety of biological processes, including migration and invasion. Extracellular vesicles (EVs) are structures released by normal and malignant cells into extracellular space, and their function is dependent on their cargo and the cell type from which are secreted. Particularly, the EVs from MDA-MB-231 breast cancer cells treated with LA promote an epithelial-mesenchymal-transition (EMT)-like process in mammary non-tumorigenic epithelial cells MCF10A. Here, we found that EVs isolated from supernatants of MDA-MB-231 breast cancer cells stimulated with 90 μM LA induces activation of Akt2, FAK and ERK1/2 in MCF10A cells. In addition, EVs induces migration through a PI3K, Akt and ERK1/2-dependent pathway, whereas invasion is dependent on PI3K activity.
Collapse
Affiliation(s)
- Elizabeth Leal-Orta
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Javier Ramirez-Ricardo
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
30
|
Rodriguez-Monterrosas C, Diaz-Aragon R, Cortes-Reynosa P, Salazar EP. Linoleic acid induces an increased response to insulin in MDA-MB-231 breast cancer cells. J Cell Biochem 2018; 119:5413-5425. [PMID: 29363790 DOI: 10.1002/jcb.26694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
Epidemiological studies and animal models suggest a link between high levels of dietary fat intake and an increased risk of developing breast cancer. Hyperinsulinemia is a feature of obesity, diabetes, and metabolic syndrome that is associated with an increased breast cancer risk. Insulin is a hormone involved in metabolic regulation of carbohydrate. However, it is also a growth factor that mediates proliferation and migration. Linoleic acid (LA) is a fatty acid that induces migration and invasion in breast cancer cells. In the present study, we demonstrate, for the first time, that treatment with LA increases IR and IGF1R expression through a Free Fatty Acid Receptor 4 (FFAR4)-, lipooxygenases (LOXs)-, and SRC-dependent pathway in MDA-MB-231 breast cancer cells, and similarly induces an increase of IR expression in MCF-7 breast cancer cells. In addition, insulin induces tyrosine phosphorylation of IR/IGF1R and migration in MDA-MB-231 cells pretreated with LA, whereas it augments the increase in migration in MCF-7 cells pretreated with LA. Pretreatment of MDA-MB-231 cells with LA induces invasion, proliferation, and increase the MMP-9 secretion induced by insulin. In summary, our findings demonstrate that treatment with LA induces a higher response to insulin in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | - Eduardo P Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
31
|
Senatorov IS, Moniri NH. The role of free-fatty acid receptor-4 (FFA4) in human cancers and cancer cell lines. Biochem Pharmacol 2018; 150:170-180. [PMID: 29452095 DOI: 10.1016/j.bcp.2018.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
A dietary influence on cancer progression has been evident for many decades, and dietary fatty acids, particularly long chain mono- and polyunsaturated fatty acids, have been shown to play significant roles in influencing growth of a variety of human cancers. The discovery of the family of cell-surface free-fatty acid receptors, which include the long-chain fatty acid receptors FFA1 and FFA4, suggest that many of the effects of dietary fats could be receptor-mediated. FFA4 is ubiquitously expressed and has recently been shown to modulate a variety of important anti-inflammatory and metabolic processes. Since FFA4 is currently an attractive drug target for treatment of metabolic disorders such as diabetes and obesity, understanding its role in cancer progression is critical towards the drug discovery process. In this research update, the current body of knowledge on the role of this receptor in regulating cancer cell proliferation, migration, and invasion, as well as in vivo tumorigenesis is reviewed.
Collapse
Affiliation(s)
- Ilya S Senatorov
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, United States
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, United States.
| |
Collapse
|
32
|
Gonzalez-Reyes C, Marcial-Medina C, Cervantes-Anaya N, Cortes-Reynosa P, Salazar EP. Migration and invasion induced by linoleic acid are mediated through fascin in MDA-MB-231 breast cancer cells. Mol Cell Biochem 2017; 443:1-10. [PMID: 29052029 DOI: 10.1007/s11010-017-3205-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/14/2017] [Indexed: 12/12/2022]
Abstract
Epidemiological studies strongly suggest an association between high levels of dietary fat intake and an increased risk of developing breast cancer. Linoleic acid (LA) is an essential omega-6 PUFA and the major fatty acid in occidental diets. In breast cancer cells, LA induces expression of plasminogen activator inhibitor-1, proliferation, migration, and invasion. Fascin is an actin crosslinker globular protein that generates actin bundles made of parallel actin filaments, which mediate formation and stability of microspikes, stress fibers, membrane ruffles, and filopodia. However, the role of fascin in migration and invasion induced by LA in MDA-MB-231 breast cancer cells remains to be studied. We demonstrate here that LA induces an increase of fascin expression in MDA-MB-231 and MCF12A mammary epithelial cells. Particularly, LA induces the formation of filopodia and lamellipodia and the localization of fascin in these actin structures in MDA-MB-231 breast cancer cells. However, LA only induces formation of microspikes and the localization of fascin in these actin structures in mammary non-tumorigenic epithelial cells MCF12A. In addition, LA induces migration, invasion, and matrix metalloproteinase-9 secretion through a fascin-dependent pathway in MDA-MB-231 cells. In summary, our findings demonstrate that fascin is required for migration and invasion induced by LA in MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Christian Gonzalez-Reyes
- Departamento de Biologia Celular, Cinvestav-IPN, Av IPN # 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Cleofas Marcial-Medina
- Departamento de Biologia Celular, Cinvestav-IPN, Av IPN # 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Nancy Cervantes-Anaya
- Departamento de Biologia Celular, Cinvestav-IPN, Av IPN # 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av IPN # 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av IPN # 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
33
|
Meng Y, Yuan C, Zhang J, Zhang F, Fu Q, Zhu X, Shu G, Wang L, Gao P, Xi Q, Sun J, Zhang Y, Jiang Q, Wang S. Stearic acid suppresses mammary gland development by inhibiting PI3K/Akt signaling pathway through GPR120 in pubertal mice. Biochem Biophys Res Commun 2017; 491:192-197. [PMID: 28712865 DOI: 10.1016/j.bbrc.2017.07.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
It has been demonstrated that dietary high fat diet negatively affects the pubertal mammary gland development. The aim of the present study was to investigate the effects of stearic acid (SA), an 18-carbon chain saturated fatty acid, on mammary gland development in pubertal mice and to explore the underlying mechanism. Our results demonstrated that dietary supplementation of 2% SA suppressed mammary duct development, with significant reduction of terminal end bud (TEB) number and ductal branch. In accord, the expression of proliferative marker Cyclin D1 was markedly decreased by dietary SA. Furthermore, dietary SA led to increase of G protein-coupled receptor 120 (GPR120) expression and inhibition of PI3K/Akt signaling pathway in mammary gland of pubertal mice. In good agreement with the in vivo findings, the in vitro results showed that 40 μM SA significantly suppressed proliferation of mouse mammary epithelial cell HC11 by regulating mRNA and/or protein expression of proliferative markers such as Cyclin D1/3, p21, and PCNA. Meanwhile, SA activated GPR120 and inhibited PI3K/Akt signaling pathway in a GPR120-dependent manner. In addition, SA-induced inhibition of PI3K/Akt signaling pathway, suppression of HC11 proliferation, and alteration of proliferative markers expression were abolished by knockdown of GPR120 with siRNA. Collectively, these findings showed that SA suppressed mammary gland development of pubertal mice, which was coincident with the SA-inhibited HC11 proliferation, and was associated with inhibition of PI3K/Akt signaling pathway through activation of GPR120. These data provided new insights into the regulation of mammary gland development by dietary fatty acids.
Collapse
Affiliation(s)
- Yingying Meng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Cong Yuan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Qin Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|