1
|
Ye X, Zhong H, Liu L, Huang J, Xia Z, Tang Z, Wei W, Huang W, Ye Y, Jiang Q. A novel and high-performance tumor inhibitor of La, N co-doped carbon dots for U251 and LN229 cells. Colloids Surf B Biointerfaces 2025; 249:114520. [PMID: 39823950 DOI: 10.1016/j.colsurfb.2025.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
To address the medical challenges posed by glioblastoma, a novel and high-performance tumor inhibitor (La@FA-CDs) composed of folic acid and lanthanum nitrate hexahydrate, was successfully synthesized and demonstrated effectiveness in inhibiting the growth of U251 and LN299 cells. The microstructure of La@FA-CDs was extensively analyzed by FTIR, UV-Vis, XPS, TEM, AFM NMR, and nanoparticle size analyzer. The optical and electrical properties of La@FA-CDs were characterized using a fluorescence spectrometer and a zeta potential analyzer. Biological assays, including the CCK8 proliferation assay, scratch assay, flow cytometry, cytoskeleton staining, and live/dead staining were conducted to assess antitumor properties and cytotoxicity. The result revealed that the La50 %@FA-CDs demonstrated significantly enhanced antitumor activity relative to the undoped sample. Furthermore, the La50 %@FA-CDs demonstrated a dose-dependent cytotoxic effect on two glioblastoma cell lines U251 and LN299. The findings of this study suggested that treatment with La50 %@FA-CDs effectively inhibited migration and proliferation while promoting apoptosis in glioblastoma cells. Meanwhile, the La50 %@FA-CDs showed minimal cytotoxic effects on HEK 293 and HUVEC cells under standard conditions, with only slight toxicity observed in HUVEC cells at high (500 µM) concentrations. These results suggest that La50 %@FA-CDs could be a promising therapeutic agent for glioblastoma treatment, demonstrating both effective inhibition and favorable safety profiles.
Collapse
Affiliation(s)
- Xinyun Ye
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China
| | - Huanglian Zhong
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China
| | - Lin Liu
- School of Basic Medicine Sciences, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Jingtao Huang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China
| | - Zhuquan Xia
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China
| | - Zhiji Tang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China
| | - Wenjin Wei
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China
| | - Weilong Huang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China.
| | - Yuwei Ye
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Qiuhua Jiang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El-Sibai M, Abi-Habib R. Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 2025; 29:243. [PMID: 40182607 PMCID: PMC11966088 DOI: 10.3892/ol.2025.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis. Recent advancements in bioinformatics have contributed to uncovering the genetic alterations that underlie the development and progression of GBM. Analysis of extensive genomic data led to the identification of significant pathways involved in GBM, such as the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways, alongside key genes such as EGFR, TP53 and TERT. These findings have enhanced our understanding of GBM biology and led to the identification of new therapeutic targets. Bioinformatics has become an indispensable tool in pinpointing the genetic modifications that drive GBM, paving the way for innovative treatment strategies. This approach not only aids in comprehending the complexities of GBM but also holds promise for improving outcomes in patients suffering from this devastating disease. The ongoing integration of bioinformatics in GBM research continues to be vital for advancing therapeutic options.
Collapse
Affiliation(s)
- Marcelino Al Ghafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nour El Jaafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mariam Mouallem
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tala Maassarani
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi-Habib
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
3
|
Zhang Y, Xiao X, Yang G, Jiang X, Jiao S, Nie Y, Zhang T. STAT3/TGFBI signaling promotes the temozolomide resistance of glioblastoma through upregulating glycolysis by inducing cellular senescence. Cancer Cell Int 2025; 25:127. [PMID: 40181415 PMCID: PMC11967127 DOI: 10.1186/s12935-025-03770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma (GBM) is the most lethal type of brain tumor. Recent studies have indicated that cellular senescence-targeted therapy is a promising approach for cancer treatment. However, the underlying mechanisms remain to be clarified. In this study, 101 unique combinations of 10 machine learning algorithms were used to construct prognostic models based on cellular senescence-related genes (CSRGs). We developed the CSRG signature (CSRGS) using machine learning models that exhibited optimal performance. GBM samples were stratified into high- and low-CSRGS groups based on CSRGS scores. Patients in the high-CSRGS group exhibited a worse prognosis, higher immune infiltration, and increased sensitivity to immune checkpoint blockade therapy. Furthermore, senescence-related pathways were significantly correlated with glycolysis, indicating upregulated glycolytic metabolism in senescent GBM cells. We identified TGFBI as a key regulator that played vital roles in both glycolysis and cellular senescence in GBM. TGFBI was overexpressed in GBM samples compared to normal brain tissues, and its knockdown via shRNA inhibited cellular senescence, glycolysis, and temozolomide resistance. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays confirmed that TGFBI is a direct STAT3 target and is required for the STAT3-induced promotion of cellular senescence, glycolysis, and drug resistance. The STAT3-TGFBI axis could be a potential target for senescence-targeted GBM therapy.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Xiao
- Department of Neurosurgery, People's Hospital of Dongxihu District, Wuhan, Hubei, 430040, China
| | - Ge Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shujie Jiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yingli Nie
- Department of Dermatology, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Genchi GG, Conci C, Şen Ö, Nardini A, Bartolucci M, Marino A, Martinez Vazquez R, Cerullo G, Osellame R, Petretto A, Raimondi MT, Ciofani G. Two-photon polymerization of miniaturized 3D scaffolds optimized for studies on glioblastoma multiforme in spaceflight-like microgravity conditions. Biofabrication 2025; 17:025024. [PMID: 40014921 DOI: 10.1088/1758-5090/adbb21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
The obtainment of innovative models recalling complex tumour architectures and activitiesin vitrois a challenging drive in the understanding of pathology molecular bases, yet it is a crucial path to the identification of targets for advanced oncotherapy. Cell environment recapitulation by 3D scaffolding and gravitational unloading of cell cultures represent powerful means in tumour biomimicry processes, but their simultaneous adoption has consistently been explored only in the latest decade. Here, an unprecedented bioengineering approach capitalizing on spaceflight biology practice is proposed for modelling of glioblastoma multiforme, a highly aggressive neoplasm that affects the central nervous system and has poorly effective pharmacological and radiological countermeasures. Tumour modelling was pursued by the original implementation of two-photon polymerization in fast prototyping of 3D scaffolds on flexible substrates for U87-MG glioma cell culture, and by the exposure of cell-laden scaffolds to simulated microgravity (s-μg). Realistic spaceflight conditions were applied to collect preliminary information suitable for testing of U87-MG cell-laden scaffold in low Earth orbit. Responses of glioma cells anchored to 3D scaffolds were investigated by microscopy, quantitative reverse transcription-polymerase chain reaction and proteomic analyses, revealing synergic regulatory effects of cell scaffolding and s-μg on markers of tumour cell growth, metabolism and invasiveness.
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Claudio Conci
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Polytechnic University of Milan, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Özlem Şen
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Alessandra Nardini
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Polytechnic University of Milan, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Rebeca Martinez Vazquez
- Consiglio Nazionale delle Ricerche, Institute for Photonics and Nanotechnologies (CNR-IFN), Piazza L. da Vinci 32, 20133 Milan, Italy
- Department of Physics, Polytechnic University of Milan, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Giulio Cerullo
- Department of Physics, Polytechnic University of Milan, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Roberto Osellame
- Consiglio Nazionale delle Ricerche, Institute for Photonics and Nanotechnologies (CNR-IFN), Piazza L. da Vinci 32, 20133 Milan, Italy
- Department of Physics, Polytechnic University of Milan, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Polytechnic University of Milan, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| |
Collapse
|
5
|
Tian Q, Dan G, Wang X, Zhu J, Chen C, Tang D, Wang Z, Chen D, Lei S, Yang C, Wang H, Guo B, Jin B, Chen T, Tang L. IDO1 inhibits ferroptosis by regulating FTO-mediated m6A methylation and SLC7A11 mRNA stability during glioblastoma progression. Cell Death Discov 2025; 11:22. [PMID: 39863603 PMCID: PMC11762296 DOI: 10.1038/s41420-025-02293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/12/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) has been recognized as an enzyme involved in tryptophan catabolism with immunosuppressive ability. This study determined to investigate the impact of IDO1 on glioblastoma multiforme (GBM) cells. Here, we showed that the expression of IDO1 was markedly increased in patients with glioma and associated with GBM progression. IDO1 overexpression suppressed ferroptotic cell death, reduced ROS and lipid peroxide generation in GBM cells. IDO1 expression increased the SLC7A11 mRNA stability through FTO-dependent m6A methylation. Mechanistically, IDO1 promoted the AhR expression and nuclear translocation, thus facilitating AhR recruitment at the promoter regions of FTO gene and negatively regulating its transcription. These findings demonstrate that IDO1 facilitates GBM progression by inhibiting SLC7A11-dependent ferroptosis through an IDO1-AhR-FTO axis-mediated m6A methylation mechanism.
Collapse
Affiliation(s)
- Qianting Tian
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guixue Dan
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Xuyan Wang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Jiamei Zhu
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Chaochun Chen
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Dekun Tang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Ziming Wang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Dan Chen
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Shan Lei
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Chao Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Houmei Wang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bing Guo
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Bangming Jin
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China.
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China.
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
6
|
Cihan M, Schmauck G, Sprang M, Andrade-Navarro MA. Unveiling cell-type-specific microRNA networks through alternative polyadenylation in glioblastoma. BMC Biol 2025; 23:15. [PMID: 39838429 PMCID: PMC11752630 DOI: 10.1186/s12915-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by its cellular complexity, with a microenvironment consisting of diverse cell types, including oligodendrocyte precursor cells (OPCs) and neoplastic CD133 + radial glia-like cells. This study focuses on exploring the distinct cellular transitions in GBM, emphasizing the role of alternative polyadenylation (APA) in modulating microRNA-binding and post-transcriptional regulation. RESULTS Our research identified unique APA profiles that signify the transitional phases between neoplastic cells and OPCs, underscoring the importance of APA in cellular identity and transformation in GBM. A significant finding was the disconnection between differential APA events and gene expression alterations, indicating that APA operates as an independent regulatory mechanism. We also highlighted the specific genes in neoplastic cells and OPCs that lose microRNA-binding sites due to APA, which are crucial for maintaining stem cell characteristics and DNA repair, respectively. The constructed networks of microRNA-transcription factor-target genes provide insights into the cellular mechanisms influencing cancer cell survival and therapeutic resistance. CONCLUSIONS This study elucidates the APA-driven regulatory framework within GBM, spotlighting its influence on cell state transitions and microRNA network dynamics. Our comprehensive analysis using single-cell RNA sequencing data to investigate the microRNA-binding sites altered by APA profiles offers a robust foundation for future research, presenting a novel approach to understanding and potentially targeting the complex molecular interplay in GBM.
Collapse
Affiliation(s)
- Mert Cihan
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Greta Schmauck
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | |
Collapse
|
7
|
Du L, Wang P, Qiu X, Li Z, Ma J, Chen P. Integrating machine learning with mendelian randomization for unveiling causal gene networks in glioblastoma multiforme. Discov Oncol 2025; 16:38. [PMID: 39804431 PMCID: PMC11730047 DOI: 10.1007/s12672-025-01792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity. METHODS This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM. Five publicly available gene expression datasets were analyzed to identify differentially expressed genes (DEGs) associated with GBM. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify GBM-related gene modules. Further, gene set enrichment and variation analyses were conducted to explore the biological pathways involved. The machine learning models were evaluated using Receiver Operating Characteristic (ROC) curves and confusion matrices to assess their predictive accuracy, with the best-performing model validated across external datasets. MR analysis was performed to establish causal relationships between genetically predicted gene expression levels and GBM outcomes. RESULTS The study identified 286 DEGs between GBM and adjacent normal tissues across five datasets. WGCNA highlighted the yellow module as the most relevant to GBM, containing key genes such as KLHL3, FOXO4, and MAP1A. Of the 113 machine learning models tested, Ridge regression achieved the highest area under the curve (AUC) of 0.92, demonstrating robust predictive accuracy. Validation using external datasets confirmed the model's reliability, with a classification accuracy of 89.5% in the training set and 85.3% in the validation sets. MR analysis provided strong evidence of a causal relationship between the expression levels of the identified genes and GBM risk. CONCLUSIONS This study demonstrates the power of combining machine learning and Mendelian Randomization to uncover novel genetic markers for GBM. The identified genes offer promising potential as biomarkers for GBM diagnosis and therapy, providing new avenues for personalized treatment strategies.
Collapse
Affiliation(s)
- Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
| | - Pan Wang
- Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Xiaoting Qiu
- Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Zhigang Li
- Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Jianlan Ma
- Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Pengfei Chen
- Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
8
|
Buchalska B, Kamińska K, Owe-Larsson M, Cudnoch-Jędrzejewska A. Cannabinoids in the treatment of glioblastoma. Pharmacol Rep 2024; 76:223-234. [PMID: 38457018 DOI: 10.1007/s43440-024-00580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. While the treatment of other neoplasms is increasingly more efficacious the median survival rate of GBM patients remains low and equals about 14 months. Due to this fact, there are intensive efforts to find drugs that would help combat GBM. Nowadays cannabinoids are becoming more and more important in the field of cancer and not only because of their properties of antiemetic drugs during chemotherapy. These compounds may have a direct cytotoxic effect on cancer cells. Studies indicate GBM has disturbances in the endocannabinoid system-changes in cannabinoid metabolism as well as in the cannabinoid receptor expression. The GBM cells show expression of cannabinoid receptors 1 and 2 (CB1R and CB2R), which mediate various actions of cannabinoids. Through these receptors, cannabinoids inhibit the proliferation and invasion of GBM cells, along with changing their morphology. Cannabinoids also induce an intrinsic pathway of apoptosis in the tumor. Hence the use of cannabinoids in the treatment of GBM may be beneficial to the patients. So far, studies focusing on using cannabinoids in GBM therapy are mainly preclinical and involve cell lines and mice. The results are promising and show cannabinoids inhibit GBM growth. Several clinical studies are also being carried out. The preliminary results show good tolerance of cannabinoids and prolonged survival after administration of these drugs. In this review, we describe the impact of cannabinoids on GBM and glioma cells in vitro and in animal studies. We also provide overview of clinical trials on using cannabinoids in the treatment of GBM.
Collapse
Affiliation(s)
- Barbara Buchalska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland
| | - Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland.
| | - Maja Owe-Larsson
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland
| |
Collapse
|
9
|
Hasan U, Chauhan M, Basu SM, R J, Giri J. Overcoming multidrug resistance by reversan and exterminating glioblastoma and glioblastoma stem cells by delivering drug-loaded nanostructure hybrid lipid capsules (nHLCs). Drug Deliv Transl Res 2024; 14:342-359. [PMID: 37587289 DOI: 10.1007/s13346-023-01401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Glioblastoma multiforme (GBM) is regarded as a highly aggressive brain cancer with a poor prognosis. There is an increase in the expression of P-glycoprotein (P-gp), responsible for multidrug resistance (MDR), making it a potential target for improving drug responses. Additionally, glioblastoma stem cells (GSCs) increase resistance to chemo- and radiotherapy and play a major role in cancer relapse. In this study, we targeted P-gp using a small molecule inhibitor, reversan (RV), to inhibit MDR that prolonged the retention of drugs in the cytosolic milieu. To eliminate GBM and GSCs, we have used two well-established anti-cancer drugs, regorafenib (RF) and curcumin (CMN). To improve the pharmacokinetics and decrease systemic delivery of drugs, we developed nanostructure hybrid lipid capsules (nHLCs), where hydrophobic drugs can be loaded in the core, and their physicochemical properties were determined by dynamic light scattering (DLS) and cryo-scanning electron microscopy (SEM). Inhibition of MDR by RV has also shown enhanced retention of nHLC in GBM cells. Co-delivery of drug-loaded nHLCs, pre-treated with RV, exhibited superior cytotoxicity in both GBM and GSCs than their individual doses and effectively reduced the size and stemness of tumor spheres and accelerated the rate of apoptosis, suggesting a promising treatment for glioblastoma.
Collapse
Affiliation(s)
- Uzma Hasan
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, India
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jayakumar R
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
10
|
Shaikh MAJ, Altamimi ASA, Afzal M, Gupta G, Singla N, Gilhotra R, Almalki WH, Kazmi I, Alzarea SI, Prasher P, Singh SK, Dua K. Unraveling the impact of miR-21 on apoptosis regulation in glioblastoma. Pathol Res Pract 2024; 254:155121. [PMID: 38262269 DOI: 10.1016/j.prp.2024.155121] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Glioblastoma is a prevalent form of carcinoma that exhibits a greater incidence rate across diverse demographics globally. Despite extensive global efforts, GBM continues to be a highly lethal disease that is characterized by a grim prognosis. There is a wealth of evidence suggesting that the pathophysiology of GBM is associated with the dysregulation of numerous cellular and molecular processes. The etiology of GBM may involve various cellular and molecular pathways, including EGFR, PDCD4, NF-κB, MAPK, matrix metalloproteinases, STAT, and Akt. MicroRNAs, short non-coding RNA molecules, regulate gene expression and mRNA translation after transcription but before translation to exert control over a wide range of biological functions. Extensive research has consistently demonstrated the upregulation of miRNA-21 in glioma, indicating its involvement in diverse biological pathways that facilitate tumor cell survival. By explaining the intricate interplay between miR-21 and the regulation of apoptosis in GBM, this review has the potential to significantly enhance our comprehension of the illness and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India.
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
11
|
Li Z, Jin Y, Que T, Zhang XA, Yi G, Zheng H, Yuan X, Wang X, Xu H, Nan J, Chen C, Wu Y, Huang G. Identification of Necroptosis-related Molecular Subtypes and Construction of Necroptosis-related Gene Signature for Glioblastoma Multiforme. Curr Med Chem 2024; 31:5417-5431. [PMID: 37539935 DOI: 10.2174/0929867331666230804104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Necroptosis is a highly regulated and genetically controlled process, and therefore, attention has been paid to the exact effects of this disorder on a variety of diseases, including cancer. An in-depth understanding of the key regulatory factors and molecular events that trigger necroptosis can not only identify patients at risk of cancer development but can also help to develop new treatment strategies. AIMS This study aimed to increase understanding of the complex role of necroptosis in glioblastoma multiforme (GBM) and provide a new perspective and reference for accurate prediction of clinical outcomes and gene-targeted therapy in patients with GBM. The objective of this study was to analyze the gene expression profile of necroptosis regulatory factors in glioblastoma multiforme (GBM) and establish a necroptosis regulatory factor-based GBM classification and prognostic gene signature to recognize the multifaceted impact of necroptosis on GBM. METHODS The necroptosis score of the glioblastoma multiforme (GBM) sample in TCGA was calculated by ssGSEA, and the correlation between each gene and the necroptosis score was calculated. Based on necroptosis score-related genes, unsupervised consensus clustering was employed to classify patients. The prognosis, tumor microenvironment (TME), genomic changes, biological signal pathways and gene expression differences among clusters were analyzed. The gene signature of GBM was constructed by Cox and LASSO regression analysis of differentially expressed genes (DEGs). RESULT Based on 34 necroptosis score-related genes, GBM was divided into two clusters with different overall survival (OS) and TME. A necroptosis-related gene signature (NRGS) containing 8 genes was developed, which could stratify the risk of GBM in both the training set and verification set and had good prognostic value. NRGS and age were both independent prognostic indicators of GBM, and a nomogram developed by the integration of both of them showed a better predictive effect than traditional clinical features. CONCLUSION In this study, patients from public data sets were divided into two clusters and the unique TME and molecular characteristics of each cluster were described. Furthermore, an NRGS was constructed to effectively and independently predict the survival outcome of GBM, which provides some insights for the implementation of personalized precision medicine in clinical practice.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yinghui Jin
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tianshi Que
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xi-An Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haojie Zheng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xi Yuan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haiyan Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Nan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chao Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuankui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
12
|
Gabashvili AN, Chmelyuk NS, Oda VV, Leonova MK, Sarkisova VA, Lazareva PA, Semkina AS, Belyakov NA, Nizamov TR, Nikitin PI. Magnetic and Fluorescent Dual-Labeled Genetically Encoded Targeted Nanoparticles for Malignant Glioma Cell Tracking and Drug Delivery. Pharmaceutics 2023; 15:2422. [PMID: 37896182 PMCID: PMC10609955 DOI: 10.3390/pharmaceutics15102422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Human glioblastoma multiforme (GBM) is a primary malignant brain tumor, a radically incurable disease characterized by rapid growth resistance to classical therapies, with a median patient survival of about 15 months. For decades, a plethora of approaches have been developed to make GBM therapy more precise and improve the diagnosis of this pathology. Targeted delivery mediated by the use of various molecules (monoclonal antibodies, ligands to overexpressed tumor receptors) is one of the promising methods to achieve this goal. Here we present a novel genetically encoded nanoscale dual-labeled system based on Quasibacillus thermotolerans (Qt) encapsulins exploiting biologically inspired designs with iron-containing nanoparticles as a cargo, conjugated with human fluorescent labeled transferrin (Tf) acting as a vector. It is known that the expression of transferrin receptors (TfR) in glioma cells is significantly higher compared to non-tumor cells, which enables the targeting of the resulting nanocarrier. The selectivity of binding of the obtained nanosystem to glioma cells was studied by qualitative and quantitative assessment of the accumulation of intracellular iron, as well as by magnetic particle quantification method and laser scanning confocal microscopy. Used approaches unambiguously demonstrated that transferrin-conjugated encapsulins were captured by glioma cells much more efficiently than by benign cells. The resulting bioinspired nanoplatform can be supplemented with a chemotherapeutic drug or genotherapeutic agent and used for targeted delivery of a therapeutic agent to malignant glioma cells. Additionally, the observed cell-assisted biosynthesis of magnetic nanoparticles could be an attractive way to achieve a narrow size distribution of particles for various applications.
Collapse
Affiliation(s)
- Anna N. Gabashvili
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.N.G.)
| | - Nelly S. Chmelyuk
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISIS”, Leninskiy Prospekt 4, 119049 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia; (P.A.L.)
| | - Vera V. Oda
- MILLAB Group Ltd., 100/2 Dmitrovskoe Highway, 127247 Moscow, Russia
| | - Maria K. Leonova
- Department of Physical Chemistry, National University of Science and Technology “MISIS”, Leninskiy Prospekt 4, 119049 Moscow, Russia
| | - Viktoria A. Sarkisova
- Biology Faculty, Lomonosov Moscow State University, 1 Leninskiy Gory, 119234 Moscow, Russia
- Cell Proliferation Laboratory, Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Street, 119991 Moscow, Russia
| | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia; (P.A.L.)
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia; (P.A.L.)
- Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinskiy Lane, 119991 Moscow, Russia
| | - Nikolai A. Belyakov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.N.G.)
| | - Timur R. Nizamov
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISIS”, Leninskiy Prospekt 4, 119049 Moscow, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia; (A.N.G.)
| |
Collapse
|
13
|
Cueto-Ureña C, Ramírez-Expósito MJ, Mayas MD, Carrera-González MP, Godoy-Hurtado A, Martínez-Martos JM. Glutathione Peroxidase gpx1 to gpx8 Genes Expression in Experimental Brain Tumors Reveals Gender-Dependent Patterns. Genes (Basel) 2023; 14:1674. [PMID: 37761814 PMCID: PMC10530768 DOI: 10.3390/genes14091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Extensive research efforts in the field of brain tumor studies have led to the reclassification of tumors by the World Health Organization (WHO) and the identification of various molecular subtypes, aimed at enhancing diagnosis and treatment strategies. However, the quest for biomarkers that can provide a deeper understanding of tumor development mechanisms, particularly in the case of gliomas, remains imperative due to their persistently incurable nature. Oxidative stress has been widely recognized as a key mechanism contributing to the formation and progression of malignant tumors, with imbalances in antioxidant defense systems being one of the underlying causes for the excess production of reactive oxygen species (ROS) implicated in tumor initiation. In this study, we investigated the gene expression patterns of the eight known isoforms of glutathione peroxidase (GPx) in brain tissue obtained from male and female control rats, as well as rats with transplacental ethyl nitrosourea (ENU)-induced brain tumors. Employing the delta-delta Ct method for RT-PCR, we observed minimal expression levels of gpx2, gpx5, gpx6, and gpx7 in the brain tissue from the healthy control animals, while gpx3 and gpx8 exhibited moderate expression levels. Notably, gpx1 and gpx4 displayed the highest expression levels. Gender differences were not observed in the expression profiles of these isoforms in the control animals. Conversely, the tumor tissue exhibited elevated relative expression levels in all isoforms, except for gpx4, which remained unchanged, and gpx5, which exhibited alterations solely in female animals. Moreover, except for gpx1, which displayed no gender differences, the relative expression values of gpx2, gpx3, gpx6, gpx7, and gpx8 were significantly higher in the male animals compared to their female counterparts. Hence, the analysis of glutathione peroxidase isoforms may serve as a valuable approach for discerning the behavior of brain tumors in clinical settings.
Collapse
Affiliation(s)
- Cristina Cueto-Ureña
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.D.M.); (M.P.C.-G.)
| | - María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.D.M.); (M.P.C.-G.)
| | - María Dolores Mayas
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.D.M.); (M.P.C.-G.)
| | - María Pilar Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.D.M.); (M.P.C.-G.)
| | | | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.D.M.); (M.P.C.-G.)
| |
Collapse
|
14
|
Di Filippo LD, de Carvalho SG, Duarte JL, Luiz MT, Paes Dutra JA, de Paula GA, Chorilli M, Conde J. A receptor-mediated landscape of druggable and targeted nanomaterials for gliomas. Mater Today Bio 2023; 20:100671. [PMID: 37273792 PMCID: PMC10238751 DOI: 10.1016/j.mtbio.2023.100671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are the most common type of brain cancer, and among them, glioblastoma multiforme (GBM) is the most prevalent (about 60% of cases) and the most aggressive type of primary brain tumor. The treatment of GBM is a major challenge due to the pathophysiological characteristics of the disease, such as the presence of the blood-brain barrier (BBB), which prevents and regulates the passage of substances from the bloodstream to the brain parenchyma, making many of the chemotherapeutics currently available not able to reach the brain in therapeutic concentrations, accumulating in non-target organs, and causing considerable adverse effects for the patient. In this scenario, nanocarriers emerge as tools capable of improving the brain bioavailability of chemotherapeutics, in addition to improving their biodistribution and enhancing their uptake in GBM cells. This is possible due to its nanometric size and surface modification strategies, which can actively target nanocarriers to elements overexpressed by GBM cells (such as transmembrane receptors) related to aggressive development, drug resistance, and poor prognosis. In this review, an overview of the most frequently overexpressed receptors in GBM cells and possible approaches to chemotherapeutic delivery and active targeting using nanocarriers will be presented.
Collapse
Affiliation(s)
| | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Geanne Aparecida de Paula
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
López-Goerne T, Padilla-Godínez FJ. Catalytic Nanomedicine as a Therapeutic Approach to Brain Tumors: Main Hypotheses for Mechanisms of Action. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091541. [PMID: 37177086 PMCID: PMC10180296 DOI: 10.3390/nano13091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumor of the brain. Although there are currently a wide variety of therapeutic approaches focused on tumor elimination, such as radiotherapy, chemotherapy, and tumor field therapy, among others, the main approach involves surgery to remove the GBM. However, since tumor growth occurs in normal brain tissue, complete removal is impossible, and patients end up requiring additional treatments after surgery. In this line, Catalytic Nanomedicine has achieved important advances in developing bionanocatalysts, brain-tissue-biocompatible catalytic nanostructures capable of destabilizing the genetic material of malignant cells, causing their apoptosis. Previous work has demonstrated the efficacy of bionanocatalysts and their selectivity for cancer cells without affecting surrounding healthy tissue cells. The present review provides a detailed description of these nanoparticles and their potential mechanisms of action as antineoplastic agents, covering the most recent research and hypotheses from their incorporation into the tumor bed, internalization via endocytosis, specific chemotaxis by mitochondrial and nuclear genetic material, and activation of programmed cell death. In addition, a case report of a patient with GBM treated with the bionanocatalysts following tumor removal surgery is described. Finally, the gaps in knowledge that must be bridged before the clinical translation of these compounds with such a promising future are detailed.
Collapse
Affiliation(s)
- Tessy López-Goerne
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| | - Francisco J Padilla-Godínez
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
16
|
Wang C, Li Y, Gu L, Chen R, Zhu H, Zhang X, Zhang Y, Feng S, Qiu S, Jian Z, Xiong X. Gene Targets of CAR-T Cell Therapy for Glioblastoma. Cancers (Basel) 2023; 15:cancers15082351. [PMID: 37190280 DOI: 10.3390/cancers15082351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with a poor prognosis following conventional therapeutic interventions. Moreover, the blood-brain barrier (BBB) severely impedes the permeation of chemotherapy drugs, thereby reducing their efficacy. Consequently, it is essential to develop novel GBM treatment methods. A novel kind of pericyte immunotherapy known as chimeric antigen receptor T (CAR-T) cell treatment uses CAR-T cells to target and destroy tumor cells without the aid of the antigen with great specificity and in a manner that is not major histocompatibility complex (MHC)-restricted. It has emerged as one of the most promising therapy techniques with positive clinical outcomes in hematological cancers, particularly leukemia. Due to its efficacy in hematologic cancers, CAR-T cell therapy could potentially treat solid tumors, including GBM. On the other hand, CAR-T cell treatment has not been as therapeutically effective in treating GBM as it has in treating other hematologic malignancies. CAR-T cell treatments for GBM have several challenges. This paper reviewed the use of CAR-T cell therapy in hematologic tumors and the selection of targets, difficulties, and challenges in GBM.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Qiu
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou 313003, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 310009, China
| |
Collapse
|
17
|
Pezzotta A, Brioschi L, Carbone S, Mazzoleni B, Bontempi V, Monastra F, Mauri L, Marozzi A, Mione M, Pistocchi A, Viani P. Combined Inhibition of Hedgehog and HDAC6: In Vitro and In Vivo Studies Reveal a New Role for Lysosomal Stress in Reducing Glioblastoma Cell Viability. Int J Mol Sci 2023; 24:ijms24065771. [PMID: 36982845 PMCID: PMC10051748 DOI: 10.3390/ijms24065771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant brain tumor in adults. The invasiveness and the rapid progression that characterize GBM negatively impact patients’ survival. Temozolomide (TMZ) is currently considered the first-choice chemotherapeutic agent. Unfortunately, over 50% of patients with GBM do not respond to TMZ treatment, and the mutation-prone nature of GBM enables the development of resistance mechanisms. Therefore, efforts have been devoted to the dissection of aberrant pathways involved in GBM insurgence and resistance in order to identify new therapeutic targets. Among them, sphingolipid signaling, Hedgehog (Hh) pathway, and the histone deacetylase 6 (HDAC6) activity are frequently dysregulated and may represent key targets to counteract GBM progression. Given the positive correlation between Hh/HDAC6/sphingolipid metabolism in GBM, we decided to perform a dual pharmacological inhibition of Hh and HDAC6 through cyclopamine and tubastatin A, respectively, in a human GMB cell line and zebrafish embryos. The combined administration of these compounds elicited a more significant reduction of GMB cell viability than did single treatments in vitro and in cells orthotopically transplanted in the zebrafish hindbrain ventricle. We demonstrated, for the first time, that the inhibition of these pathways induces lysosomal stress which results in an impaired fusion of lysosomes with autophagosomes and a block of sphingolipid degradation in GBM cell lines. This condition, which we also recapitulated in zebrafish embryos, suggests an impairment of lysosome-dependent processes involving autophagy and sphingolipid homeostasis and might be instrumental in the reduction of GBM progression.
Collapse
Affiliation(s)
- Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Loredana Brioschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Sabrina Carbone
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Beatrice Mazzoleni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - Vittorio Bontempi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Monastra
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Anna Marozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Marina Mione
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Correspondence: (A.P.); (P.V.)
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Correspondence: (A.P.); (P.V.)
| |
Collapse
|
18
|
Liao Y, Luo Z, Lin Y, Chen H, Chen T, Xu L, Orgurek S, Berry K, Dzieciatkowska M, Reisz JA, D’Alessandro A, Zhou W, Lu QR. PRMT3 drives glioblastoma progression by enhancing HIF1A and glycolytic metabolism. Cell Death Dis 2022; 13:943. [PMID: 36351894 PMCID: PMC9646854 DOI: 10.1038/s41419-022-05389-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor, but the mechanisms underlying tumor growth and progression remain unclear. The protein arginine methyltransferases (PRMTs) regulate a variety of biological processes, however, their roles in GBM growth and progression are not fully understood. In this study, our functional analysis of gene expression networks revealed that among the PRMT family expression of PRMT3 was most significantly enriched in both GBM and low-grade gliomas. Higher PRMT3 expression predicted poorer overall survival rate in patients with gliomas. Knockdown of PRMT3 markedly reduced the proliferation and migration of GBM cell lines and patient-derived glioblastoma stem cells (GSC) in cell culture, while its over-expression increased the proliferative capacity of GSC cells by promoting cell cycle progression. Consistently, stable PRMT3 knockdown strongly inhibited tumor growth in xenograft mouse models, along with a significant decrease in cell proliferation as well as an increase in apoptosis. We further found that PRMT3 reprogrammed metabolic pathways to promote GSC growth via increasing glycolysis and its critical transcriptional regulator HIF1α. In addition, pharmacological inhibition of PRMT3 with a PRMT3-specific inhibitor SGC707 impaired the growth of GBM cells. Thus, our study demonstrates that PRMT3 promotes GBM progression by enhancing HIF1A-mediated glycolysis and metabolic rewiring, presenting a point of metabolic vulnerability for therapeutic targeting in malignant gliomas.
Collapse
Affiliation(s)
- Yunfei Liao
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China ,grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Zaili Luo
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Yifeng Lin
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huiyao Chen
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tong Chen
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lingli Xu
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Sean Orgurek
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Kalen Berry
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Monika Dzieciatkowska
- grid.430503.10000 0001 0703 675XUniversity of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Julie A. Reisz
- grid.430503.10000 0001 0703 675XUniversity of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Angelo D’Alessandro
- grid.430503.10000 0001 0703 675XUniversity of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Wenhao Zhou
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Q. Richard Lu
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| |
Collapse
|
19
|
Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A, Uddin S. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol 2022; 86:107-121. [PMID: 35931301 DOI: 10.1016/j.semcancer.2022.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/27/2023]
Abstract
Since the introduction of the cancer stem cell (CSC) paradigm, significant advances have been made in understanding the functional and biological plasticity of these elusive components in malignancies. Endowed with self-renewing abilities and multilineage differentiation potential, CSCs have emerged as cellular drivers of virtually all facets of tumor biology, including metastasis, tumor recurrence/relapse, and drug resistance. The functional and biological characteristics of CSCs, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation are regulated by an array of extracellular factors, signaling pathways, and pluripotent transcriptional factors. Besides the well-characterized regulatory role of transcription factors OCT4, SOX2, NANOG, KLF4, and MYC in CSCs, evidence for the central role of Forkhead box transcription factor FOXM1 in the establishment, maintenance, and functions of CSCs is accumulating. Conventionally identified as a master regulator of the cell cycle, a comprehensive understanding of this molecule has revealed its multifarious oncogenic potential and uncovered its role in angiogenesis, invasion, migration, self-renewal, and drug resistance. This review compiles the large body of literature that has accumulated in recent years that provides evidence for the mechanisms by which FOXM1 expression promotes stemness in glioblastoma, breast, colon, ovarian, lung, hepatic, and pancreatic carcinomas. We have also compiled the data showing the association of stem cell mediators with FOXM1 using TCGA mRNA expression data. Further, the prognostic importance of FOXM1 and other stem cell markers is presented. The delineation of FOXM1-mediated regulation of CSCs can aid in the development of molecularly targeted pharmacological approaches directed at the selective eradication of CSCs in several human malignancies.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
20
|
Awuah WA, Toufik AR, Yarlagadda R, Mikhailova T, Mehta A, Huang H, Kundu M, Lopes L, Benson S, Mykola L, Vladyslav S, Alexiou A, Alghamdi BS, Hashem AM, Md Ashraf G. Exploring the role of Nrf2 signaling in glioblastoma multiforme. Discov Oncol 2022; 13:94. [PMID: 36169772 PMCID: PMC9519816 DOI: 10.1007/s12672-022-00556-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive glial cell tumors in adults. Although current treatment options for GBM offer some therapeutic benefit, median survival remains poor and does not generally exceed 14 months. Several genes, such as isocitrate dehydrogenase (IDH) enzyme and O6-methylguanine-DNA methyltransferase (MGMT), have been implicated in pathogenesis of the disease. Treatment is often adapted based on the presence of IDH mutations and MGMT promoter methylation status. Recent GBM cell line studies have associated Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) expression with high-grade tumors. Increased Nrf2 expression is often found in tumors with IDH-1 mutations. Nrf2 is an important transcription factor with anti-apoptotic, antioxidative, anti-inflammatory, and proliferative properties due to its complex interactions with multiple regulatory pathways. In addition, evidence suggests that Nrf2 promotes GBM cell survival in hypoxic environment,by up-regulating hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Downregulation of Nrf2 has been shown to improve GBM sensitivity to chemotherapy drugs such as Temozolomide. Thus, Nrf2 could be a key regulator of GBM pathways and potential therapeutic target. Further research efforts exploring an interplay between Nrf2 and major molecular signaling mechanisms could offer novel GBM drug candidates with a potential to significantly improve patients prognosis.
Collapse
Affiliation(s)
| | | | - Rohan Yarlagadda
- Rowan University School of Osteopathic Medicine, Stratford, NJ USA
| | | | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, 4032 Hungary
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Leilani Lopes
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR USA
| | | | | | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
21
|
Pavlova G, Kolesnikova V, Samoylenkova N, Drozd S, Revishchin A, Shamadykova D, Usachev DY, Kopylov A. A Combined Effect of G-Quadruplex and Neuro-Inducers as an Alternative Approach to Human Glioblastoma Therapy. Front Oncol 2022; 12:880740. [PMID: 35586496 PMCID: PMC9109612 DOI: 10.3389/fonc.2022.880740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer cell reprogramming based on treatment with G-quadruplex, having antiproliferative power, along with small molecules able to develop iPSCs into neurons, could create a novel approach to diminish the chance of glioblastoma recurrence and circumvent tumor resistance to conventional therapy. In this research, we have tested several combinations of factors to affect both total cell cultures, derived from tumor tissue of patients after surgical resection and two subfractions of this cell culture after dividing them into CD133-enriched and CD133-depleted populations (assuming CD133 to be a marker of glioblastoma stem-like cells). CD133+ and CD133− cells exhibit different responses to the same combinations of factors; CD133+ cells have stem-like properties and are more resistant. Therefore, the ability to affect CD133+ cells provides a possibility to circumvent resistance to conventional therapy and to build a promising strategy for translation to improve the treatment of patients with glioblastoma.
Collapse
Affiliation(s)
- Galina Pavlova
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia.,Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Genetics, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Varvara Kolesnikova
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| | - Nadezhda Samoylenkova
- Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey Drozd
- Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Revishchin
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| | - Dzhirgala Shamadykova
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| | - Dmitry Y Usachev
- Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Ratti S, Marvi MV, Mongiorgi S, Obeng EO, Rusciano I, Ramazzotti G, Morandi L, Asioli S, Zoli M, Mazzatenta D, Suh PG, Manzoli L, Cocco L. Impact of phospholipase C β1 in glioblastoma: a study on the main mechanisms of tumor aggressiveness. Cell Mol Life Sci 2022; 79:195. [PMID: 35303162 PMCID: PMC8933313 DOI: 10.1007/s00018-022-04198-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Glioblastoma represents the most lethal brain tumor in adults. Several studies have shown the key role of phospholipase C β1 (PLCβ1) in the regulation of many mechanisms within the central nervous system suggesting PLCβ1 as a novel signature gene in the molecular classification of high-grade gliomas. This study aims to determine the pathological impact of PLCβ1 in glioblastoma, confirming that PLCβ1 gene expression correlates with glioma's grade, and it is lower in 50 glioblastoma samples compared to 20 healthy individuals. PLCβ1 silencing in cell lines and primary astrocytes, leads to increased cell migration and invasion, with the increment of mesenchymal transcription factors and markers, as Slug and N-Cadherin and metalloproteinases. Cell proliferation, through increased Ki-67 expression, and the main survival pathways, as β-catenin, ERK1/2 and Stat3 pathways, are also affected by PLCβ1 silencing. These data suggest a potential role of PLCβ1 in maintaining a normal or less aggressive glioma phenotype.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Eric Owusu Obeng
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Luca Morandi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL Di Bologna, 40124, Bologna, Italy.,Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy.,Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy.,Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy.
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
23
|
Effects of Vitexin, a Natural Flavonoid Glycoside, on the Proliferation, Invasion, and Apoptosis of Human U251 Glioblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3129155. [PMID: 35281458 PMCID: PMC8906934 DOI: 10.1155/2022/3129155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma is a highly aggressive brain tumor characterized by high recurrence and poor prognosis. Vitexin has shown activities against esophageal, liver, lung, colorectal, and ovarian cancers; however, there is little knowledge on the activity of vitexin against glioblastoma. This study was therefore designed with aims to examine the effects of vitexin on proliferation, invasion, and apoptosis of human U251 glioblastoma cells and explore the underlying molecular mechanisms using mRNA sequencing and molecular docking. Vitexin was found to inhibit cell proliferation, colony formation, and invasion and promote apoptosis in U251 cells. mRNA sequencing identified 499 differentially expressed genes in vitexin-treated U251 cells relative to controls, including 154 upregulated genes and 345 downregulated genes. Gene ontology (GO) term enrichment analysis revealed that the upregulated genes were most significantly enriched in intrinsic apoptotic signaling pathway and the downregulated genes were most significantly enriched in positive regulation of cell development and positive regulation of locomotion relating to biological processes, endoplasmic reticulum lumen and side of membrane relating to cellular components, and receptor ligand activity and receptor regulator activity relating to molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the upregulated genes were involved in the pathways of transcriptional misregulation in cancer and the downregulated genes were involved in FoxO and JAK/STAT signaling pathways. Western blotting assay revealed that vitexin treatment resulted in reduced p-JAK1, p-JAK3, and p-STAT3 protein expression in U251 cells relative to untreated controls, and molecular docking predicted that vitexin had docking scores of –8.8, –10.8, and –10.5 kJ/mol with STAT3, JAK1, and JAK2, respectively. The results of the present study demonstrate that vitexin inhibits the proliferation and invasion and induces the apoptosis of glioblastoma U251 cells through suppressing the JAK/STAT3 signaling pathway, and vitexin may be a promising potential agent for the chemotherapy of glioblastoma.
Collapse
|
24
|
Moslah W, Aissaoui-Zid D, Aboudou S, Abdelkafi-Koubaa Z, Potier-Cartereau M, Lemettre A, ELBini-Dhouib I, Marrakchi N, Gigmes D, Vandier C, Luis J, Mabrouk K, Srairi-Abid N. Strengthening Anti-Glioblastoma Effect by Multi-Branched Dendrimers Design of a Scorpion Venom Tetrapeptide. Molecules 2022; 27:molecules27030806. [PMID: 35164071 PMCID: PMC8838298 DOI: 10.3390/molecules27030806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is the most aggressive and invasive form of central nervous system tumors due to the complexity of the intracellular mechanisms and molecular alterations involved in its progression. Unfortunately, current therapies are unable to stop its neoplastic development. In this context, we previously identified and characterized AaTs-1, a tetrapeptide (IWKS) from Androctonus autralis scorpion venom, which displayed an anti-proliferative effect against U87 cells with an IC50 value of 0.57 mM. This peptide affects the MAPK pathway, enhancing the expression of p53 and altering the cytosolic calcium concentration balance, likely via FPRL-1 receptor modulation. In this work, we designed and synthesized new dendrimers multi-branched molecules based on the sequence of AaTs-1 and showed that the di-branched (AaTs-1-2B), tetra-branched (AaTs-1-4B) and octo-branched (AaTs-1-8B) dendrimers displayed 10- to 25-fold higher effects on the proliferation of U87 cells than AaTs-1. We also found that the effects of the newly designed molecules are mediated by the enhancement of the ERK1/2 and AKT phosphorylated forms and by the increase in p53 expression. Unlike AaTs-1, AaTs-1-8B and especially AaTs-1-4B affected the migration of the U87 cells. Thus, the multi-branched peptide synthesis strategy allowed us to make molecules more active than the linear peptide against the proliferation of U87 glioblastoma cells.
Collapse
Affiliation(s)
- Wassim Moslah
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
- Institut de Neurophysiopathologie (INP), UMR 7051-CNRS, Faculté de Médecine, Aix-Marseille Université, 27 bd Jean Moulin, 13385 Marseille, France;
- Correspondence: (W.M.); (N.S.-A.)
| | - Dorra Aissaoui-Zid
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Soioulata Aboudou
- Institut de Chimie Radicalaire (ICR), Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France; (S.A.); (D.G.); (K.M.)
| | - Zaineb Abdelkafi-Koubaa
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Marie Potier-Cartereau
- N2C UMR 1069, INSERM, Faculté des Sciences et Techniques, Université de Tours, 37032 Tours, France; (M.P.-C.); (A.L.); (C.V.)
| | - Aude Lemettre
- N2C UMR 1069, INSERM, Faculté des Sciences et Techniques, Université de Tours, 37032 Tours, France; (M.P.-C.); (A.L.); (C.V.)
| | - Ines ELBini-Dhouib
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Naziha Marrakchi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Didier Gigmes
- Institut de Chimie Radicalaire (ICR), Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France; (S.A.); (D.G.); (K.M.)
| | - Christophe Vandier
- N2C UMR 1069, INSERM, Faculté des Sciences et Techniques, Université de Tours, 37032 Tours, France; (M.P.-C.); (A.L.); (C.V.)
| | - José Luis
- Institut de Neurophysiopathologie (INP), UMR 7051-CNRS, Faculté de Médecine, Aix-Marseille Université, 27 bd Jean Moulin, 13385 Marseille, France;
| | - Kamel Mabrouk
- Institut de Chimie Radicalaire (ICR), Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France; (S.A.); (D.G.); (K.M.)
| | - Najet Srairi-Abid
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
- Correspondence: (W.M.); (N.S.-A.)
| |
Collapse
|
25
|
Marvi MV, Mongiorgi S, Ramazzotti G, Follo MY, Billi AM, Zoli M, Mazzatenta D, Morandi L, Asioli S, Papa V, McCubrey JA, Suh PG, Manzoli L, Cocco L, Ratti S. Role of PLCγ1 in the modulation of cell migration and cell invasion in glioblastoma. Adv Biol Regul 2022; 83:100838. [PMID: 34819252 DOI: 10.1016/j.jbior.2021.100838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Phosphoinositide-specific phospholipases C (PLCs) are a class of enzymes involved in several cell activities, such as cell cycle regulation, proliferation, differentiation and cytoskeletal dynamics. Among these enzymes, PLCγ1 is one of the most expressed PLCs in the brain, contributing to a complex network in the developing nervous system. Several studies have shown that PLCγ1 signaling imbalance is linked to several brain disorders, including glioblastoma, the most aggressive brain tumor in adults. Indeed, it has been demonstrated a link between PLCγ1 inhibition and the arrest of glioma cell motility of fetal rat brain aggregates and the impairment of cell invasion abilities following its down-regulation. This study aims to determine the pathological influence of PLCγ1 in glioblastoma, through a translational study which combines in silico data, data from glioblastoma patients' samples and data on engineered cell lines. We found out that PLCγ1 gene expression correlates with the pathological grade of gliomas, and it is higher in fifty patients' glioblastoma tissue samples compared to twenty healthy controls. Moreover, it was demonstrated that PLCγ1 silencing in U87-MG leads to a reduction in cell migration and invasion abilities. The opposite trend was observed following PLCγ1 overexpression, suggesting an interesting possible involvement of PLCγ1 in gliomas' aggressiveness.
Collapse
Affiliation(s)
- Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Veronica Papa
- Department of Motor Sciences and Wellness (DiSMeB), Università Degli Studi di Napoli "Parthenope,", 80133, Napoli, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, South Korea; School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
26
|
Martins EP, Gonçalves CS, Pojo M, Carvalho R, Ribeiro AS, Miranda‐Gonçalves V, Taipa R, Pardal F, Pinto AA, Custódia C, Faria CC, Baltazar F, Sousa N, Paredes J, Costa BM. Cadherin‐3
is a novel oncogenic biomarker with prognostic value in glioblastoma. Mol Oncol 2021; 16:2611-2631. [PMID: 34919784 PMCID: PMC9297769 DOI: 10.1002/1878-0261.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. The prognosis of patients is very poor, with a median overall survival of ~ 15 months after diagnosis. Cadherin‐3 (also known as P‐cadherin), a cell–cell adhesion molecule encoded by the CDH3 gene, is deregulated in several cancer types, but its relevance in GBM is unknown. In this study, we investigated the functional roles, the associated molecular signatures, and the prognostic value of CDH3/P‐cadherin in this highly malignant brain tumor. CDH3/P‐cadherin mRNA and protein levels were evaluated in human glioma samples. Knockdown and overexpression models of P‐cadherin in GBM were used to evaluate its functional role in vitro and in vivo. CDH3‐associated gene signatures were identified by enrichment analyses and correlations. The impact of CDH3 in the survival of GBM patients was assessed in independent cohorts using both univariable and multivariable models. We found that P‐cadherin protein is expressed in a subset of gliomas, with an increased percentage of positive samples in grade IV tumors. Concordantly, CDH3 mRNA levels in glioma samples from The Cancer Genome Atlas (TCGA) database are increased in high‐grade gliomas. P‐cadherin displays oncogenic functions in multiple knockdown and overexpression GBM cell models by affecting cell viability, cell cycle, cell invasion, migration, and neurosphere formation capacity. Genes that were positively correlated with CDH3 are enriched for oncogenic pathways commonly activated in GBM. In vivo, GBM cells expressing high levels of P‐cadherin generate larger subcutaneous tumors and cause shorter survival of mice in an orthotopic intracranial model. Concomitantly, high CDH3 expression is predictive of shorter overall survival of GBM patients in independent cohorts. Together, our results show that CDH3/P‐cadherin expression is associated with aggressiveness features of GBM and poor patient prognosis, suggesting that it may be a novel therapeutic target for this deadly brain tumor.
Collapse
Affiliation(s)
- Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Marta Pojo
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rita Carvalho
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
| | - Ana S. Ribeiro
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
| | - Vera Miranda‐Gonçalves
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Ricardo Taipa
- Neuropathology Unit Department of Neurosciences Centro Hospitalar do Porto Porto Portugal
| | - Fernando Pardal
- Department of Pathology, Hospital de Braga 4710‐243 Braga Portugal
| | - Afonso A. Pinto
- Department of Neurosurgery, Hospital de Braga 4710‐243 Braga Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
- Neurosurgery Department Hospital de Santa Maria Centro Hospitalar Lisboa Norte (CHLN) Lisbon Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joana Paredes
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
- Faculty of Medicine University of Porto Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
27
|
Type V collagen alpha 1 chain promotes the malignancy of glioblastoma through PPRC1-ESM1 axis activation and extracellular matrix remodeling. Cell Death Discov 2021; 7:313. [PMID: 34702798 PMCID: PMC8548600 DOI: 10.1038/s41420-021-00661-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a fatal cancer. Existing therapies do not have significant efficacy for GBM patients. Previous studies have shown that the collagen family is involved in the regulation of the extracellular environment of cancer cells, and these conditions could become an important factor for effective treatment. Therefore, we screened various collagen types and observed that the type V collagen α1 chain (COL5A1) gene plays a pivotal role in GBM. We further examined whether the overexpression of COL5A1 is common in mesenchymal subtypes and is related to the survival rate of GBM patients through several in silico cohorts. In addition, our cohort also showed a consistent trend in COL5A1 protein levels. Most importantly, we validated the cell mobility, metastatic ability and actin polymerization status caused by COL5A1 with two-way models. Based on these results, we established a transcriptomics dataset based on COL5A1. Moreover, PPRC1, GK and ESM1 were predicted by ingenuity pathway analysis (IPA) to be transcription factors or to participate downstream. We investigated the involvement of COL5A1 in extracellular remodeling and the regulation of actin filaments in the metastasis of GBM. Our results indicate that the COL5A1-PPRC1-ESM1 axis may represent a novel therapeutic target in GBM.
Collapse
|
28
|
Liu H, Qin S, Liu C, Jiang L, Li C, Yang J, Zhang S, Yan Z, Liu X, Yang J, Sun X. m 6A reader IGF2BP2-stabilized CASC9 accelerates glioblastoma aerobic glycolysis by enhancing HK2 mRNA stability. Cell Death Discov 2021; 7:292. [PMID: 34645788 PMCID: PMC8514511 DOI: 10.1038/s41420-021-00674-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/14/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) has been identified to exert critical roles in human cancer; however, the regulation of m6A modification on glioblastoma multiforme (GBM) and long non-coding RNA (lncRNA) CASC9 (cancer susceptibility 9) is still unclear. Firstly, MeRIP-Seq revealed the m6A profile in the GBM. Moreover, the m6A-related lncRNA CASC9 expression was significantly elevated in the GBM tissue and its ectopic high expression was associated with poor survival, acting as an independent prognostic factor for GBM patients. Functionally, the aerobic glycolysis was promoted in the CASC9 overexpression transfection, which was inhibited in CASC9 knockdown in GBM cells. Mechanistically, m6A reader IGF2BP2 (insulin-like growth factor 2 mRNA binding protein 2) could recognize the m6A site of CASC9 and enhance its stability, then CASC9 cooperated with IGF2BP2, forming an IGF2BP2/CASC9 complex, to increase the HK2 (Hexokinase 2) mRNA stability. Our findings reveal that CASC9/IGF2BP2/HK2 axis promotes the aerobic glycolysis of GBM.
Collapse
Affiliation(s)
- Hongjiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China
| | - Shan Qin
- Department of Cardiology, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China
| | - Changqi Liu
- Medical Records Room, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China
| | - Le Jiang
- Office of Academic Research, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China
| | - Chen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China
| | - Jiankai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China
| | - Shunyao Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China
| | - Zhongjie Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China
| | - Xiaopeng Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China
| | - Jipeng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China
| | - Xiaofeng Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, Hebei, China.
| |
Collapse
|
29
|
Valentino M, Dejana E, Malinverno M. The multifaceted PDCD10/CCM3 gene. Genes Dis 2021; 8:798-813. [PMID: 34522709 PMCID: PMC8427250 DOI: 10.1016/j.gendis.2020.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The programmed cell death 10 (PDCD10) gene was originally identified as an apoptosis-related gene, although it is now usually known as CCM3, as the third causative gene of cerebral cavernous malformation (CCM). CCM is a neurovascular disease that is characterized by vascular malformations and is associated with headaches, seizures, focal neurological deficits, and cerebral hemorrhage. The PDCD10/CCM3 protein has multiple subcellular localizations and interacts with several multi-protein complexes and signaling pathways. Thus PDCD10/CCM3 governs many cellular functions, which include cell-to-cell junctions and cytoskeleton organization, cell proliferation and apoptosis, and exocytosis and angiogenesis. Given its central role in the maintenance of homeostasis of the cell, dysregulation of PDCD10/CCM3 can result in a wide range of altered cell functions. This can lead to severe diseases, including CCM, cognitive disability, and several types of cancers. Here, we review the multifaceted roles of PDCD10/CCM3 in physiology and pathology, with a focus on its functions beyond CCM.
Collapse
Affiliation(s)
| | - Elisabetta Dejana
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, 7 20122, Italy.,Vascular Biology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 05, Sweden
| | - Matteo Malinverno
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy
| |
Collapse
|
30
|
Walke A, König S. Protoporphyrin IX purification from blood and serum for mass analysis - Considerations with respect to neurosurgery. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9138. [PMID: 34089543 DOI: 10.1002/rcm.9138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Anna Walke
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| |
Collapse
|
31
|
Wang J, Ma X, Ma J. Identification of Four Enhancer-Associated Genes as Risk Signature for Diffuse Glioma Patients. J Mol Neurosci 2021; 72:410-419. [PMID: 34462884 DOI: 10.1007/s12031-021-01861-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/19/2021] [Indexed: 01/21/2023]
Abstract
The abnormal expressions of enhancer-associated genes have been reported to be correlated with poor prognosis of tumors, including glioblastoma (GBM). The objective of the current study is to predict prognosis by identifying enhancer-associated genes (EAGs). The profiles of genome-wide expressions of low-grade glioma (LGG) and GBM tissues in The Cancer Genome Atlas (TCGA) dataset were obtained to explore the expression patterns of EAGs in diffuse glioma. The capacity of prognosis prediction was validated by Rembrandt and GSE16011. Moreover, qPCR was utilized to confirm the effect of JQ1 and THZ1 on the EAGs. We detected 35 differentially expressed EAGs, which were predictive of overall survival. These candidate EAGs were then subjected to the multivariate cox regression analysis and were further scoped down to four signature genes, including TRAM2, SMAGP, KDELC2, and C7ORF25. A total of 662 patients were then stratified according to the expression levels of these four signature genes. The high-risk group accounted for poorer prognosis based on the Rembrandt and GSE16011 databases. The results of qPCR also demonstrated that the expression of the four EAGs could be abolished by JQ1 (bromodomain inhibitor) and THZ1 (CDK7 inhibitor) treatment. Our study not only highlights the potential role of EAGs, which can be used to improve clinical prognosis prediction in patients with diffuse glioma, but also sheds light on the specific biomarkers and therapeutic targets for diffuse glioma patients.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin Ma
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
32
|
Han XX, Cai C, Yu LM, Wang M, Hu DY, Ren J, Zhang MH, Zhu LY, Zhang WH, Huang W, He H, Gao Z. A Fast and Efficient Approach to Obtaining High-Purity Glioma Stem Cell Culture. Front Genet 2021; 12:639858. [PMID: 34295351 PMCID: PMC8291338 DOI: 10.3389/fgene.2021.639858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common and malignant primary brain tumor. Patients with malignant glioma usually have a poor prognosis due to drug resistance and disease relapse. Cancer stem cells contribute to glioma initiation, progression, resistance, and relapse. Hence, quick identification and efficient understanding of glioma stem cells (GSCs) are of profound importance for therapeutic strategies and outcomes. Ideally, therapeutic approaches will only kill cancer stem cells without harming normal neural stem cells (NSCs) that can inhibit GSCs and are often beneficial. It is key to identify the differences between cancer stem cells and normal NSCs. However, reports detailing an efficient and uniform protocol are scarce, as are comparisons between normal neural and cancer stem cells. Here, we compared different protocols and developed a fast and efficient approach to obtaining high-purity glioma stem cell by tracking observation and optimizing culture conditions. We examined the proliferative and differentiative properties confirming the identities of the GSCs with relevant markers such as Ki67, SRY-box containing gene 2, an intermediate filament protein member nestin, glial fibrillary acidic protein, and s100 calcium-binding protein (s100-beta). Finally, we identified distinct expression differences between GSCs and normal NSCs including cyclin-dependent kinase 4 and tumor protein p53. This study comprehensively describes the features of GSCs, their properties, and regulatory genes with expression differences between them and normal stem cells. Effective approaches to quickly obtaining high-quality GSCs from patients should have the potential to not only help understand the diseases and the resistances but also enable target drug screening and personalized medicine for brain tumor treatment.
Collapse
Affiliation(s)
- Xin-Xin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Chunhui Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ming Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Min Wang
- School of Medicine, Jiaxing University, Jiaxing, China
| | - Dai-Yu Hu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Ren
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng-Han Zhang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Lu-Ying Zhu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Wei-Hua Zhang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Wei Huang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Hua He
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Neurosurgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Zhengliang Gao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
33
|
Demircan T, Yavuz M, Kaya E, Akgül S, Altuntaş E. Cellular and Molecular Comparison of Glioblastoma Multiform Cell Lines. Cureus 2021; 13:e16043. [PMID: 34345539 PMCID: PMC8322107 DOI: 10.7759/cureus.16043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiform (GBM) is one of the most severe tumor types. It is highly invasive and characterized as a grade IV neoplastic cancer. Its resistance to chemotherapy-temozolomide (TMZ treatment)-in combination with tumor treating fields (TTFields), limits the cure of GBM. Therefore researchers are searching for new treatment options to increase the length of recurrence time and improve overall survival for GBM patients. Several cell lines have been established and are in use to understand the molecular basis of GBM and to test the developed drugs. On one hand, it is highly advantageous to utilize multiple cell lines with different genetic backgrounds to gain more insight into the characterization and treatment of the disease. However, on the other hand, characteristics of these cell lines such as proliferation rate, invasion, and colony formation capacity differ greatly among these cells. Hence, a detailed comparison concerning molecular and cellular features of commonly used cell lines is essential. In this study, cell proliferation and apoptosis rate, cell migration capacity, and gene expression profile of U87, Ln229, and SvGp12 cells have been investigated and compared.
Collapse
Affiliation(s)
| | - Mervenur Yavuz
- Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, TUR
| | - Egemen Kaya
- Surgery, Mugla Sitki Kocman University, Muğla, TUR
| | - Sıddıka Akgül
- Institute of Health Sciences, Aydın Adnan Menderes University, Aydın, TUR
| | - Ebru Altuntaş
- Institute of Natural Sciences, Muğla Sıtkı Koçman University, Muğla, TUR
| |
Collapse
|
34
|
Elsers D, Temerik DF, Attia AM, Hadia A, Hussien MT. Prognostic role of ALK-1 and h-TERT expression in glioblastoma multiforme: correlation with ALK gene alterations. J Pathol Transl Med 2021; 55:212-224. [PMID: 33966367 PMCID: PMC8141971 DOI: 10.4132/jptm.2021.03.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the developing central and peripheral nervous systems during embryogenesis. Human telomerase reverse transcriptase (h-TERT) protein resumption is the main process of preservation of telomeres that maintains DNA integrity. The present study aims to evaluate the prognostic role of ALK-1 and h-TERT protein expression and their correlation with ALK gene alterations in glioblastoma multiforme (GBM). Methods The current study is a retrospective study on a cohort of patients with GBM (n = 53) that attempted to detect ALK gene alterations using fluorescence in situ hybridization. ALK-1 and h-TERT proteins were evaluated using immunohistochemistry. Results Score 3 ALK-1 expression was significantly associated with male sex, tumor multiplicity, Ki labeling index (Ki LI), and type of therapeutic modality. Score 3 h-TERT expression exhibited a significant association with Ki LI. ALK gene amplifications (ALK-A) were significantly associated with increased Ki LI and therapeutic modalities. Score 3 ALK-1 protein expression, score 3 h-TERT protein expression, and ALK-A were associated with poor overall survival (OS) and progression-free survival (PFS). Multivariate analysis for OS revealed that ALK gene alterations were an independent prognostic factor for OS and PFS. Conclusions High protein expression of both ALK-1 and h-TERT, as well as ALK-A had a poor impact on the prognosis of GBM. Further studies are needed to establish the underlying mechanisms.
Collapse
Affiliation(s)
- Dalia Elsers
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Doaa F Temerik
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Alia M Attia
- Department of Radiation Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - A Hadia
- Department of Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Marwa T Hussien
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
35
|
Hernández-Vega AM, Camacho-Arroyo I. Crosstalk between 17β-Estradiol and TGF-β Signaling Modulates Glioblastoma Progression. Brain Sci 2021; 11:brainsci11050564. [PMID: 33925221 PMCID: PMC8145480 DOI: 10.3390/brainsci11050564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an essential mechanism contributing to glioblastoma multiforme (GBM) progression, the most common and malignant brain tumor. EMT is induced by signaling pathways that crosstalk and regulate an intricate regulatory network of transcription factors. It has been shown that downstream components of 17β-estradiol (E2) and transforming growth factor β (TGF-β) signaling pathways crosstalk in estrogen-sensitive tumors. However, little is known about the interaction between the E2 and TGF-β signaling components in brain tumors. We have investigated the relationship between E2 and TGF-β signaling pathways and their effects on EMT induction in human GBM-derived cells. Here, we showed that E2 and TGF-β negatively regulated the expression of estrogen receptor α (ER-α) and Smad2/3. TGF-β induced Smad2 phosphorylation and its subsequent nuclear translocation, which E2 inhibited. Both TGF-β and E2 induced cellular processes related to EMT, such as morphological changes, actin filament reorganization, and mesenchymal markers (N-cadherin and vimentin) expression. Interestingly, we found that the co-treatment of E2 and TGF-β blocked EMT activation. Our results suggest that E2 and TGF-β signaling pathways interact through ER-α and Smad2/3 mediators in cells derived from human GBM and inhibit EMT activation induced by both factors alone.
Collapse
|
36
|
Shlapakova TI, Tyagunova EE, Kostin RK, Danilova DA. Targeted Antitumor Drug Delivery to Glioblastoma Multiforme Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
The Importance of Tumor Stem Cells in Glioblastoma Resistance to Therapy. Int J Mol Sci 2021; 22:ijms22083863. [PMID: 33917954 PMCID: PMC8068366 DOI: 10.3390/ijms22083863] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is known to be the most common and lethal primary malignant brain tumor. Therapies against this neoplasia have a high percentage of failure, associated with the survival of self-renewing glioblastoma stem cells (GSCs), which repopulate treated tumors. In addition, despite new radical surgery protocols and the introduction of new anticancer drugs, protocols for treatment, and technical advances in radiotherapy, no significant improvement in the survival rate for GBMs has been realized. Thus, novel antitarget therapies could be used in conjunction with standard radiochemotherapy approaches. Targeted therapy, indeed, may address specific targets that play an essential role in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Significant cellular heterogeneity and the hierarchy with GSCs showing a therapy-resistant phenotype could explain tumor recurrence and local invasiveness and, therefore, may be a target for new therapies. Therefore, the forced differentiation of GSCs may be a promising new approach in GBM treatment. This article provides an updated review of the current standard and experimental therapies for GBM, as well as an overview of the molecular characteristics of GSCs, the mechanisms that activate resistance to current treatments, and a new antitumor strategy for treating GSCs for use as therapy.
Collapse
|
38
|
Kolbe MR, Hohmann T, Hohmann U, Ghadban C, Mackie K, Zöller C, Prell J, Illert J, Strauss C, Dehghani F. THC Reduces Ki67-Immunoreactive Cells Derived from Human Primary Glioblastoma in a GPR55-Dependent Manner. Cancers (Basel) 2021; 13:cancers13051064. [PMID: 33802282 PMCID: PMC7959141 DOI: 10.3390/cancers13051064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent malignant tumor of the central nervous system in humans with a median survival time of less than 15 months. ∆9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the best-characterized components of Cannabis sativa plants with modulating effects on cannabinoid receptors 1 and 2 (CB1 and CB2) and on orphan receptors such as GPR18 or GPR55. Previous studies have demonstrated anti-tumorigenic effects of THC and CBD in several tumor entities including GBM, mostly mediated via CB1 or CB2. In this study, we investigated the non-CB1/CB2 effects of THC on the cell cycle of GBM cells isolated from human tumor samples. Cell cycle entry was measured after 24 h upon exposure by immunocytochemical analysis of Ki67 as proliferation marker. The Ki67-reducing effect of THC was abolished in the presence of CBD, whereas CBD alone did not cause any changes. To identify the responsible receptor for THC effects, we first characterized the cells regarding their expression of different cannabinoid receptors: CB1, CB2, GPR18, and GPR55. Secondly, the receptors were pharmacologically blocked by application of their selective antagonists AM281, AM630, O-1918, and CID16020046 (CID), respectively. All examined cells expressed the receptors, but only in presence of the GPR55 antagonist CID was the THC effect diminished. Stimulation with the GPR55 agonist lysophosphatidylinositol (LPI) revealed similar effects as obtained for THC. The LPI effects were also inhibited by CBD and CID, confirming a participation of GPR55 and suggesting its involvement in modifying the cell cycle of patient-derived GBM cells.
Collapse
Affiliation(s)
- Marc Richard Kolbe
- Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.); (C.G.)
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.); (C.G.)
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.); (C.G.)
| | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.); (C.G.)
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, 1101E. 10th, Bloomington, IN 47405, USA;
| | - Christin Zöller
- Department of Neurosurgery, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (C.Z.); (J.P.); (J.I.); (C.S.)
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (C.Z.); (J.P.); (J.I.); (C.S.)
| | - Jörg Illert
- Department of Neurosurgery, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (C.Z.); (J.P.); (J.I.); (C.S.)
| | - Christian Strauss
- Department of Neurosurgery, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (C.Z.); (J.P.); (J.I.); (C.S.)
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.); (C.G.)
- Correspondence: ; Tel.: +49-345-557-1707
| |
Collapse
|
39
|
Glioblastoma Break-in; Try Something New. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Glioblastoma is the most invasive brain tumor with a poor prognosis and rapid progression. The standard therapy (surgical resection, adjuvant chemotherapy, and radiotherapy) ensures survival only up to 18 months. In this article, we focus on innovative types of radiotherapy, various combinations of temozolomide with novel substances, and methods of their administration and vector delivery to tumor cells. Evidence Acquisition: For a detailed study of the various options for chemotherapy and radiotherapy, Elsevier, NCBI MedLine, Scopus, Google Scholar, Embase, Web of Science, The Cochrane Library, EMBASE, Global Health, CyberLeninka, and RSCI databases were analyzed. Results: The most available method is oral or intravenous administration of temozolomide. More efficient is the combined chemotherapy of temozolomide with innovative drugs and substances such as lomustine, histone deacetylase inhibitors, and chloroquine, as well as olaparib. These combinations improve patient survival and are effective in the treatment of resistant tumors. Compared to standard fractionated radiotherapy (60 Gy, 30 fractions, 6 weeks), hypofractionated is more effective for elderly patients due to lack of toxicity; brachytherapy reduces the risk of glioblastoma recurrence, while radiosurgery with bevacizumab is more effective against recurrent or inoperable tumors. Currently, the most effective treatment is considered to be the intranasal administration of anti-Ephrin A3 (anti-EPHA3)-modified containing temozolomide butyl ester-loaded (TBE-loaded) poly lactide-co-glycolide nanoparticles (P-NPs) coated with N-trimethylated chitosan (TMC) to overcome nasociliary clearance. Conclusions: New radiotherapeutic methods significantly increase the survival rates of glioblastoma patients. With some improvement, it may lead to the elimination of all tumor cells leaving the healthy alive. New chemotherapeutic drugs show impressive results with adjuvant temozolomide. Anti-EPHA3-modified TBE-loaded P-NPs coated with TMC have high absorption specificity and kill glioblastoma cells effectively. A new “step forward” may become a medicine of the future, which reduces the specific accumulation of nanoparticles in the lungs, but simultaneously does not affect specific absorption by tumor cells.
Collapse
|
40
|
Zhou Y, Wang Y, Chen H, Xu Y, Luo Y, Deng Y, Zhang J, Shao A. Immuno-oncology: are TAM receptors in glioblastoma friends or foes? Cell Commun Signal 2021; 19:11. [PMID: 33509214 PMCID: PMC7841914 DOI: 10.1186/s12964-020-00694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Tyro3, Axl, and Mertk (TAM) receptors are a subfamily of receptor tyrosine kinases. TAM receptors have been implicated in mediating efferocytosis, regulation of immune cells, secretion of inflammatory factors, and epithelial-to-mesenchymal transition in the tumor microenvironment, thereby serving as a critical player in tumor development and progression. The pro-carcinogenic role of TAM receptors has been widely confirmed, overexpression of TAM receptors is tied to tumor cells growth, metastasis, invasion and treatment resistance. Nonetheless, it is surprising to detect that inhibiting TAM signaling is not all beneficial in the tumor immune microenvironment. The absence of TAM receptors also affects anti-tumor immunity under certain conditions by modulating different immune cells, as the functional diversification of TAM signaling is closely related to tumor immunotherapy. Glioblastoma is the most prevalent and lethal primary brain tumor in adults. Although research regarding the crosstalk between TAM receptors and glioblastoma remains scarce, it appears likely that TAM receptors possess potential anti-tumor effects rather than portraying a total cancer-driving role in the context of glioblastoma. Accordingly, we doubt whether TAM receptors play a double-sided role in glioblastoma, and propose the Janus-faced TAM Hypothesis as a conceptual framework for comprehending the precise underlying mechanisms of TAMs. In this study, we aim to cast a spotlight on the potential multidirectional effects of TAM receptors in glioblastoma and provide a better understanding for TAM receptor-related targeted intervention. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hailong Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211126, Jiangsu, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, 313100, Zhejiang, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
41
|
Guo B, Liao W, Wang S. The clinical significance of glutathione peroxidase 2 in glioblastoma multiforme. Transl Neurosci 2021; 12:32-39. [PMID: 33552592 PMCID: PMC7821418 DOI: 10.1515/tnsci-2021-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is the leading cause of death among adult brain cancer patients. Glutathione peroxidase 2 (GPX2), as a factor in oxidative stress, plays an important role in carcinogenesis. However, its role in GBM has not been well established. The study aimed to investigate the clinical significance of GPX2 with GBM prognosis. Methods Data of GBM and healthy individuals were retrospectively collected from oncomine, cancer cell line encyclopedia (CCLE), gene expression profiling interactive analysis (GEPIA), UALCAN, and Human Protein Atlas. GPX2 mRNA expression was first assessed across various cancer types in oncomine and cancer cell lines from CCLE. The mRNA expression of GPX2 was compared between normal and GBM tissues using GEPIA (normal = 207; GBM = 163) and UALCAN (normal = 5; GBM = 156). The GPX2 methylation was analyzed using data from UALCAN (normal = 2; GBM = 140). The prognostic value of GPX2 in GBM was explored in GEPIA and UALCAN using Kaplan–Meier method. STRING database was used to construct protein–protein interaction (PPI) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Statistical significance was set as <0.05. Results The current study revealed no significant differences in GPX2 expression between normal and GBM from GEPIA data (P > 0.05) and UALCAN (P = 0.257). Patients with higher GPX2 intended to have a poorer prognosis (P = 0.0089). The KEGG pathways found that chemokine-signaling pathway were the more preferred. Conclusions The findings demonstrated that GPX2 might be a potential diagnosis and prognostic indicator for GBM. Chemokine-signaling pathway may be involved in GPX2 function.
Collapse
Affiliation(s)
- Bangming Guo
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenjuan Liao
- Department of Pediatrics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shusheng Wang
- Emergency Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
42
|
Guo X, Piao H, Zhang Y, Sun P, Yao B. Overexpression of microRNA-129-5p in glioblastoma inhibits cell proliferation, migration, and colony-forming ability by targeting ZFP36L1. Bosn J Basic Med Sci 2020; 20:459-470. [PMID: 31999936 PMCID: PMC7664791 DOI: 10.17305/bjbms.2019.4503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/24/2019] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive cancer with a high recurrence rate. The prognosis of GBM patients remains poor, even after standard surgical resection combined with chemoradiotherapy. Thus, there is an urgent need for new therapeutic targets in GBM. In recent years, microRNAs have received considerable attention due to their important role in tumor development and progression. In this study, we investigated the role of miR-129-5p and miR-129-5p/ZFP36L1 axis in GBM tumorigenesis. Analysis of GSE103228 microarray data from the GEO database showed that miR-129-5p was significantly downregulated in GBM vs. normal brain tissues. Quantitative reverse transcription PCR analysis of miR-129-5p expression in seven GBM cell lines (LN229, A172, U87, T98G, U251, H4, and LN118) vs. normal human astrocytes (NHA) showed miR-129-5p was significantly downregulated in GBM cells. Overexpression of miR-129-5p in LN229 and A172 cells significantly suppressed cell proliferation, migration, invasion, and colony-forming ability. Target Scan analysis identified ZFP36L1 as the target of miR-129-5p. UALCAN dataset analysis found that ZFP36L1 was significantly upregulated in GBM vs. normal brain tissues, and high ZFP36L1 expression was positively associated with poor survival of GBM patients. Western blot analysis demonstrated that ZFP36L1 was significantly upregulated in seven GBM cell lines vs. NHA. Overexpression of miR-129-5p in LN229 and A172 cells significantly inhibited ZFP36L1 mRNA and protein expression, while overexpression of ZFP36L1 in LN229 and A172 cells reversed miR-129-5p-mediated inhibition on GBM tumorigenesis. Our results revealed an important role of miR-129-5p in the negative regulation of ZFP36L1 expression in GBM, suggesting new candidates for targeted therapy in GBM patients.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Peixin Sun
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Bing Yao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
43
|
Wang LC, Chen SH, Shen XL, Li DC, Liu HY, Ji YL, Li M, Yu K, Yang H, Chen JJ, Qin CZ, Luo MM, Lin QX, Lv QL. M6A RNA Methylation Regulator HNRNPC Contributes to Tumorigenesis and Predicts Prognosis in Glioblastoma Multiforme. Front Oncol 2020; 10:536875. [PMID: 33134160 PMCID: PMC7578363 DOI: 10.3389/fonc.2020.536875] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma with a high death rate. N6-methyladenosine (m6A) RNA methylation plays an increasingly important role in tumors. The current study aimed to determine the function of the regulators of m6A RNA methylation in GBM. We evaluated the difference, interaction, and correlation of these regulators with TCGA database. HNRNPC, WTAP, YTHDF2 and, YTHDF1 were significantly upregulated in GBM. To explore the expression characteristics of regulators in GBM, we defined two subgroups through consensus cluster. HNRNPC, WTAP, and YTHDF2 were significantly upregulated in the cluster2 which had a good overall survival (OS). To investigate the prognostic value of regulators, we used lasso cox regression algorithm to screen an independent prognostic risk characteristic based on the expression of HNRNPC, ZC3H13, and YTHDF2. The prognostic feature between the low and high-risk groups was significantly different (P < 0.05), which could predict significance of prognosis (area under the curve (AUC) = 0.819). Moreover, we used western blot, RT-PCR, and immunohistochemical staining to verify the expression of HNRNPC was associated with malignancy and development of gliomas. Similarly, the high expression of HNRNPC had a good prognosis. In conclusion, HNRNPC is a vital participant in the malignant progression of GBM and might be valuable for prognosis.
Collapse
Affiliation(s)
- Li-Chong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Xiao-Li Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dang-Chi Li
- Jiangxi University of Technology High School, Nanchang, China
| | - Hai-Yun Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yu-Long Ji
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Min Li
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Kai Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Jun Chen
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Chong-Zhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming-Ming Luo
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Qian-Xia Lin
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
44
|
Guo X, Piao H, Xue Y, Liu Y, Zhao H. LMX1B-associated gankyrin expression predicts poor prognosis in glioma patients. J Int Med Res 2020; 48:300060520954764. [PMID: 32960116 PMCID: PMC7513415 DOI: 10.1177/0300060520954764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To explore the potential of the transcription factor LMX1B and downstream gankyrin as prognostic biomarkers of glioma. METHODS The expression levels of gankyrin and LMX1B were detected in 52 normal brain specimens and 339 glioma specimens. Correlations of gankyrin and LMX1B expression levels with pathological stages and clinical characteristics were statistically analyzed. Furthermore, the binding of LMX1B to the gankyrin promoter was evaluated using ALGGEN PROMO. RESULTS Levels of LMX1B and gankyrin were significantly increased in tumor tissue, and were significantly associated with advanced glioma grade and poor survival. Compared with gankyrin- and LMX1B-negative glioma, the mean survival of patients with higher gankyrin and LMX1B expression was significantly reduced, from 83.46 to 18.87 months and from 63.79 to 18.29 months, respectively. Furthermore, LMX1B had a moderate positive correlation with gankyrin expression (Pearson's r = 0.650), and it was also found to act as a transcription factor with NF-κB and E47 on the gankyrin promoter. CONCLUSIONS Increased expression of LMX1B and gankyrin has independent prognostic value in glioma patients. The transcription factor LMX1B may have an upstream role in the mechanism of action.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Shengjing Hospital of China Medical
University, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical
University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China
Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical
University, Shenyang, China
| | - Hongyu Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical
University, Shenyang, China
| |
Collapse
|
45
|
Dong H, Wang Q, Li N, Lv J, Ge L, Yang M, Zhang G, An Y, Wang F, Xie L, Li Y, Zhu W, Zhang H, Zhang M, Guo X. OSgbm: An Online Consensus Survival Analysis Web Server for Glioblastoma. Front Genet 2020; 10:1378. [PMID: 32153627 PMCID: PMC7046682 DOI: 10.3389/fgene.2019.01378] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. GBM causes poor clinical outcome and high mortality rate, mainly due to the lack of effective targeted therapy and prognostic biomarkers. Here, we developed a user-friendly Online Survival analysis web server for GlioBlastoMa, abbreviated OSgbm, to assess the prognostic value of candidate genes. Currently, OSgbm contains 684 samples with transcriptome profiles and clinical information from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA). The survival analysis results can be graphically presented by Kaplan-Meier (KM) plot with Hazard ratio (HR) and log-rank p value. As demonstration, the prognostic value of 51 previously reported survival associated biomarkers, such as PROM1 (HR = 2.4120, p = 0.0071) and CXCR4 (HR = 1.5578, p < 0.001), were confirmed in OSgbm. In summary, OSgbm allows users to evaluate and develop prognostic biomarkers of GBM. The web server of OSgbm is available at http://bioinfo.henu.edu.cn/GBM/GBMList.jsp.
Collapse
Affiliation(s)
- Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ning Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jiajia Lv
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Linna Ge
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Mengsi Yang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Fengling Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Longxiang Xie
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yongqiang Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Haiyu Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
46
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Pérez-Pérez D, Reyes-Vidal I, Chávez-Cortez EG, Sotelo J, Magaña-Maldonado R. Methylxanthines: Potential Therapeutic Agents for Glioblastoma. Pharmaceuticals (Basel) 2019; 12:ph12030130. [PMID: 31500285 PMCID: PMC6789489 DOI: 10.3390/ph12030130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/24/2019] [Accepted: 09/01/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Currently, treatment is ineffective and the median overall survival is 20.9 months. The poor prognosis of GBM is a consequence of several altered signaling pathways that favor the proliferation and survival of neoplastic cells. One of these pathways is the deregulation of phosphodiesterases (PDEs). These enzymes participate in the development of GBM and may have value as therapeutic targets to treat GBM. Methylxanthines (MXTs) such as caffeine, theophylline, and theobromine are PDE inhibitors and constitute a promising therapeutic anti-cancer agent against GBM. MTXs also regulate various cell processes such as proliferation, migration, cell death, and differentiation; these processes are related to cancer progression, making MXTs potential therapeutic agents in GBM.
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- PECEM, Faculty of Medicine, National Autonomous University of México, México City 04510, Mexico
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Iannel Reyes-Vidal
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Elda Georgina Chávez-Cortez
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Julio Sotelo
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Roxana Magaña-Maldonado
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico.
| |
Collapse
|
48
|
Cheng YP, Li S, Chuang WL, Li CH, Chen GJ, Chang CC, Or CHR, Lin PY, Chang CC. Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4'-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells. Int J Mol Sci 2019; 20:ijms20133366. [PMID: 31323961 PMCID: PMC6651290 DOI: 10.3390/ijms20133366] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis, largely due to resistance to current radiotherapy and Temozolomide chemotherapy. The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is evidenced as a pivotal driver of GBM pathogenesis and therapy resistance, and hence, is a promising GBM drug target. 5-acetyloxy-6,7,8,4'-tetramethoxyflavone (5-AcTMF) is an acetylated derivative of Tangeretin which is known to exert anticancer effects on breast, colon, lung, and multiple myeloma; however, its effect on GBM remains elusive. Herein, we reported that 5-AcTMF suppressed the viability and clonogenicity along with inducing apoptosis in multiple human GBM cell lines. Mechanistic analyses further revealed that 5-AcTMF lowered the levels of Tyrosine 705-phosphorylated STAT3 (p-STAT3), a canonical marker of STAT3 activation, but also dampened p-STAT3 upregulation elicited by Interleukin-6. Notably, ectopic expression of dominant-active STAT3 impeded 5-AcTMF-induced suppression of viability and clonogenicity plus apoptosis induction in GBM cells, confirming the prerequisite of STAT3 blockage for the inhibitory action of 5-AcTMF on GBM cell survival and growth. Additionally, 5-AcTMF impaired the activation of STAT3 upstream kinase JAK2 but also downregulated antiapoptotic BCL-2 and BCL-xL in a STAT3-dependent manner. Moreover, the overexpression of either BCL-2 or BCL-xL abrogated 5-AcTMF-mediated viability reduction and apoptosis induction in GBM cells. Collectively, we, for the first time, revealed the anticancer effect of 5-AcTMF on GBM cells, which was executed via thwarting the JAK2-STAT3-BCL-2/BCL-xL signaling axis. Our findings further implicate the therapeutic potential of 5-AcTMF for GBM treatment.
Collapse
Affiliation(s)
- Yen-Po Cheng
- Division of Neurosurgery, Department of Surgery, Yuanlin Changhua Christian Hospital, Changhua 50006, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shiming Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Wan-Ling Chuang
- Transplant Medicine & Surgery Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chia-Hsuan Li
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Guan-Jun Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Chin Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chi-Hung R Or
- Department of Anesthesiology, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
| | - Ping-Yi Lin
- Transplant Medicine & Surgery Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan.
- Department of Life Sciences, The iEGG and Animal Biotechnology Research Center, Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
49
|
Treatment Strategies Based on Histological Targets against Invasive and Resistant Glioblastoma. JOURNAL OF ONCOLOGY 2019; 2019:2964783. [PMID: 31320900 PMCID: PMC6610731 DOI: 10.1155/2019/2964783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most common and the most malignant primary brain tumor and is characterized by rapid proliferation, invasion into surrounding normal brain tissues, and consequent aberrant vascularization. In these characteristics of GBM, invasive properties are responsible for its recurrence after various therapies. The histomorphological patterns of glioma cell invasion have often been referred to as the “secondary structures of Scherer.” The “secondary structures of Scherer” can be classified mainly into four histological types as (i) perineuronal satellitosis, (ii) perivascular satellitosis, (iii) subpial spread, and (iv) invasion along the white matter tracts. In order to develop therapeutic interventions to mitigate glioma cell migration, it is important to understand the biological mechanism underlying the formation of these secondary structures. The main focus of this review is to examine new molecular pathways based on the histopathological evidence of GBM invasion as major prognostic factors for the high recurrence rate for GBMs. The histopathology-based pharmacological and biological targets for treatment strategies may improve the management of invasive and resistant GBMs.
Collapse
|
50
|
Palumbo P, Lombardi F, Augello FR, Giusti I, Luzzi S, Dolo V, Cifone MG, Cinque B. NOS2 inhibitor 1400W Induces Autophagic Flux and Influences Extracellular Vesicle Profile in Human Glioblastoma U87MG Cell Line. Int J Mol Sci 2019; 20:ijms20123010. [PMID: 31226744 PMCID: PMC6627770 DOI: 10.3390/ijms20123010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
The relevance of nitric oxide synthase 2 (NOS2) as a prognostic factor in Glioblastoma Multiforme (GBM) malignancy is emerging. We analyzed the effect of NOS2 inhibitor 1400W on the autophagic flux and extracellular vesicle (EV) secretion in U87MG glioma cells. The effects of glioma stem cells (GSC)-derived EVs on adherent U87MG were evaluated. Cell proliferation and migration were examined while using Cell Counting Kit-8 assay (CCK-8) and scratch wound healing assay. Cell cycle profile and apoptosis were analyzed by flow cytometry. Autophagy-associated acidic vesicular organelles were detected and quantified by acridine orange staining. The number and size of EVs were assessed by nanoparticle tracking analysis. EV ultrastructure was verified by transmission electron microscopy (TEM). WB was used to analyze protein expression and acid sphingomyelinase was determined through ceramide levels. 1400W induced autophagy and EV secretion in both adherent U87MG and GSCs. EVs secreted by 1400W-treated GSC, but not those from untreated cells, were able to inhibit adherent U87MG cell growth and migration while also inducing a relevant level of autophagy. The hypothesis of NOS2 expression as GBM profile marker or interesting therapeutic target is supported by our findings. Autophagy and EV release following treatment with the NOS2 inhibitor could represent useful elements to better understand the complex biomolecular frame of GBM.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Francesca Rosaria Augello
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Ilaria Giusti
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74 - 27100 Pavia, Italy.
| | - Vincenza Dolo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| |
Collapse
|