1
|
Wu X, Zhu Y, Hu C, Du X, Xue W, Chen Y, Dong L, Pan J. Extracellular vesicles related gene HSPH1 exerts anti-tumor effects in prostate cancer via promoting the stress response of CD8 + T cells. Cell Oncol (Dordr) 2024; 47:1059-1064. [PMID: 38165608 DOI: 10.1007/s13402-023-00905-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND T cell stress response state (TSTR), as a novel immune concept previous studies have proposed, has not yet been explored in prostate cancer (PC). As a type of cellular efflux, exosomes play important roles in the occurrence and development of PC. METHOD Here, we conducted a combined analysis on extracellular vesicle related genes (EVRGs) in PC using data from single-cell RNA (scRNA), spatial transcriptome (ST), and bulk RNA sequencing. RESULT Preliminary findings have revealed that heat shock protein family H (Hsp110) member 1 (HSPH1) possesses two identities, one being EVRGs and the other being a member of the heat shock protein family involved in TSTR, which may promote the differentiation of conventional T cells towards Th1 or Th2 cells through the pathway of IL2-MYC-IL2RA, thereby promoting the increase of CD8 + T cells in the tumor area, especially in the invasive zone, and inhibiting the invasion of PCs. We also notice the negative response of HSPH1 + CD8 + T cell related genes in immune checkpoint blockade (ICB). Western blot (WB) and droplet digital Polymerase Chain Reaction (ddPCR) demonstrated that the mRNA and protein levels of HSPH1 in EVs of PCs were significantly higher than those in adjacent tissues. CONCLUSION Results above indicate the potential of HSPH1 as a critical therapeutic target in PC.
Collapse
Affiliation(s)
- Xinrui Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, 200127, Shanghai, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, 200127, Shanghai, China
| | - Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, 200127, Shanghai, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, 200127, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, 200127, Shanghai, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, 200127, Shanghai, China.
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, 200127, Shanghai, China.
| | - Jiahua Pan
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, 200127, Shanghai, China.
| |
Collapse
|
2
|
Le LNH, Munir J, Kim EB, Ryu S. Kidney Cancer and Potential Use of Urinary Extracellular Vesicles. Oncol Rev 2024; 18:1410450. [PMID: 38846051 PMCID: PMC11153667 DOI: 10.3389/or.2024.1410450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Kidney cancer is the 14th most common cancer globally. The 5-year relative survival rate of kidney cancer at a localized stage is 92.9% and it declines to 17.4% in metastatic stage. Currently, the most accurate method of its diagnosis is tissue biopsy. However, the invasive and costly nature of biopsies makes it undesirable in many patients. Therefore, novel biomarkers for diagnosis and prognosis should be explored. Urinary extracellular vesicles (uEVs) are small vesicles (50-200 nm) in urine carrying nucleic acids, proteins and lipids as their cargos. These uEVs' cargos can provide non-invasive alternative to monitor kidney health. In this review, we have summarized recent studies investigating potential use of uEVs' cargos as biomarkers in kidney cancer for diagnosis, prognosis and therapeutic intervention.
Collapse
Affiliation(s)
- Linh Nguy-Hoang Le
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Javaria Munir
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eun-Bit Kim
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Seongho Ryu
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Grützmann K, Salomo K, Krüger A, Lohse-Fischer A, Erdmann K, Seifert M, Baretton G, Aust D, William D, Schröck E, Thomas C, Füssel S. Identification of novel snoRNA-based biomarkers for clear cell renal cell carcinoma from urine-derived extracellular vesicles. Biol Direct 2024; 19:38. [PMID: 38741178 DOI: 10.1186/s13062-024-00467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC with high rates of metastasis. Targeted therapies such as tyrosine kinase and checkpoint inhibitors have improved treatment success, but therapy-related side effects and tumor recurrence remain a challenge. As a result, ccRCC still have a high mortality rate. Early detection before metastasis has great potential to improve outcomes, but no suitable biomarker specific for ccRCC is available so far. Therefore, molecular biomarkers derived from body fluids have been investigated over the past decade. Among them, RNAs from urine-derived extracellular vesicles (EVs) are very promising. METHODS RNA was extracted from urine-derived EVs from a cohort of 78 subjects (54 ccRCC patients, 24 urolithiasis controls). RNA-seq was performed on the discovery cohort, a subset of the whole cohort (47 ccRCC, 16 urolithiasis). Reads were then mapped to the genome, and expression was quantified based on 100 nt long contiguous genomic regions. Cluster analysis and differential region expression analysis were performed with adjustment for age and gender. The candidate biomarkers were validated by qPCR in the entire cohort. Receiver operating characteristic, area under the curve and odds ratios were used to evaluate the diagnostic potential of the models. RESULTS An initial cluster analysis of RNA-seq expression data showed separation by the subjects' gender, but not by tumor status. Therefore, the following analyses were done, adjusting for gender and age. The regions differentially expressed between ccRCC and urolithiasis patients mainly overlapped with small nucleolar RNAs (snoRNAs). The differential expression of four snoRNAs (SNORD99, SNORD22, SNORD26, SNORA50C) was validated by quantitative PCR. Confounder-adjusted regression models were then used to classify the validation cohort into ccRCC and tumor-free subjects. Corresponding accuracies ranged from 0.654 to 0.744. Models combining multiple genes and the risk factors obesity and hypertension showed improved diagnostic performance with an accuracy of up to 0.811 for SNORD99 and SNORA50C (p = 0.0091). CONCLUSIONS Our study uncovered four previously unrecognized snoRNA biomarkers from urine-derived EVs, advancing the search for a robust, easy-to-use ccRCC screening method.
Collapse
Affiliation(s)
- Konrad Grützmann
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Karsten Salomo
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Alexander Krüger
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Andrea Lohse-Fischer
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kati Erdmann
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Gustavo Baretton
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Pathology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Daniela Aust
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Pathology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Institute of Molecular Cell Biology and Genetics, ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Max Planck, 01307, Dresden, Germany
| | - Evelin Schröck
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Institute of Molecular Cell Biology and Genetics, ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Max Planck, 01307, Dresden, Germany
| | - Christian Thomas
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Susanne Füssel
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Lundy DJ, Szomolay B, Liao CT. Systems Approaches to Cell Culture-Derived Extracellular Vesicles for Acute Kidney Injury Therapy: Prospects and Challenges. FUNCTION 2024; 5:zqae012. [PMID: 38706963 PMCID: PMC11065115 DOI: 10.1093/function/zqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.
Collapse
Affiliation(s)
- David J Lundy
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Taipei 235603, Taiwan
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 235603, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
5
|
He X, Tian F, Guo F, Zhang F, Zhang H, Ji J, Zhao L, He J, Xiao Y, Li L, Wei C, Huang C, Li Y, Zhang F, Yang B, Ye H, Wang F. Circulating exosomal mRNA signatures for the early diagnosis of clear cell renal cell carcinoma. BMC Med 2022; 20:270. [PMID: 36002886 PMCID: PMC9404613 DOI: 10.1186/s12916-022-02467-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND There are no proven tumor biomarkers for the early diagnosis of clear cell renal cell carcinoma (ccRCC) thus far. This study aimed to identify novel biomarkers of ccRCC based on exosomal mRNA (emRNA) profiling and develop emRNA-based signatures for the early detection of ccRCC. METHODS Four hundred eighty-eight participants, including 226 localized ccRCCs, 73 patients with benign renal masses, and 189 healthy controls, were recruited. Circulating emRNA sequencing was performed in 12 ccRCCs and 22 healthy controls in the discovery phase. The candidate emRNAs were evaluated with 108 ccRCCs and 70 healthy controls in the test and training phases. The emRNA-based signatures were developed by logistic regression analysis and validated with additional cohorts of 106 ccRCCs, 97 healthy controls, and 73 benign individuals. RESULTS Five emRNAs, CUL9, KMT2D, PBRM1, PREX2, and SETD2, were identified as novel potential biomarkers of ccRCC. We further developed an early diagnostic signature that comprised KMT2D and PREX2 and a differential diagnostic signature that comprised CUL9, KMT2D, and PREX2 for RCC detection. The early diagnostic signature displayed high accuracy in distinguishing ccRCCs from healthy controls, with areas under the receiver operating characteristic curve (AUCs) of 0.836 and 0.830 in the training and validation cohorts, respectively. The differential diagnostic signature also showed great performance in distinguishing ccRCCs from benign renal masses (AUC = 0.816), including solid masses (AUC = 0.810) and cystic masses (AUC = 0.832). CONCLUSIONS We established and validated novel emRNA-based signatures for the early detection of ccRCC and differential diagnosis of uncertain renal masses. These signatures could be promising and noninvasive biomarkers for ccRCC detection and thus improve the prognosis of ccRCC patients.
Collapse
Affiliation(s)
- Xing He
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
| | - Feng Tian
- Department of Urology, The Eighth People's Hospital of Shanghai, 8 Caobao Road, Shanghai, 200235, China
| | - Fei Guo
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
| | - Fangxing Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Huiyong Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jin Ji
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
| | - Lin Zhao
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
| | - Jingyi He
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
| | - Yutian Xiao
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China
| | - Longman Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chunmeng Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Caihong Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yexin Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Feng Zhang
- Department of Urology, The Eighth People's Hospital of Shanghai, 8 Caobao Road, Shanghai, 200235, China
| | - Bo Yang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China.
| | - Huamao Ye
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), 168 Changhai Road, Shanghai, 200433, China.
| | - Fubo Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
Zeng Y, Qiu Y, Jiang W, Shen J, Yao X, He X, Li L, Fu B, Liu X. Biological Features of Extracellular Vesicles and Challenges. Front Cell Dev Biol 2022; 10:816698. [PMID: 35813192 PMCID: PMC9263222 DOI: 10.3389/fcell.2022.816698] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| |
Collapse
|
7
|
Extracellular Vesicles—A New Potential Player in the Immunology of Renal Cell Carcinoma. J Pers Med 2022; 12:jpm12050772. [PMID: 35629194 PMCID: PMC9144962 DOI: 10.3390/jpm12050772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
The incidence of renal cell carcinoma (RCC) has doubled in the developed world within the last fifty years, and now it is responsible for 2–3% of diagnosed cancers. The delay in diagnosis and the not fully understood pathogenesis are the main challenges that have to be overcome. It seems that extracellular vesicles (EVs) are one of the key players in tumor development since they ensure a proper microenvironment for the tumor cells. The stimulation of angiogenesis and immunosuppression is mediated by molecules contained in EVs. It was shown that EVs derived from cancer cells can inhibit T cell proliferation, natural killer lymphocyte activation, and dendritic cell maturation by this mechanism. Moreover, EVs may be a biomarker for the response to anti-cancer treatment. In this review, we sum up the knowledge about the role of EVs in RCC pathogenesis and show their future perspectives in this field.
Collapse
|