1
|
Morphological, Pathological and Genetic Diversity of the Colletotrichum Species, Pathogenic on Solanaceous Vegetable Crops in Bulgaria. J Fungi (Basel) 2022; 8:jof8111123. [PMID: 36354890 PMCID: PMC9693589 DOI: 10.3390/jof8111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022] Open
Abstract
Colletotrichum species are among the most devastating plant pathogens in a wide range of hosts. Their accurate identification requires a polyphasic approach, including geographical, ecological, morphological, and genetic data. Solanaceous crops are of significant economic importance for Bulgarian agriculture. Colletotrichum-associated diseases pose a serious threat to the yield and quality of production but are still largely unexplored. The aim of this study was to identify and characterize 26 pathogenic Colletotrichum isolates that threaten solanaceous crops based on morphological, pathogenic, and molecular data. DNA barcodes enabled the discrimination of three main taxonomic groups: C. acutatum, C. gloeosporioides, and C. coccodes. Three different species of acutatum complex (C. nymphaeae, C. godetiae, and C. salicis) and C. cigarro of the gloeosporioides complex were associated with fruit anthracnose in peppers and tomatoes. The C. coccodes group was divided in two clades: C. nigrum, isolated predominantly from fruits, and C. coccodes, isolated mainly from roots. Only C. salicis and C. cigarro produced sexual morphs. The species C. godetiae, C. salicis, and C. cigarro have not previously been reported in Bulgaria. Our results enrich the knowledge of the biodiversity and specific features of Colletotrichum species, which are pathogenic to solanaceous hosts, and may serve as a scientific platform for efficient disease control and resistance breeding.
Collapse
|
2
|
Ge J, Zhang Z, Li Y, Hu Z, He B, Li Y, Zeng B, Jiang C. Inhibition of AoAur1 increases mycelial growth, hyphal fusion and improves physiological adaptation to high-temperature stress in Aspergillus oryzae. Arch Microbiol 2022; 204:477. [PMID: 35829968 DOI: 10.1007/s00203-022-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
Inositol phosphorylceramide (IPC) participates in hyphal growth and serves as a signaling molecule that enables fungi to adapt to diverse environments. Here, a gene, encodes IPC synthase, was identified from the Aspergillus oryzae 3.042 genome and designated AoAur1. The characteristics, phylogenetic evolution, and resistance to aureobasidin A of AoAur1 were analyzed. The expression pattern of AoAur1 was markedly downregulated under temperature stress. Additionally, an RNAi-AoAur1 strain in which the AoAur1 expression was inhibited had mycelial that grew more quickly, had a higher frequency of hyphal fusion, and was more resistant to high-temperature stress than the control. Gene expression profiles showed that the genes related to IPC biosynthesis were obviously downregulated, while AoCerS, which participates in dihydroceramide biosynthesis, increased in the RNAi-AoAur1 strain at the three temperature treatments. A metabolomic analysis revealed that the intracellular IPC content decreased, and the accumulation of dihydroceramide and galactosylceramide increased significantly in the RNAi-AoAur1 strain. Thus, the inhibition of AoAur1 reduced IPC level followed by an increase in the contents of dihydroceramide and galactosylceramide that promote mycelial growth and the formation of spores in the RNAi-AoAur1 strain. Interestingly, the inhibition of AoAur1 also induced the expression of hyphal fusion-related genes, which promote hyphal fusion, thus, contributing to the transduction of stress signal to enhance the ability of cells to adapt to temperature stress. Our results demonstrated that the downregulation of AoAur1 and a decrease in the accumulation of IPC is one of the mechanisms that enables A. oryzae to adapt low- and high-temperature stress.
Collapse
Affiliation(s)
- Jinxin Ge
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhe Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yuan Li
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yongkai Li
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China. .,College of Pharmacy, Shenzhen Technology University, Shenzhen, 518000, China.
| | - Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
3
|
Agisha VN, Ashwin NMR, Vinodhini RT, Nalayeni K, Ramesh Sundar A, Malathi P, Viswanathan R. Protoplast-mediated transformation in Sporisorium scitamineum facilitates visualization of in planta developmental stages in sugarcane. Mol Biol Rep 2021; 48:7921-7932. [PMID: 34655406 DOI: 10.1007/s11033-021-06823-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Sporisorium scitamineum is the causative agent of smut disease in sugarcane. The tricky life cycle of S. scitamineum consists of three distinct growth stages: diploid teliospores, haploid sporidia and dikaryotic mycelia. Compatible haploid sporidia representing opposite mating types (MAT-1 and MAT-2) of the fungus fuse to form infective dikaryotic mycelia in the host tissues, leading to the development of a characteristic whip shaped sorus. In this study, the transition of distinct stages of in vitro life cycle and in planta developmental stages of S. scitamineum are presented by generating stable GFP transformants of S. scitamineum. METHODS AND RESULTS Haploid sporidia were isolated from the teliospores of Ss97009, and the opposite mating types (MAT-1 and MAT-2) were identified by random mating assay and mating type-specific PCR. Both haploid sporidia were individually transformed with pNIIST plasmid, harboring an enhanced green fluorescent protein (eGFP) gene and hygromycin gene by a modified protoplast-based PEG-mediated transformation method. Thereafter, the distinct in vitro developmental stages including fusion of haploid sporidia and formation of dikaryotic mycelia expressing GFP were demonstrated. To visualize in planta colonization, transformed haploids (MAT-1gfp and MAT-2gfp) were fused and inoculated onto the smut susceptible sugarcane cultivar, Co 97009 and examined microscopically at different stages of colonization. GFP fluorescence-based analysis presented an extensive fungal colonization of the bud surface as well as inter- and intracellular colonization of the transformed S. scitamineum in sugarcane tissues during initial stages of disease development. Noticeably, the GFP-tagged S. scitamineum led to the emergence of smut whips, which established their pathogenicity, and demonstrated initial colonization, active sporogenesis and teliospore maturation stages. CONCLUSION Overall, for the first time, an efficient protoplast-based transformation method was employed to depict clear-cut developmental stages in vitro and in planta using GFP-tagged strains for better understanding of S. scitamineum life cycle development.
Collapse
Affiliation(s)
- V N Agisha
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - N M R Ashwin
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - R T Vinodhini
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Kumaravel Nalayeni
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Amalraj Ramesh Sundar
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India.
| | - Palaniyandi Malathi
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Rasappa Viswanathan
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| |
Collapse
|
4
|
Goulin EH, de Lima TA, dos Santos PJC, Machado MA. RNAi-induced silencing of the succinate dehydrogenase subunits gene in Colletotrichum abscissum, the causal agent of postbloom fruit drop (PFD) in citrus. Microbiol Res 2021; 260:126938. [DOI: 10.1016/j.micres.2021.126938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/17/2021] [Accepted: 11/28/2021] [Indexed: 11/17/2022]
|
5
|
Ding S, Wang D, Xu C, Yang S, Cheng X, Peng X, Chen C, Xie H. A new fungus-mediated RNAi method established and used to study the fatty acid and retinol binding protein function of the plant-parasitic nematode Aphelenchoides besseyi. RNA Biol 2021; 18:1424-1433. [PMID: 33218290 PMCID: PMC8489930 DOI: 10.1080/15476286.2020.1852779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/03/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022] Open
Abstract
RNA interference (RNAi) is a powerful tool for gene functional analysis of plant-parasitic nematodes (PPNs). RNAi involving soaking in a dsRNA solution and in planta methods is commonly applied in the study of gene function in PPNs. However, certain problems restrict the application of these methods. Therefore, more convenient and effective RNAi methods need to be established for different PPNs according to their biological characteristics. In this study, the fatty acid and retinoid binding protein genes (Ab-far-1, Ab-far-4, and combinatorial Ab-far-1 and Ab-far-4) of the rice white tip nematode (RWTN), Aphelenchoides besseyi, were used as target genes to construct a fungal RNAi vector, and the Ab-far-n dsRNA transgenic Botrytis cinerea (ARTBn) were generated using Agrobacterium-mediated transformation technology. After RWTN feeding on ARTBn, the expression of Ab-far-1 and Ab-far-4 in the nematodes was efficiently silenced, and the reproduction and pathogenicity of the nematodes were clearly inhibited. The Ab-far-1 and Ab-far-4 co-RNAi effects were better than the effects when each gene was individually targeted with RNAi. Additionally, the RNAi induced when RWTNs fed on ARTB1 were persistent and heritable. Thus, a new method of fungus-mediated RNAi was established for fungivorous PPNs and was verified as effective and applicable to the study of nematode gene function. This technique will remove the technological bottlenecks and provide a new method to studying the multiple genes with polygene co-RNAi in fungivorous PPNs. This study also provides a theoretical basis and new thought for further study of the gene function in PPNs.Abbreviations: FAR(Fatty acid and retinol-binding proteins); RWTN (The rice white tip nematode, Aphelenchoides besseyi); Ab-far-n (Fatty acid and retinol binding protein gene of A. besseyi); ARTB1 (Ab-far-1 hpRNA transgenic Botrytis cinerea); ARTB4 (Ab-far-4 hpRNA transgenic Botrytis cinerea); ARTB1/4 (combinatorial Ab-far-1 and Ab-far-4 hpRNA transgenic B. cinerea); EVTB (Empty vector transgenic B. cinerea); GRTB (eGFP hpRNA transgenic B. cinerea); WTB (Wild-type B. cinerea).
Collapse
Affiliation(s)
- Shanwen Ding
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Dongwei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, People’s Republic of China
| | - Chunling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Sihua Yang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xi Cheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xiaofang Peng
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, People’s Republic of China
| | - Chun Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Nabi A, Banoo A, Rasool RS, Dar MS, Mubashir SS, Masoodi KZ, Shah MD, Khan AA, Khan I, Padder BA. Optimizing the Agrobacterium tumifaciens mediated transformation conditions in Colletotrichum lindemuthianum: A step forward to unravel the functions of pathogenicity arsenals. Lett Appl Microbiol 2021; 75:293-307. [PMID: 34398478 DOI: 10.1111/lam.13552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes bean anthracnose and it is rated among the top 10 important diseases infecting beans. Currently our knowledge on molecular mechanisms underlying C. lindemuthianum pathogenesis is limited. About five pathogenicity genes have been identified in C. lindemuthianum using Restricted Enzyme Mediated Integration (REMI) and the transformation using Agroinfection has not been optimized. In this study, a series of experiments were conducted to optimize the key parameters affecting the Agrobacterium tumefaciens- mediated transformation (ATMT) for C. lindemuthianum. The transformation efficiency increased with increase in spore concentration and co-cultivation time. However, the optimum conditions that yielded significant number of transformants were 106 ml-1 spore concentration, co-cultivation time of 72 h, incubation at 25ºC and using a cellulose membrane filter for the co-cultivation. The optimized protocol resulted in establishment of large mutant library (2400). A few mutants were melanin deficient and a few were unable to produce conidia. To determine the altered pathogenicity, two new approaches such as detached leaf and twig techniques proved reliable and require fewer resources to screen the large mutant libraries in a short time. Among the 1200 transformants tested for virulence, 90% transformants were pathogenically similar to wild type (race 2047), 96 and 24 were reduced and impaired, respectively. The altered avirulent transformants can prove vital for understanding the missing link between growth and developmental stages of pathogen with virulence. This platform will help to develop strategies to determine the potential pathogenicity genes and to decipher molecular mechanisms of host-pathogen interactions in more detail.
Collapse
Affiliation(s)
- Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Aqleema Banoo
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Rovidha S Rasool
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - M S Dar
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Syed Shoaib Mubashir
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Khalid Z Masoodi
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - M D Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Akhtar A Khan
- Division of Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Imran Khan
- Division of Agricultural Statistics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, 190 025
| |
Collapse
|
7
|
Kuo CC, Lin YC, Chen LH, Lin MY, Shih MC, Lee MH. CaNRT2.1 Is Required for Nitrate but Not Nitrite Uptake in Chili Pepper Pathogen Colletotrichum acutatum. Front Microbiol 2021; 11:613674. [PMID: 33469454 PMCID: PMC7813687 DOI: 10.3389/fmicb.2020.613674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Chili peppers are an important food additive used in spicy cuisines worldwide. However, the yield and quality of chilis are threatened by anthracnose disease caused by Colletotrichum acutatum. Despite the impact of C. acutatum on chili production, the genes involved in fungal development and pathogenicity in this species have not been well characterized. In this study, through T-DNA insertional mutagenesis, we identified a mutant strain termed B7, which is defective for the growth of C. acutatum on a minimal nutrient medium. Our bioinformatics analysis revealed that a large fragment DNA (19.8 kb) is deleted from the B7 genome, thus resulting in the deletion of three genes, including CaGpiP1 encoding a glycosylphosphatidyl-inisotol (GPI)-anchored protein, CaNRT2.1 encoding a membrane-bound nitrate/nitrite transporter, and CaRQH1 encoding a RecQ helicase protein. In addition, T-DNA is inserted upstream of the CaHP1 gene encoding a hypothetical protein. Functional characterization of CaGpiP1, CaNRT2.1, and CaHP1 by targeted gene disruption and bioassays indicated that CaNRT2.1 is responsible for the growth-defective phenotype of B7. Both B7 and CaNRT2.1 mutant strains cannot utilize nitrate as nitrogen sources, thus restraining the fungal growth on a minimal nutrient medium. In addition to CaNRT2.1, our results showed that CaGpiP1 is a cell wall-associated GPI-anchored protein. However, after investigating the functions of CaGpiP1 and CaHP1 in fungal pathogenicity, growth, development and stress tolerance, we were unable to uncover the roles of these two genes in C. acutatum. Collectively, in this study, our results identify the growth-defective strain B7 via T-DNA insertion and reveal the critical role of CaNRT2.1 in nitrate transportation for the fungal growth of C. acutatum.
Collapse
Affiliation(s)
- Chia-Chi Kuo
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Chu Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Li-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Yi Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academic Sinica, Taipei, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Mahyudin MM, Foster GD, Bailey AM. Optimising Agrobacterium-mediated transformation of Corynespora cassiicola to deliver DsRed. J RUBBER RES 2020. [DOI: 10.1007/s42464-020-00044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Hettiarachchige IK, Ludlow EJ, Ekanayake PN, Brohier ND, Sahab S, Sawbridge TI, Spangenberg GC, Guthridge KM. Generation of Epichloë Strains Expressing Fluorescent Proteins Suitable for Studying Host-Endophyte Interactions and Characterisation of a T-DNA Integration Event. Microorganisms 2019; 8:E54. [PMID: 31892173 PMCID: PMC7023320 DOI: 10.3390/microorganisms8010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/17/2022] Open
Abstract
Methods for the identification and localisation of endophytic fungi are required to study the establishment, development, and progression of host-symbiont interactions, as visible reactions or disease symptoms are generally absent from host plants. Fluorescent proteins have proved valuable as reporter gene products, allowing non-invasive detection in living cells. This study reports the introduction of genes for two fluorescent proteins, green fluorescent protein (GFP) and red fluorescent protein, DsRed, into the genomes of two distinct perennial ryegrass (Lolium perenne L.)-associated Epichloë endophyte strains using A. tumefaciens-mediated transformation. Comprehensive characterisation of reporter gene-containing endophyte strains was performed using molecular genetic, phenotypic, and bioinformatic tools. A combination of long read and short read sequencing of a selected transformant identified a single complex T-DNA insert of 35,530 bp containing multiple T-DNAs linked together. This approach allowed for comprehensive characterisation of T-DNA integration to single-base resolution, while revealing the unanticipated nature of T-DNA integration in the transformant analysed. These reporter gene endophyte strains were able to establish and maintain stable symbiotum with the host. In addition, the same endophyte strain labelled with two different fluorescent proteins were able to cohabit the same plant. This knowledge can be used to provide the basis to develop strategies to gain new insights into the host-endophyte interaction through independent and simultaneous monitoring in planta throughout its life cycle in greater detail.
Collapse
Affiliation(s)
- Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Emma J. Ludlow
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Piyumi N. Ekanayake
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Natasha D. Brohier
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Sareena Sahab
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| |
Collapse
|
10
|
Shin JH, Han JH, Park HH, Fu T, Kim KS. Optimization of Polyethylene Glycol-Mediated Transformation of the Pepper Anthracnose Pathogen Colletotrichum scovillei to Develop an Applied Genomics Approach. THE PLANT PATHOLOGY JOURNAL 2019; 35:575-584. [PMID: 31832038 PMCID: PMC6901253 DOI: 10.5423/ppj.oa.06.2019.0171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/30/2019] [Indexed: 05/09/2023]
Abstract
Colletotrichum acutatum is a species complex responsible for anthracnose disease in a wide range of host plants. Strain C. acutatum KC05, which was previously isolated from an infected pepper in Gangwon Province of South Korea, was reidentified as C. scovillei using combined sequence analyses of multiple genes. As a prerequisite for understanding the pathogenic development of the pepper anthracnose pathogen, we optimized the transformation system of C. scovillei KC05. Protoplast generation from young hyphae of KC05 was optimal in an enzymatic digestion using a combined treatment of 2% lysing enzyme and 0.8% driselase in 1 M NH4Cl for 3 h incubation. Prolonged incubation for more than 3 h decreased protoplast yields. Protoplast growth of KC05 was completely inhibited for 4 days on regeneration media containing 200 μg/ml hygromycin B, indicating the viability of this antibiotic as a selection marker. To evaluate transformation efficiency, we tested polyethylene glycol-mediated protoplast transformation of KC05 using 19 different loci found throughout 10 (of 27) scaffolds, covering approximately 84.1% of the entire genome. PCR screening showed that the average transformation efficiency was about 17.1% per 100 colonies. Southern blot analyses revealed that at least one transformant per locus had single copy integration of PCR-screened positive transformants. Our results provide valuable information for a functional genomics approach to the pepper anthracnose pathogen C. scovillei.
Collapse
Affiliation(s)
| | | | | | | | - Kyoung Su Kim
- Corresponding author.: Phone) +82-33-250-6435, FAX) +82-33-259-5558, E-mail)
| |
Collapse
|
11
|
Li J, Hong N, Peng B, Wu H, Gu Q. Transformation of Corynespora cassiicola by Agrobacterium tumefaciens. Fungal Biol 2019; 123:669-675. [PMID: 31416586 DOI: 10.1016/j.funbio.2019.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/28/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022]
Abstract
The fungus causing target spot disease, Corynespora cassiicola (Berk. & M. A. Curtis) C. T. Wei, poses an increasing threat to watermelon (Citrullus lanatus), muskmelon (Cucumis melo), and cucumber (Cucumis sativus); the most economically important cucurbit crops grown in China. An understanding of the molecular mechanisms underlying the pathogenicity of C. cassiicola is essential for the development of new strategies to control this disease-causing fungus. Agrobacterium tumefaciens-mediated transformation (ATMT) might be useful to obtain transformants of C. cassiicola, for the ultimate identification of genes involved in pathogenicity. In the present work, we established and optimized an ATMT protocol using A. tumefaciens strain AGL-1 carrying the vector pATMT1 for C. cassiicola. Efficiency of ATMT was 102-148 transformants per 106 conidia and successive subculturing of transformants on non-selective and selective media demonstrated that the integrated transfer (T)-DNA was stably inherited in C. cassiicola transformants. The integration of the hygromycin B phosphotransferase (hph) gene into C. cassiicola was validated by PCR and Southern blot analyses, which revealed that nearly 90 % of the transformants contained single-copy T-DNA. The transformants with altered phenotypes were characterized. Three of these transformants completely lost pathogenicity and other three showed strongly impaired pathogenicity relative to the Cc-GX strain on muskmelon leaves. These results strongly suggest that ATMT may be used as a molecular tool for identifying genes relevant to pathogenicity in the fungus C. cassiicola, an emerging threat to several agronomically important plants in China.
Collapse
Affiliation(s)
- Junxiang Li
- Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, Henan, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ni Hong
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bin Peng
- Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, Henan, China
| | - Huijie Wu
- Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, Henan, China
| | - Qinsheng Gu
- Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, Henan, China.
| |
Collapse
|
12
|
A highly efficient Agrobacterium tumefaciens-mediated transformation system for the postharvest pathogen Penicillium digitatum using DsRed and GFP to visualize citrus host colonization. J Microbiol Methods 2017; 144:134-144. [PMID: 29175534 DOI: 10.1016/j.mimet.2017.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 11/21/2022]
Abstract
Penicillium digitatum is a major postharvest pathogen of citrus crops. This fungus broadly spreads worldwide and causes green mold disease, which results in severe losses for citrus production. Understanding of the citrus infection by P. digitatum may help develop effective strategies for controlling this pathogen. In this study, we have characterized a virulent strain of P. digitatum isolated in Vietnam and established a highly efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for this fungal strain with two newly constructed binary vectors. These binary vectors harbor dominant selectable markers for hygromycin or nourseothricin resistance, and expression cassettes for the red fluorescent protein (DsRed) or the green fluorescent protein (GFP), respectively. Using the established ATMT system, the transformation efficiency of the Vietnamese strain could reach a very high yield of 1240±165 transformants per 106 spores. Interestingly, we found that GFP is much better than DsRed for in situ visualization of citrus fruit colonization by the fungus. Additionally, we showed that the transformation system can also be used to generate T-DNA insertion mutants for screening non-pathogenic or less virulent strains. Our work provides a new platform including a virulent tropical strain of P. digitatum, an optimized ATMT method and two newly constructed binary vectors for investigation of the postharvest pathogen. This platform will help develop strategies to dissect molecular mechanisms of host-pathogen interactions in more detail as well as to identify potential genes of pathogenicity by either insertional mutagenesis or gene disruption in this important pathogenic fungus.
Collapse
|
13
|
Onyilo F, Tusiime G, Chen LH, Falk B, Stergiopoulos I, Tripathi JN, Tushemereirwe W, Kubiriba J, Changa C, Tripathi L. Agrobacterium tumefaciens-Mediated Transformation of Pseudocercospora fijiensis to Determine the Role of PfHog1 in Osmotic Stress Regulation and Virulence Modulation. Front Microbiol 2017; 8:830. [PMID: 28559879 PMCID: PMC5432539 DOI: 10.3389/fmicb.2017.00830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
Black Sigatoka disease, caused by Pseudocercospora fijiensis is a serious constraint to banana production worldwide. The disease continues to spread in new ecological niches and there is an urgent need to develop strategies for its control. The high osmolarity glycerol (HOG) pathway in Saccharomyces cerevisiae is well known to respond to changes in external osmolarity. HOG pathway activation leads to phosphorylation, activation and nuclear transduction of the HOG1 mitogen-activated protein kinases (MAPKs). The activated HOG1 triggers several responses to osmotic stress, including up or down regulation of different genes, regulation of protein translation, adjustments to cell cycle progression and synthesis of osmolyte glycerol. This study investigated the role of the MAPK-encoding PfHog1 gene on osmotic stress adaptation and virulence of P. fijiensis. RNA interference-mediated gene silencing of PfHog1 significantly suppressed growth of P. fijiensis on potato dextrose agar media supplemented with 1 M NaCl, indicating that PfHog1 regulates osmotic stress. In addition, virulence of the PfHog1-silenced mutants of P. fijiensis on banana was significantly reduced, as observed from the low rates of necrosis and disease development on the infected leaves. Staining with lacto phenol cotton blue further confirmed the impaired mycelial growth of the PfHog1 in the infected leaf tissues, which was further confirmed with quantification of the fungal biomass using absolute- quantitative PCR. Collectively, these findings demonstrate that PfHog1 plays a critical role in osmotic stress regulation and virulence of P. fijiensis on its host banana. Thus, PfHog1 could be an interesting target for the control of black Sigatoka disease in banana.
Collapse
Affiliation(s)
- Francis Onyilo
- National Agricultural Research LaboratoriesKampala, Uganda
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere UniversityKampala, Uganda
- International Institute of Tropical AgricultureNairobi, Kenya
| | - Geoffrey Tusiime
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere UniversityKampala, Uganda
| | - Li-Hung Chen
- Department of Plant Pathology, University of California, Davis, DavisCA, USA
| | - Bryce Falk
- Department of Plant Pathology, University of California, Davis, DavisCA, USA
| | | | | | | | | | - Charles Changa
- National Agricultural Research LaboratoriesKampala, Uganda
| | - Leena Tripathi
- International Institute of Tropical AgricultureNairobi, Kenya
| |
Collapse
|
14
|
A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation. World J Microbiol Biotechnol 2017; 33:107. [DOI: 10.1007/s11274-017-2275-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
15
|
The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae. World J Microbiol Biotechnol 2016; 32:204. [DOI: 10.1007/s11274-016-2168-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/27/2016] [Indexed: 11/26/2022]
|
16
|
Identification of genes associated with asexual reproduction in Phyllosticta citricarpa mutants obtained through Agrobacterium tumefaciens transformation. Microbiol Res 2016; 192:142-147. [PMID: 27664732 DOI: 10.1016/j.micres.2016.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/22/2016] [Accepted: 06/25/2016] [Indexed: 11/20/2022]
Abstract
Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA.
Collapse
|
17
|
UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Sci Rep 2016; 6:24824. [PMID: 27095476 PMCID: PMC4837404 DOI: 10.1038/srep24824] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/06/2016] [Indexed: 11/23/2022] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is one of the most important diseases of rice worldwide. Although its genome has been sequenced, to date there is no report on targeted gene deletion in U. virens and no molecular studies on genetic mechanisms regulating the infection processes of this destructive pathogen. In this study, we attempted to generate knockout mutants of the ortholog of yeast HOG1 MAP kinase gene in U. virens. One Uvhog1 deletion mutant was identified after screening over 600 hygromycin-resistant transformants generated by Agrobacterium tumefaciens mediated transformation. The Uvhog1 mutant was reduced in growth rate and conidiation but had increased sensitivities to SDS, Congo red, and hyperosmotic stress. Deletion of UvHOG1 resulted in reduced expression of the stress response-related genes UvATF1 and UvSKN7. In the Uvhog1 mutant, NaCl treatment failed to stimulate the accumulation of sorbitol and glycerol. In addition, the Uvhog1 mutant had reduced toxicity on shoot growth in rice seed germination assays. Overall, as the first report of targeted gene deletion mutant in U. virens, our results showed that UvHOG1 likely has conserved roles in regulating stress responses, hyphal growth, and possibly secondary metabolism.
Collapse
|
18
|
Zhang J, Bayram Akcapinar G, Atanasova L, Rahimi MJ, Przylucka A, Yang D, Kubicek CP, Zhang R, Shen Q, Druzhinina IS. The neutral metallopeptidase NMP1 ofTrichoderma guizhouenseis required for mycotrophy and self-defence. Environ Microbiol 2015; 18:580-97. [DOI: 10.1111/1462-2920.12966] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Jian Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Gunseli Bayram Akcapinar
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Lea Atanasova
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Mohammad Javad Rahimi
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | | | - Dongqing Yang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Christian P. Kubicek
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Ruifu Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Irina S. Druzhinina
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| |
Collapse
|
19
|
Korn M, Schmidpeter J, Dahl M, Müller S, Voll LM, Koch C. A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration. PLoS One 2015; 10:e0125960. [PMID: 25992547 PMCID: PMC4437780 DOI: 10.1371/journal.pone.0125960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/27/2015] [Indexed: 11/22/2022] Open
Abstract
We used insertional mutagenesis by Agrobacterium tumefaciens mediated transformation (ATMT) to isolate pathogenicity mutants of Colletotrichum higginsianum. From a collection of 7200 insertion mutants we isolated 75 mutants with reduced symptoms. 19 of these were affected in host penetration, while 17 were affected in later stages of infection, like switching to necrotrophic growth. For 16 mutants the location of T-DNA insertions could be identified by PCR. A potential plasma membrane H+-ATPase Pma2 was targeted in five independent insertion mutants. We genetically inactivated the Ku80 component of the non-homologous end-joining pathway in C. higginsianum to establish an efficient gene knockout protocol. Chpma2 deletion mutants generated by homologous recombination in the ΔChku80 background form fully melanized appressoria but entirely fail to penetrate the host tissue and are non-pathogenic. The ChPMA2 gene is induced upon appressoria formation and infection of A. thaliana. Pma2 activity is not important for vegetative growth of saprophytically growing mycelium, since the mutant shows no growth penalty under these conditions. Colletotrichum higginsianum codes for a closely related gene (ChPMA1), which is highly expressed under most growth conditions. ChPMA1 is more similar to the homologous yeast genes for plasma membrane pumps. We propose that expression of a specific proton pump early during infection may be common to many appressoria forming fungal pathogens as we found ChPMA2 orthologs in several plant pathogenic fungi.
Collapse
Affiliation(s)
- Martin Korn
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Johannes Schmidpeter
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Marlis Dahl
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Susanne Müller
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Lars M. Voll
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Christian Koch
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
- * E-mail:
| |
Collapse
|
20
|
Gong X, Hurtado O, Wang B, Wu C, Yi M, Giraldo M, Valent B, Goodin M, Farman M. pFPL Vectors for High-Throughput Protein Localization in Fungi: Detecting Cytoplasmic Accumulation of Putative Effector Proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:107-121. [PMID: 25390188 DOI: 10.1094/mpmi-05-14-0144-ta] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As part of a large-scale project whose goal was to identify candidate effector proteins in Magnaporthe oryzae, we developed a suite of vectors that facilitate high-throughput protein localization experiments in fungi. These vectors utilize Gateway recombinational cloning to place a gene's promoter and coding sequences upstream and in frame with enhanced cyan fluorescent protein, green fluorescent protein (GFP), monomeric red fluorescence protein (mRFP), and yellow fluorescent protein or a nucleus-targeted mCHERRY variant. The respective Gateway cassettes were incorporated into Agrobacterium-based plasmids to allow efficient fungal transformation using hygromycin or geneticin resistance selection. mRFP proved to be more sensitive than the GFP spectral variants for monitoring proteins secreted in planta; and extensive testing showed that Gateway-derived fusion proteins produced localization patterns identical to their "directly fused" counterparts. Use of plasmid for fungal protein localization (pFPL) vectors with two different selectable markers provided a convenient way to label fungal cells with different fluorescent proteins. We demonstrate the utility of the pFPL vectors for identifying candidate effector proteins and we highlight a number of important factors that must be taken into consideration when screening for proteins that are translocated across the host plasma membrane.
Collapse
|
21
|
|
22
|
Doré J, Marmeisse R, Combier JP, Gay G. A fungal conserved gene from the basidiomycete Hebeloma cylindrosporum is essential for efficient ectomycorrhiza formation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1059-69. [PMID: 24918768 DOI: 10.1094/mpmi-03-14-0087-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We used Agrobacterium-mediated insertional mutagenesis to identify genes in the ectomycorrhizal fungus Hebeloma cylindrosporum that are essential for efficient mycorrhiza formation. One of the mutants presented a dramatically reduced ability to form ectomycorrhizas when grown in the presence of Pinus pinaster. It failed to form mycorrhizas in the presence of glucose at 0.5 g liter(-1), a condition favorable for mycorrhiza formation by the wild-type strain. However, it formed few mycorrhizas when glucose was replaced by fructose or when glucose concentration was increased to 1 g liter(-1). Scanning electron microscopy examination of these mycorrhizas revealed that this mutant was unable to differentiate true fungal sheath and Hartig net. Molecular analyses showed that the single-copy disrupting T-DNA was integrated 6,884 bp downstream from the start codon, of an open reading frame potentially encoding a 3,096-amino-acid-long protein. This gene, which we named HcMycE1, has orthologs in numerous fungi as well as different other eukaryotic microorganisms. RNAi inactivation of HcMycE1 in the wild-type strain also led to a mycorrhizal defect, demonstrating that the nonmycorrhizal phenotype of the mutant was due to mutagenic T-DNA integration in HcMycE1. In the wild-type strain colonizing P. pinaster roots, HcMycE1 was transiently upregulated before symbiotic structure differentiation. Together with the inability of the mutant to differentiate these structures, this suggests that HcMycE1 plays a crucial role upstream of the fungal sheath and Hartig net differentiation. This study provides the first characterization of a fungal mutant altered in mycorrhizal ability.
Collapse
|
23
|
Wang C, Guan X, Wang H, Li G, Dong X, Wang G, Li B. Agrobacterium tumefaciens-mediated transformation of Valsa mali: an efficient tool for random insertion mutagenesis. ScientificWorldJournal 2013; 2013:968432. [PMID: 24381526 PMCID: PMC3867955 DOI: 10.1155/2013/968432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 11/13/2013] [Indexed: 11/28/2022] Open
Abstract
Valsa mali is a causal agent of apple and pear trees canker disease, which is a destructive disease that causes serious economic losses in eastern Asia, especially in China. The lack of an efficient transformation system for Valsa mali retards its investigation, which poses difficulties to control the disease. In this research, a transformation system for this pathogen was established for the first time using A. tumefaciens-mediated transformation (ATMT), with the optimal transformation conditions as follows: 10(6)/mL conidia suspension, cocultivation temperature 22°C, cocultivation time 72 hours, and 200 μ M acetosyringone (AS) in the inductive medium. The average transformation efficiency was 1015.00 ± 37.35 transformants per 10(6) recipient conidia. Thirty transformants were randomly selected for further confirmation and the results showed the presence of T-DNA in all hygromycin B resistant transformants and also revealed random and single gene integration with genetic stability. Compared with wild-type strain, those transformants exhibited various differences in morphology, conidia production, and conidia germination ability. In addition, pathogenicity assays revealed that 14 transformants had mitigated pathogenicity, while one had enhanced infection ability. The results suggest that ATMT of V. mali is a useful tool to gain novel insight into this economically important pathogen at molecular levels.
Collapse
Affiliation(s)
- Caixia Wang
- College of Agronomy and Plant Protection, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Xiangnan Guan
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Hanyan Wang
- College of Agronomy and Plant Protection, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Guifang Li
- College of Agronomy and Plant Protection, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Xiangli Dong
- College of Agronomy and Plant Protection, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, 1 Shizishan Road, Wuhan 430070, China
| | - Baohua Li
- College of Agronomy and Plant Protection, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| |
Collapse
|
24
|
de Boer P, Bronkhof J, Dukiќ K, Kerkman R, Touw H, van den Berg M, Offringa R. Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches. Fungal Genet Biol 2013; 61:9-14. [PMID: 23994321 DOI: 10.1016/j.fgb.2013.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/28/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
The industrial production of β-lactam antibiotics by Penicillium chrysogenum has increased tremendously over the last decades, however, further optimization via classical strain and process improvement has reached its limits. The availability of the genome sequence provides new opportunities for directed strain improvement, but this requires the establishment of an efficient gene targeting (GT) system. Recently, mutations affecting the non-homologous end joining (NHEJ) pathway were shown to increase GT efficiencies following PEG-mediated DNA transfer in P. chrysogenum from 1% to 50%. Apart from direct DNA transfer many fungi can efficiently be transformed using the T-DNA transfer system of the soil bacterium Agrobacterium tumefaciens, however, for P. chrysogenum no robust system for Agrobacterium-mediated transformation was available. We obtained efficient AMT of P. chrysogenum spores with the nourseothricin acetyltransferase gene as selection marker, and using this system we investigated if AMT in a NHEJ mutant background could further enhance GT efficiencies. In general, AMT resulted in higher GT efficiencies than direct DNA transfer, although the final frequencies depended on the Agrobacterium strain and plasmid backbone used. Providing overlapping and complementing fragments on two different plasmid backbones via the same Agrobacterium host was shown to be most effective. This so-called split-marker or bi-partite method resulted in highly efficient GT (>97%) almost exclusively without additional ectopic T-DNA insertions. As this method provides for an efficient GT method independent of protoplasts, it can be applied to other fungi for which no protoplasts can be generated or for which protoplast transformation leads to varying results.
Collapse
Affiliation(s)
- Paulo de Boer
- Add2X Biosciences B.V., Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
25
|
Agrobacterium-mediated transformation of Guignardia citricarpa: An efficient tool to gene transfer and random mutagenesis. Fungal Biol 2013; 117:556-68. [DOI: 10.1016/j.funbio.2013.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 05/24/2013] [Accepted: 06/19/2013] [Indexed: 11/13/2022]
|
26
|
Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Microbiol Res 2013; 168:340-350. [PMID: 23602122 DOI: 10.1016/j.micres.2013.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 11/23/2022]
Abstract
To gain more insight into the molecular mechanisms of Colletotrichum gloeosporioides pathogenesis, Agrobacterium tumefaciens-mediated transformation (ATMT) was used to identify mutants of C. gloeosporioides impaired in pathogenicity. An ATMT library of 4128 C. gloeosporioides transformants was generated. Transformants were screened for defects in pathogenicity with a detached copper brown leaf assay. 32 mutants showing reproducible pathogenicity defects were obtained. Southern blot analysis showed 60.4% of the transformants had single-site T-DNA integrations. 16 Genomic sequences flanking T-DNA were recovered from mutants by thermal asymmetric interlaced PCR, and were used to isolate the tagged genes from the genome sequence of wild-type C. gloeosporioides by Basic Local Alignment Search Tool searches against the local genome database of the wild-type C. gloeosporioides. One potential pathogenicity genes encoded calcium-translocating P-type ATPase. Six potential pathogenicity genes had no known homologs in filamentous fungi and were likely to be novel fungal virulence factors. Two putative genes encoded Glycosyltransferase family 28 domain-containing protein and Mov34/MPN/PAD-1 family protein, respectively. Five potential pathogenicity genes had putative function matched with putative protein of other Colletotrichum species. Two known C. gloeosporioides pathogenicity genes were also identified, the encoding Glomerella cingulata hard-surface induced protein and C. gloeosporioides regulatory subunit of protein kinase A gene involved in cAMP-dependent PKA signal transduction pathway.
Collapse
|
27
|
Ramos B, González-Melendi P, Sánchez-Vallet A, Sánchez-Rodríguez C, López G, Molina A. Functional genomics tools to decipher the pathogenicity mechanisms of the necrotrophic fungus Plectosphaerella cucumerina in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2013; 14:44-57. [PMID: 22937870 PMCID: PMC6638842 DOI: 10.1111/j.1364-3703.2012.00826.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The analysis of the interaction between Arabidopsis thaliana and adapted (PcBMM) and nonadapted (Pc2127) isolates of the necrotrophic fungus Plectosphaerella cucumerina has contributed to the identification of molecular mechanisms controlling plant resistance to necrotrophs. To characterize the pathogenicity bases of the virulence of necrotrophic fungi in Arabidopsis, we developed P. cucumerina functional genomics tools using Agrobacterium tumefaciens-mediated transformation. We generated PcBMM-GFP and Pc2127-GFP transformants constitutively expressing the green fluorescence protein (GFP), and a collection of random T-DNA insertional PcBMM transformants. Confocal microscopy analyses of the initial stages of PcBMM-GFP infection revealed that this pathogen, like other necrotrophic fungi, does not form an appressorium or penetrate into plant cells, but causes successive degradation of leaf cell layers. By comparing the colonization of Arabidopsis wild-type plants and hypersusceptible (agb1-1 and cyp79B2cyp79B3) and resistant (irx1-6) mutants by PcBMM-GFP or Pc2127-GFP, we found that the plant immune response was already mounted at 12-18 h post-inoculation, and that Arabidopsis resistance to these fungi correlated with the time course of spore germination and hyphal growth on the leaf surface. The virulence of a subset of the PcBMM T-DNA insertional transformants was determined in Arabidopsis wild-type plants and agb1-1 mutant, and several transformants were identified that showed altered virulence in these genotypes in comparison with that of untransformed PcBMM. The T-DNA flanking regions in these fungal mutants were successfully sequenced, further supporting the utility of these functional genomics tools in the molecular characterization of the pathogenicity of necrotrophic fungi.
Collapse
Affiliation(s)
- Brisa Ramos
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Buron-Moles G, López-Pérez M, González-Candelas L, Viñas I, Teixidó N, Usall J, Torres R. Use of GFP-tagged strains of Penicillium digitatum and Penicillium expansum to study host-pathogen interactions in oranges and apples. Int J Food Microbiol 2012. [PMID: 23177056 DOI: 10.1016/j.ijfoodmicro.2012.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Penicillium digitatum and Penicillium expansum are responsible for green and blue molds in citrus and pome fruits, respectively, which result in major monetary losses worldwide. In order to study their infection process in fruits, we successfully introduced a green fluorescent protein (GFP) encoding gene into wild type P. digitatum and P. expansum isolates, using Agrobacterium tumefaciens-mediated transformation (ATMT), with hygromycin B resistance as the selectable marker. To our knowledge, this is the first report describing the transformation of these two important postharvest pathogens with GFP and the use of transformed strains to study compatible and non-host pathogen interactions. Transformation did not affect the pathogenicity or the ecophysiology of either species compared to their respective wild type strains. The GFP-tagged strains were used for in situ analysis of compatible and non-host pathogen interactions on oranges and apples. Knowledge of the infection process of apples and oranges by these pathogens will facilitate the design of novel strategies to control these postharvest diseases and the use of the GFP-tagged strains will help to determine the response of P. digitatum and P. expansum on/in plant surface and tissues to different postharvest treatments.
Collapse
Affiliation(s)
- G Buron-Moles
- University of Lleida, XaRTA-Postharvest, Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Auyong ASM, Ford R, Taylor PWJ. Genetic transformation of Colletotrichum truncatum associated with anthracnose disease of chili by random insertional mutagenesis. J Basic Microbiol 2011; 52:372-82. [PMID: 22052577 DOI: 10.1002/jobm.201100250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/05/2011] [Indexed: 11/06/2022]
Abstract
An Agrobacterium tumefaciens -mediated transformation (ATMT) system was successfully developed for Colletotrichum truncatum, the causal agent of chili anthracnose. A. tumefaciens carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (gfp) gene was used to transform the conidiospores of two C. truncatum pathotypes F8-3B and BRIP26974. Optimum transformation efficiency was obtained when equal volumes of A. tumefaciens strain AGL1 carrying either pJF1 or pPK2 binary vector was used to transform C. truncatum conidiospores at 10(6) /ml and co-cultivated at 24 °C for three days. Southern blot analysis indicated that 87.5% of the transformants contained randomly inserted, single copies of the T-DNA. Infection and colonisation of chili fruit at the mature red stage with F8-3B-GFP and BRIP26974-GFP confirmed the maintenance of virulence within these transformed pathotypes. In situ studies of infection and colonisation of the susceptible genotype fruit using fluorescent microscopy and transformed isolates of C. truncatum expressing GFP revealed that the pathogen was able to colonise healthy fruit tissue intercellularly in an endophytic manner without producing secondary biotrophic infection structures. The developed transformation system will be used to study the function of pathogenicity genes in C. truncatum using both forward and reverse genetics approaches.
Collapse
Affiliation(s)
- Adelene Shu Mei Auyong
- Centre for Plant Health/BioMarka, Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
30
|
Maruthachalam K, Klosterman SJ, Kang S, Hayes RJ, Subbarao KV. Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis. Mol Biotechnol 2011; 49:209-21. [PMID: 21424547 PMCID: PMC3183274 DOI: 10.1007/s12033-011-9392-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Verticillium dahliae is the causal agent of vascular wilt in many economically important crops worldwide. Identification of genes that control pathogenicity or virulence may suggest targets for alternative control methods for this fungus. In this study, Agrobacterium tumefaciens-mediated transformation (ATMT) was applied for insertional mutagenesis of V. dahliae conidia. Southern blot analysis indicated that T-DNAs were inserted randomly into the V. dahliae genome and that 69% of the transformants were the result of single copy T-DNA insertion. DNA sequences flanking T-DNA insertion were isolated through inverse PCR (iPCR), and these sequences were aligned to the genome sequence to identify the genomic position of insertion. V. dahliae mutants of particular interest selected based on culture phenotypes included those that had lost the ability to form microsclerotia and subsequently used for virulence assay. Based on the virulence assay of 181 transformants, we identified several mutant strains of V. dahliae that did not cause symptoms on lettuce plants. Among these mutants, T-DNA was inserted in genes encoding an endoglucanase 1 (VdEg-1), a hydroxyl-methyl glutaryl-CoA synthase (VdHMGS), a major facilitator superfamily 1 (VdMFS1), and a glycosylphosphatidylinositol (GPI) mannosyltransferase 3 (VdGPIM3). These results suggest that ATMT can effectively be used to identify genes associated with pathogenicity and other functions in V. dahliae.
Collapse
Affiliation(s)
- K. Maruthachalam
- Department of Plant Pathology, University of California-Davis, c/o U.S. Agricultural Research Station, 1636 E. Alisal St., Salinas, CA 93905 USA
| | | | - S. Kang
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 USA
| | | | - K. V. Subbarao
- Department of Plant Pathology, University of California-Davis, c/o U.S. Agricultural Research Station, 1636 E. Alisal St., Salinas, CA 93905 USA
| |
Collapse
|
31
|
Zhang Y, Li G, He D, Yu B, Yokoyama K, Wang L. Efficient insertional mutagenesis system for the dimorphic pathogenic fungus Sporothrix schenckii using Agrobacterium tumefaciens. J Microbiol Methods 2011; 84:418-22. [DOI: 10.1016/j.mimet.2011.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/15/2010] [Accepted: 01/03/2011] [Indexed: 02/06/2023]
|
32
|
Münch S, Ludwig N, Floss DS, Sugui JA, Koszucka AM, Voll LM, Sonnewald U, Deising HB. Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agrobacterium tumefaciens-mediated transformation. MOLECULAR PLANT PATHOLOGY 2011; 12:43-55. [PMID: 21118348 PMCID: PMC6640349 DOI: 10.1111/j.1364-3703.2010.00651.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for the plant pathogenic fungus Colletotrichum graminicola led to high rates of tandem integration of the whole Ti-plasmid, and was therefore considered to be unsuitable for the identification of pathogenicity and virulence genes by insertional mutagenesis in this pathogen. We used a modified ATMT protocol with acetosyringone present only during the co-cultivation of C. graminicola and A. tumefaciens. Analysis of 105 single-spore isolates randomly chosen from a collection of approximately 2000 transformants, indicated that almost 70% of the transformants had single T-DNA integrations. Of 500 independent transformants tested, 10 exhibited attenuated virulence in infection assays on whole plants. Microscopic analyses primarily revealed defects at different pre-penetration stages of infection-related morphogenesis. Three transformants were characterized in detail. The identification of the T-DNA integration sites was performed by amplification of genomic DNA ends after endonuclease digestion and polynucleotide tailing. In one transformant, the T-DNA had integrated into the 5'-flank of a gene with similarity to allantoicase genes of other Ascomycota. In the second and third transformants, the T-DNA had integrated into an open reading frame (ORF) and into the 5'-flank of an ORF. In both cases, the ORFs have unknown function.
Collapse
Affiliation(s)
- Steffen Münch
- Martin-Luther-University Halle-Wittenberg, Faculty of Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Betty-Heimann-Str. 3, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gao F, Zhou BJ, Li GY, Jia PS, Li H, Zhao YL, Zhao P, Xia GX, Guo HS. A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS One 2010; 5:e15319. [PMID: 21151869 PMCID: PMC2998422 DOI: 10.1371/journal.pone.0015319] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/04/2010] [Indexed: 01/26/2023] Open
Abstract
Verticillium dahliae Kleb. is a phytopathogenic fungus that causes wilt disease in a wide range of crops, including cotton. The life cycle of V. dahliae includes three vegetative phases: parasitic, saprophytic and dormant. The dormant microsclerotia are the primary infectious propagules, which germinate when they are stimulated by root exudates. In this study, we report the first application of Agrobacterium tumefaciens-mediated transformation (ATMT) for construction of insertional mutants from a virulent defoliating isolate of V. dahliae (V592). Changes in morphology, especially a lack of melanized microsclerotia or pigmentation traits, were observed in mutants. Together with the established laboratory unimpaired root dip-inoculation approach, we found insertional mutants to be affected in their pathogenicities in cotton. One of the genes tagged in a pathogenicity mutant encoded a glutamic acid-rich protein (VdGARP1), which shared no significant similarity to any known annotated gene. The vdgarp1 mutant showed vigorous mycelium growth with a significant delay in melanized microsclerotial formation. The expression of VdGARP1 in the wild type V529 was organ-specific and differentially regulated by different stress agencies and conditions, in addition to being stimulated by cotton root extract in liquid culture medium. Under extreme infertile nutrient conditions, VdGARP1 was not necessary for melanized microsclerotial formation. Taken together, our data suggest that VdGARP1 plays an important role in sensing infertile nutrient conditions in infected cells to promote a transfer from saprophytic to dormant microsclerotia for long-term survival. Overall, our findings indicate that insertional mutagenesis by ATMT is a valuable tool for the genome-wide analysis of gene function and identification of pathogenicity genes in this important cotton pathogen.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- The Key Laboratory of Prevention and Control for Oasis Crop Disease, Shihezi University, Shihezi, Xinjiang, China
| | - Bang-Jun Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Ying Li
- The Key Laboratory of Prevention and Control for Oasis Crop Disease, Shihezi University, Shihezi, Xinjiang, China
| | - Pei-Song Jia
- The Key Laboratory of Prevention and Control for Oasis Crop Disease, Shihezi University, Shihezi, Xinjiang, China
| | - Hui Li
- The Key Laboratory of Prevention and Control for Oasis Crop Disease, Shihezi University, Shihezi, Xinjiang, China
| | - Yun-Long Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Pan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Xian Xia
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
34
|
Talhinhas P, Neves-Martins J, Oliveira H, Sreenivasaprasad S. The distinctive population structure of Colletotrichum species associated with olive anthracnose in the Algarve region of Portugal reflects a host-pathogen diversity hot spot. FEMS Microbiol Lett 2009; 296:31-8. [PMID: 19459972 DOI: 10.1111/j.1574-6968.2009.01613.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Anthracnose (Colletotrichum spp.) is an important disease of olive fruits. Diversity and biogeographic relationships of the olive anthracnose pathogens in the Algarve (Portugal) were investigated, along with host association patterns and disease levels during 2004-2007, to test the hypothesis that this region is a host-pathogen diversity hot spot. Diverse Colletotrichum acutatum and Colletotrichum gloeosporioides populations were identified based on rRNA-internal transcribed spacer and partial beta-tubulin 2 gene sequences of 95 isolates. Spatial and temporal variations in the occurrence of the eight genetic entities of the pathogens were linked to olive biogeography. Disease occurrence patterns suggest that C. acutatum populations are more stable pathogens, while C. gloeosporioides populations appear to be more influenced by favourable conditions. Three unique C. acutatum populations were identified, but none of the eight populations were dominant, with the most frequent type representing only 27%. Thus, the population structure of olive anthracnose pathogens in the Algarve is distinct from other parts of Portugal and other world locations, where only one or two genetic entities are dominant. This pattern and level of genetic diversity in a restricted area, where oleaster (wild olive tree), ancient landraces and modern cultivars of olive occur in close proximity, suggests the Algarve as a centre of diversity of the anthracnose pathogens and corroborates recent work suggesting western Mediterranean as an important centre of olive diversity and domestication.
Collapse
Affiliation(s)
- Pedro Talhinhas
- Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisbosa, Portugal
| | | | | | | |
Collapse
|
35
|
Shao Y, Ding Y, Zhao Y, Yang S, Xie B, Chen F. Characteristic analysis of transformants in T-DNA mutation library of Monascus ruber. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9977-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Huser A, Takahara H, Schmalenbach W, O'Connell R. Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:143-156. [PMID: 19132867 DOI: 10.1094/mpmi-22-2-0143] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Agrobacterium tumefaciens-mediated transformation (ATMT) was used for random insertional mutagenesis to identify pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum. A high-throughput primary infection assay on Arabidopsis thaliana seedlings allowed the rapid screening of 8,850 transformants. Forty mutants showing reproducible pathogenicity defects on Arabidopsis and Brassica plants were obtained, and their infection phenotypes were characterized microscopically. Six mutants were impaired in appressorial melanization, fifteen had reduced penetration ability, 14 induced host papillae or hypersensitive cell death, and five were affected in the transition from biotrophy to necrotrophy. Southern blot analysis showed 58% of the transformants had single-site T-DNA integrations. Right-border flanking sequences were recovered from 12 mutants by inverse polymerase chain reaction (PCR) or thermal asymmetric interlaced PCR and were used to isolate the tagged genes from a genomic library. The putative pathogenicity genes encoded homologs of a major facilitator superfamily phosphate transporter, importin-beta2, ornithine decarboxylase, beta-1,3(4)-glucanase, ATP-binding endoribonuclease, carbamoyl-phosphate synthetase, and the polyprotein precursor of N-acetylglutamate kinase and N-acetylglutamyl-phosphate reductase. Six further loci were homologous to proteins of unknown function. None of these genes were previously implicated in the pathogenicity of any Colletotrichum species. The results demonstrate that ATMT is an effective tool for gene discovery in this model pathogen.
Collapse
Affiliation(s)
- Aurélie Huser
- Max-Planck-Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Koln, Germany
| | | | | | | |
Collapse
|