1
|
Chen M, Jia H, Tao X, Jin Y, Shi Z. 5,7,2',6'- Tetrahydroxyflavone affects the progression of ovarian cancer via hsa-miR-495-3p-ACTB/HSP90AA1 pathway. Discov Oncol 2025; 16:817. [PMID: 40389695 PMCID: PMC12089630 DOI: 10.1007/s12672-025-02570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 05/05/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Scutellariae Radix (SR), a traditional Chinese medicine, has been shown to have potential anti-cancer properties. PURPOSE To explore the mechanism of inhibiting ovarian cancer (OC) progression by SR. METHODS The key active ingredient (5,7,2',6'-Tetrahydroxyflavone, TF) and key targets (ACTB and HSP90AA1) of SR were screened by the network pharmacology method. CCK-8 reagent, Transwell assay, and Annexin-V-FITC kit were used to evaluate the effects of TF on OC cell viability, migration, and apoptosis. The upstream microRNAs (miRNAs) of ACTB and HSP90AA1 were predicted by the starBase database. Important miRNAs related to OC were mined using gene expression datasets in the GEO database. RT-qPCR and Western blotting experiments were used to detect miRNA or gene expression. RESULTS TF inhibited OC cell viability/migration and induced apoptosis in a concentration-dependent manner. Hsa-miR-495-3p was identified to be a key miRNA in OC, whose expression was lacking in OC cells. ACTB and HSP90AA1 expressed highly in OC cells. Hsa-miR-495-3p mimics reduced ACTB and HSP90AA1 expression. Hsa-miR-495-3p inhibitor and overexpression of ACTB or HSP90AA1 reversed the inhibitory effect of TF on OC cells. CONCLUSION TF, an active ingredient of SR, hindered OC progression through the hsa-miR-495-3p-ACTB/HSP90AA1 pathway.
Collapse
Affiliation(s)
- Mengjie Chen
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Gynecology, Xi 'an Hospital of Traditional Chinese Medicine, Xi 'an, 710000, China
| | - Huihui Jia
- Department of Gynecology and Obstetrics, Xi 'an No.1 Hospital (High-tech campus), Xi 'an, 710100, China
| | - Xuyang Tao
- Traditional Chinese Medicine Department, Xi 'an No.1 Hospital (High-Tech Campus), Xi 'an, 710100, China
| | - Yani Jin
- Department of Gynecology, Xi 'an Hospital of Traditional Chinese Medicine, Xi 'an, 710000, China
| | - Zuorong Shi
- Admission Office, Shandong University of Traditional Chinese Medicine, No. 4655 University Road, Science and Technology Park, Changqing District, Jinan, 250355, Shandong, China.
| |
Collapse
|
2
|
Ismail NZ, Khairuddean M, Al-Anazi M, Arsad H. Tri-chalcone suppressed breast cancer cell proliferation and induced apoptosis through intrinsic and extrinsic pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8993-9006. [PMID: 38874806 DOI: 10.1007/s00210-024-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Breast cancer development depends critically on antiproliferative and apoptotic mechanisms. However, the mechanisms underlying the antiproliferative and apoptosis effects of breast cancer treated with tri-chalcone remain unclear. Tri-chalcones have been demonstrated in prior studies to inhibit the proliferation of breast cancer cells (MCF-7). Following the discovery, this study seeks to investigate the effect of tri-chalcone compounds on targets involved in antiproliferative and apoptosis mechanisms. In this study, we employed bioinformatics analysis along with in vitro evaluation using tri-chalcone-treated MCF-7 cells to determine the responses of antiproliferative and apoptosis mechanisms. The analysis revealed that the compounds interact with six apoptosis target receptors: TNFα, Bak, Bcl-2, caspase-9, and caspase-8. Tri-chalcone S1-2 exhibited the strongest binding affinities for TNFα (-7.39 kcal/mol), caspase-8 (-8.43 kcal/mol), caspase-9 (-8.53 kcal/mol), Bcl-2 (-8.51 kcal/mol), and Bak (-7.15 kcal/mol). The tri-chalcone S1-2 paired with the corresponding proteins showed minor flexibility and extremely small changes of less than 0.25 nm during the MD simulation. Additionally, tri-chalcone S1-2 had a significant inhibitory effect on the proliferation of MCF-7 cells (5.31 ± 0.26 µg/mL) compared to other compounds. S1-2 also induced apoptosis, affecting nearly half (43.80%) of the total early and late apoptosis in MCF-7 cells. S1-2-treated MCF-7 cells also demonstrated upregulations of genes TNFα (1.50), Bak (1.42), caspase-8 (1.24), and caspase-9 (1.61), accompanied by a downregulation of gene Bcl-2 (0.71). The discovery gives us a better understanding of how tri-chalcone S1-2 suppressed MCF-7 cell proliferation and induced apoptosis through intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Kingdom of Saudi Arabia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| |
Collapse
|
3
|
Lv Y, Ge C, Wu L, Hu Z, Luo X, Huang W, Zhan S, Shen X, Yu D, Liu B. Hepatoprotective effects of magnolol in fatty liver hemorrhagic syndrome hens through shaping gut microbiota and tryptophan metabolic profile. J Anim Sci Biotechnol 2024; 15:120. [PMID: 39238062 PMCID: PMC11378483 DOI: 10.1186/s40104-024-01074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Magnolol (MAG) exhibits hepatoprotective activity, however, whether and how MAG regulates the gut microbiota to alleviate fatty liver hemorrhagic syndrome (FLHS) remains unclear. Therefore, we investigated the mechanism of MAG in FLHS laying hens with an emphasis on alterations in the gut-liver axis. We randomly divided 540 56-week-old Hy-line white laying hens with FLSH into 4 groups. The birds were fed a high-fat low-protein (HFLP) diet (CON) or HELP diets supplemented with 200, 400, and 600 mg/kg of MAG (M1, M2, and M3, respectively) for 9 weeks. RESULTS Magnolol supplementation increased the laying rate and ameliorated hepatic damage and dysfunction by regulating lipid metabolism, improving intestinal barrier function, and shaping the gut microbiota and tryptophan metabolic profiles. Dietary MAG supplementation downregulated the expression of lipid synthesis genes and upregulated the expression of lipid transport genes at varying degrees. The intestinal barrier function was improved by 200 and 400 mg/kg of MAG supplementation, as evidenced by the increased villus height and mRNA expression of tight junction related genes. Microbiological profile information revealed that MAG changed the gut microbiota, especially by elevating the abundances of Lactobacillus, Faecalibacterium, and Butyricicoccus. Moreover, non-targeted metabolomic analysis showed that MAG significantly promoted tryptophan metabolites, which was positively correlated with the MAG-enriched gut microbiota. The increased tryptophan metabolites could activate aryl hydrocarbon receptor (AhR) and relieved hepatic inflammation and immune response evidenced by the downregulated the gene expression levels of pro-inflammatory cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the liver. The fecal microbiota transplantation (FMT) experiments further confirmed that the hepatoprotective effect is likely mediated by MAG-altered gut microbiota and their metabolites. CONCLUSIONS Magnolol can be an outstanding supplement for the prevention and mitigation of FLHS in laying hens by positively regulating lipid synthesis and transport metabolism, improving the intestinal barrier function, and relieving hepatic inflammation by reshaping the gut microbiota and metabolite profiles through gut microbiota-indole metabolite-hepatic AhR crosstalk. These findings elucidate the mechanisms by which MAG alleviates FLHS and provide a promising method for preventing liver diseases by modulating gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Yujie Lv
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaoyue Ge
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Shen
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, 572000, Sanya, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Aljowaie RM, Alsayed MF, Alkubaisi NA, Almarfadi OM, Farrag MA, Abdulmanea AA, Alfuraydi AA, Abalkhail T, Aboul-Soud MAM, Aziz IM. In vitro and in silico evaluation of bioactivities and chemical composition of the aerial parts of Anchusa officinalis L. methanol extract. Cell Biochem Funct 2024; 42:e4093. [PMID: 38978319 DOI: 10.1002/cbf.4093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The main objective of the study is to evaluate the antioxidant, anticancer, and antimicrobial activities of Anchusa officinalis L. in vitro and in silico. The dried aerial parts of A. officinalis L. were extracted with methanol. Total phenolic and flavonoid content was analyzed. Antioxidant and antimicrobial effects were tested against both gram-positive and gram-negative bacteria. Gas chromatography-mass spectrometry analysis revealed the presence of 10 phytochemical compounds, and cyclobutane (26.07%) was identified as the major photochemical compound. The methanol extract exhibited the maximum amount of total phenolic content (118.24 ± 4.42 mg QE/g dry weight of the dry extract) (R2 = 0.994) and the total flavonoid content was 94 ± 2.34 mg QE/g dry weight of the dry extract (R2 = 0.999). The IC50 value for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid was 107.12 ± 3.42 μg/mL, and it was high for 1,1-diphenyl-2-picryl hydrazyl (123.94 ± 2.31 μg/mL). The IC50 value was 72.49 ± 3.14 against HepG2 cell lines, and a decreased value was obtained (102.54 ± 4.17 g/mL) against MCF-7 cell lines. The methanol extract increased the expression of caspase mRNA and Bax mRNA levels when compared to the control experiment (p < .05). The conclusions, A. officinalis L. aerial parts extract exhibited antibacterial, antifungal, and antioxidant activities.
Collapse
Affiliation(s)
- Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mashail Fahad Alsayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adel A Abdulmanea
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tarad Abalkhail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Ismail NZ, Khairuddean M, Alidmat MM, Abubakar S, Arsad H. Investigating the potential of mono-chalcone compounds in targeting breast cancer receptors through network pharmacology, molecular docking, molecular dynamics simulation, antiproliferative effects, and gene expressions. 3 Biotech 2024; 14:151. [PMID: 38737798 PMCID: PMC11087420 DOI: 10.1007/s13205-024-03991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The study aims to investigate various aspects of synthesized mono-chalcone compounds 5 and 8 concerning breast cancer, including network pharmacology, molecular docking, molecular dynamics (MD) simulations, antiproliferative effects, and gene expressions. Initially, the compounds underwent a network pharmacology analysis targeting breast cancer-related targets, with MalaCards, SwissTargetPrediction, and PharmMapper identifying 70 breast cancer target receptors. Subsequently, protein-protein interaction (PPI) network analysis revealed two distinct target gene clusters. Survival analysis identified seven significant target genes following Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and Gene Ontology (GO) evaluation. Molecular docking and MD simulations were conducted on these seven target genes (AKT2, BRAF, ESR1, FGFR1, IGF1, IGF1R, and KIT), revealing that compound 8 exhibited the highest binding affinities, as well as better stability and compactness when interacting with the targeted proteins. Next, the compounds underwent cell viability assay and gene expression analysis to validate the in silico findings. Both compounds demonstrated the ability to suppress breast cancer proliferation, with compound 8 showing increased selectivity in targeting breast cancer cells while causing minimal harm to normal breast cells. The suppression of breast cancer cell proliferation was attributed to decreased expression levels of AKT2, BRAF, FGFR1, IGF1, IGF1R, KIT, and ESR1. Hence, the results provide insights into the molecular interaction responsible for the anti-breast cancer capabilities of mono-chalcone compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03991-y.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Sadiq Abubakar
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Department of Pure and Industrial Chemistry, Bayero University Kano, Kano, 3011 Nigeria
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang Malaysia
| |
Collapse
|
6
|
Song Y, Ren S, Chen X, Li X, Chen L, Zhao S, Zhang Y, Shen X, Chen Y. Inhibition of MFN1 restores tamoxifen-induced apoptosis in resistant cells by disrupting aberrant mitochondrial fusion dynamics. Cancer Lett 2024; 590:216847. [PMID: 38583647 DOI: 10.1016/j.canlet.2024.216847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Tamoxifen (TAM) resistance presents a major clinical obstacle in the management of estrogen-sensitive breast cancer, highlighting the need to understand the underlying mechanisms and potential therapeutic approaches. We showed that dysregulated mitochondrial dynamics were involved in TAM resistance by protecting against mitochondrial apoptosis. The dysregulated mitochondrial dynamics were associated with increased mitochondrial fusion and decreased fission, thus preventing the release of mitochondrial cytochrome c to the cytoplasm following TAM treatment. Dynamin-related GTPase protein mitofusin 1 (MFN1), which promotes fusion, was upregulated in TAM-resistant cells, and high MFN1 expression indicated a poor prognosis in TAM-treated patients. Mitochondrial translocation of MFN1 and interaction between MFN1 and mitofusin 2 (MFN2) were enhanced to promote mitochondrial outer membrane fusion. The interaction of MFN1 and cristae-shaping protein optic atrophy 1 (OPA1) and OPA1 oligomerization were reduced due to augmented OPA1 proteolytic cleavage, and their apoptosis-promoting function was reduced due to cristae remodeling. Furthermore, the interaction of MFN1 and BAK were increased, which restrained BAK activation following TAM treatment. Knockdown or pharmacological inhibition of MFN1 blocked mitochondrial fusion, restored BAK oligomerization and cytochrome c release, and amplified activation of caspase-3/9, thus sensitizing resistant cells to apoptosis and facilitating the therapeutic effects of TAM both in vivo and in vitro. Conversely, overexpression of MFN1 alleviated TAM-induced mitochondrial apoptosis and promoted TAM resistance in sensitive cells. These results revealed that dysregulated mitochondrial dynamics contributes to the development of TAM resistance, suggesting that targeting MFN1-mediated mitochondrial fusion is a promising strategy to circumvent TAM resistance.
Collapse
Affiliation(s)
- Yuxuan Song
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Shuang Ren
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Xingmei Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Xuhong Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Lin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Shijie Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Yue Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| |
Collapse
|
7
|
Aziz IM, Alshalan RM, Rizwana H, Alkhelaiwi F, Almuqrin AM, Aljowaie RM, Alkubaisi NA. Chemical Composition, Antioxidant, Anticancer, and Antibacterial Activities of Roots and Seeds of Ammi visnaga L. Methanol Extract. Pharmaceuticals (Basel) 2024; 17:121. [PMID: 38256954 PMCID: PMC10819509 DOI: 10.3390/ph17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
For centuries, plants and their components have been harnessed for therapeutic purposes, with Ammi visnaga L. (Khella) being no exception to this rich tradition. While existing studies have shed light on the cytotoxic and antimicrobial properties of seed extracts, there remains a noticeable gap in research about the antimicrobial, antioxidant, and anticancer potential of root extracts. This study seeks to address this gap by systematically examining methanol extracts derived from the roots of A. visnaga L. and comparing their effects with those of seed extracts specifically against breast cancer cells. Notably, absent from previous investigations, this study focuses on the comparative analysis of the antimicrobial, antioxidant, and anticancer activities of both root and seed extracts. The methanol extract obtained from A. visnaga L. seeds demonstrated a notably higher level of total phenolic content (TPC) than its root counterpart, measuring 366.57 ± 2.86 and 270.78 ± 2.86 mg GAE/g dry weight of the dry extract, respectively. In the evaluation of antioxidant activities using the DPPH method, the IC50 values for root and seed extracts were determined to be 193.46 ± 17.13 μg/mL and 227.19 ± 1.48 μg/mL, respectively. Turning our attention to cytotoxicity against breast cancer cells (MCF-7 and MDA-MB-231), both root and seed extracts displayed similar cytotoxic activities, with IC50 values of 92.45 ± 2.14 μg/mL and 75.43 ± 2.32 μg/mL, respectively. Furthermore, both root and seed extracts exhibited a noteworthy modulation of gene expression, upregulating the expression of caspase and Bax mRNA levels while concurrently suppressing the expression of anti-apoptotic genes (Bcl-xL and Bcl-2), thereby reinforcing their potential as anticancer agents. A. visnaga L. seed extract outperforms the root extract in antimicrobial activities, exhibiting lower minimum inhibitory concentrations (MICs) of 3.81 ± 0.24 to 125 ± 7.63 μg/mL. This highlights the seeds' potential as potent antibacterial agents, expanding their role in disease prevention. Overall, this study underscores the diverse therapeutic potentials of A. visnaga L. roots and seeds, contributing to the understanding of plant-derived extracts in mitigating disease risks.
Collapse
Affiliation(s)
- Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Rawan M. Alshalan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Fetoon Alkhelaiwi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Abdulaziz M. Almuqrin
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Reem M. Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Noorah A. Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| |
Collapse
|
8
|
Nevone A, Lattarulo F, Russo M, Panno G, Milani P, Basset M, Avanzini MA, Merlini G, Palladini G, Nuvolone M. A Strategy for the Selection of RT-qPCR Reference Genes Based on Publicly Available Transcriptomic Datasets. Biomedicines 2023; 11:1079. [PMID: 37189697 PMCID: PMC10135859 DOI: 10.3390/biomedicines11041079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
In the next-generation sequencing era, RT-qPCR is still widely employed to quantify levels of nucleic acids of interest due to its popularity, versatility, and limited costs. The measurement of transcriptional levels through RT-qPCR critically depends on reference genes used for normalization. Here, we devised a strategy to select appropriate reference genes for a specific clinical/experimental setting based on publicly available transcriptomic datasets and a pipeline for RT-qPCR assay design and validation. As a proof-of-principle, we applied this strategy to identify and validate reference genes for transcriptional studies of bone-marrow plasma cells from patients with AL amyloidosis. We performed a systematic review of published literature to compile a list of 163 candidate reference genes for RT-qPCR experiments employing human samples. Next, we interrogated the Gene Expression Omnibus to assess expression levels of these genes in published transcriptomic studies on bone-marrow plasma cells from patients with different plasma cell dyscrasias and identified the most stably expressed genes as candidate normalizing genes. Experimental validation on bone-marrow plasma cells showed the superiority of candidate reference genes identified through this strategy over commonly employed "housekeeping" genes. The strategy presented here may apply to other clinical and experimental settings for which publicly available transcriptomic datasets are available.
Collapse
Affiliation(s)
- Alice Nevone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesca Lattarulo
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Monica Russo
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giada Panno
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Basset
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maria Antonietta Avanzini
- Pediatric Hematology Oncology, Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
9
|
Ismail NZ, Md Saad S, Adebayo IA, Md Toha Z, Abas R, Mohamad Zain NN, Arsad H. The antiproliferative and apoptotic potential of Clinacanthus nutans against human breast cancer cells through targeted apoptosis pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81685-81702. [PMID: 35737268 DOI: 10.1007/s11356-022-20858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Clinacanthus nutans dichloromethane fraction (CN-Dcm) extract has previously been proven to suppress breast cancer (MCF7) cell proliferation. Despite this, the extrinsic and intrinsic apoptosis mechanisms involved in C. nutans extract-treated MCF7 cells are still unknown. This study was intended to subfractionate CN-Dcm extract using column chromatography and analyse the treated MCF7 cells using the CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay, Annexin V/propidium iodide (PI) assay, western blot, and reverse transcription-qualitative polymerase chain reaction (RT-qPCR). Out of nine subfraction extracts (SF1 to SF9), SF2 extract strongly inhibited MCF7 cells with the lowest IC50 value (23.51 ± 1.00 µg/mL) and substantially induced apoptosis in the MCF7 cells. In treated MCF7 cells, SF2 extract significantly upregulated the expression of P53, BAX, BID, caspase-8, caspase-9, and caspase-3, while downregulating the expression of BCL2. The presence of potential bioactive chemical compounds in the SF2 extract was identified using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Thus, the SF2 extract has the potential to induce apoptosis in MCF7 cells through intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Salwani Md Saad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Ismail Abiola Adebayo
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Analystical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
- Microbiology and Immunology Department, School of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Ishaka-Bushenyi, Uganda
| | - Zaleha Md Toha
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Rafedah Abas
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia.
| |
Collapse
|
10
|
Stable reference gene selection for quantitative real-time PCR normalization in passion fruit (Passiflora edulis Sims.). Mol Biol Rep 2022; 49:5985-5995. [PMID: 35357624 DOI: 10.1007/s11033-022-07382-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Passiflora edulis is a tropical fruit with high nutrient and medicinal values that is widely planted in southern China. However, the molecular biology of P. edulis has not been well studied. There are few reports regarding the choice of reference genes for gene expression studies of passion fruit. METHODS AND RESULTS By using three algorithms, implemented in geNorm, NormFinder and BestKeeper, we have selected ten candidate reference genes to explore their transcriptional expression stability in various tissues and under cold stress conditions. EF1 and HIS were stably expressed in five tissues. Ts and OTU were stably in vegetative organs. 50 S and Liom were stably in reproductive organs. The transcriptional abundance of EF1 and UBQ was stable in cold-treated and recovery treated leaf samples of P. edulis. In all samples, EF1 and Ts exhibited the highest expression stability. Evaluation of selected genes using simple statistical methods (ANOVA and post hoc analysis). Overall, EF1 emerged as the optimum reference gene for qRT-PCR normalize in P. edulis. In addition, the qRT-PCR analysis revealed that expression of ICE1 increases with the duration of cold treatment. CONCLUSIONS In this study, we successfully screened stable reference genes from 10 candidates in P. edulis and verified the results by analyzing the expression level of ICE1. The results provide reliable and effective reference genes for future research on gene expression analysis in P. edulis, and lay a foundation for follow-up research on functional genes in P. edulis.
Collapse
|
11
|
Gorji-Bahri G, Moradtabrizi N, Hashemi A. Uncovering the stability status of the reputed reference genes in breast and hepatic cancer cell lines. PLoS One 2021; 16:e0259669. [PMID: 34752497 PMCID: PMC8577734 DOI: 10.1371/journal.pone.0259669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
Accurate and reliable relative gene expression analysis via the Reverse Transcription-quantitative Real Time PCR (RT-qPCR) method strongly depends on employing several stable reference genes as normalizers. Utilization of the reference genes without analyzing their expression stability under each experimental condition causes RT-qPCR analysis error as well as false output. Similar to cancerous tissues, cancer cell lines also exhibit various gene expression profiles. It is crucial to recognize stable reference genes for well-known cancer cell lines to minimize RT-qPCR analysis error. In this study, we showed the expression level and investigated the expression stability of eight common reference genes that are ACTB, YWHAZ, HPRT1, RNA18S, TBP, GAPDH, UBC, and B2M, in two sets of cancerous cell lines. One set contains MCF7, SKBR3, and MDA-MB231 as breast cancer cell lines. Another set includes three hepatic cancer cell lines, including Huh7, HepG2, and PLC-PRF5. Three excel-based softwares comprising geNorm, BestKeeper, and NormFinder, and an online tool, namely RefFinder were used for stability analysis. Although all four algorithms did not show the same stability ranking of nominee genes, the overall results showed B2M and ACTB as the least stable reference genes for the studied breast cancer cell lines. While TBP had the lowest expression stability in the three hepatic cancer cell lines. Moreover, YWHAZ, UBC, and GAPDH showed the highest stability in breast cancer cell lines. Besides that, a panel of five nominees, including ACTB, HPRT1, UBC, YWHAZ, and B2M showed higher stability than others in hepatic cancer cell lines. We believe that our results would help researchers to find and to select the best combination of the reference genes for their own experiments involving the studied breast and hepatic cancer cell lines. To further analyze the reference genes stability for each experimental condition, we suggest researchers to consider the provided stability ranking emphasizing the unstable reference genes.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Moradtabrizi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ismail NZ, Adebayo IA, Mohamed WAS, Mohamad Zain NN, Arsad H. Christia vespertilionis extract induced antiproliferation and apoptosis in breast cancer (MCF7) cells. Mol Biol Rep 2021; 48:7361-7370. [PMID: 34665399 DOI: 10.1007/s11033-021-06743-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND C. vespertiliomis extracts were evaluated for antiproliferative and apoptosis effect on breast cancer (MCF7) cells. METHODS AND RESULTS The leaves extracts were analysed for its antiproliferative effect on breast cancer (MCF7) cells and normal epithelial breast (MCF 10A) cells using Sulforhodamine B (SRB) assay. The selective extract was evaluated for its ability to induce apoptosis using Annexin V-FITC apoptosis staining and the expression of molecular genes using qualitative reverse transcription-polymerase chain reaction (RT-PCR) against MCF7 cells. Gas chromatography-mass spectrometry (GC-MS) was used to identify the compounds from the selective extract. The findings showed that dichloromethane fraction (CV-Dcm) extract had high antiproliferative effect against MCF7 cells (IC50 = 24 µg/mL, selective index (SI) = 8.17). The percentages of apoptosis cells in CV-Dcm-treated MCF7 cells was 58.8%. The CV-Dcm extract induced downregulation of PCNA level. The apoptotic genes were also triggered in both extrinsic and intrinsic signaling pathways, affecting a 1.5-fold increase in BAX, 1.4-fold increase in cytochrome c, 1.3-fold increase in caspase-8, 1.7-fold increase in caspase-3 and 0.5-fold-decrease in BCL-2. Treated MCF7 cells also activated P53-dependent apoptotic death pathway. CONCLUSIONS The present work strongly suggests that high efficacy of CV-Dcm extract was attributed to its antiproliferative and apoptosis-inducing activation in MCF7 cells, most likely due to its favourable compounds.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, 13200, Penang, Malaysia
| | - Ismail Abiola Adebayo
- Microbiology and Immunology Department, School of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Ishaka, Bushenyi, Uganda
- Analystical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | - Wan Ahmad Syazani Mohamed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, 13200, Penang, Malaysia
- Institute of Medical Research, National Institute of Health, Persiaran Setia Murni, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, 13200, Penang, Malaysia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, 13200, Penang, Malaysia.
| |
Collapse
|
13
|
Lu X, Gao C, Liu C, Zhuang J, Su P, Li H, Wang X, Sun C. Identification of the key pathways and genes involved in HER2-positive breast cancer with brain metastasis. Pathol Res Pract 2019; 215:152475. [PMID: 31178227 DOI: 10.1016/j.prp.2019.152475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/14/2019] [Accepted: 05/25/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND The risk of brain metastasis (BM) in HER2-positive (+) breast cancer (BC) patients is significantly higher than that in HER2-negative (-) BC patients. The high incidence and mortality rate makes it urgent to elucidate the key pathways and genes involved and identify patients who are more at risk of developing BM. MATERIALS AND METHODS To identify the target genes in HER2+BC patients with BM, we analyzed the microarray datasets (GSE43837) derived from the Gene Expression Omnibus (GEO) database. The GEO2R tool was used to extract the differentially expressed genes (DEGs) involved in HER2+ primary BC and BC with BM. Bioinformatics methods including Gene Ontology (GO) functional annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed with the screened DEGs. The protein-protein interactions of the DEGs were analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized using Cytoscape software. Finally, GSEA analysis was performed to identify the hub genes and the important pathways. RESULTS A total of 751 upregulated and 285 downregulated DEGs were identified. The GO function and KEGG pathway enrichment analyses indicated that the DEGs were all enriched in the protein binding molecular function. The top five hub nodes were screened out, included PHLPP1, UBC, ACACB, TGFB1, and ACTB. The GSEA results demonstrated that the five hub genes are mainly enriched in the ribosomal pathway. CONCLUSION Our study suggests that the five hub genes (PHLPP1, UBC, ACACB, TGFB1, and ACTB) are associated with HER2+BC with BM. The GSEA analysis revealed that the ribosomal pathway seems to play a very important role in the pathogenesis of HER2+BC with BM.
Collapse
Affiliation(s)
- Xin Lu
- Clinical Medical Colleges, Shandong University, Jinan 250100, Shandong, China; Department of Oncology, Taian Tumor Hospital, Taian 271000, Shandong, China
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, China
| | - Peiying Su
- Department of Oncology, Taian Tumor Hospital, Taian 271000, Shandong, China
| | - Huayao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Xue Wang
- Clinical Medical Colleges, Qingdao University, Qingdao 266071, Shandong, China
| | - Changgang Sun
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Department of Oncology, Affiliated hospital of Shandong University of Traditional Chinese Medicine, Weifang 261031, Shandong, China.
| |
Collapse
|
14
|
Meoli L, Gupta NK, Saeidi N, Panciotti CA, Biddinger SB, Corey KE, Stylopoulos N. Nonalcoholic fatty liver disease and gastric bypass surgery regulate serum and hepatic levels of pyruvate kinase isoenzyme M2. Am J Physiol Endocrinol Metab 2018; 315:E613-E621. [PMID: 29462566 PMCID: PMC6230703 DOI: 10.1152/ajpendo.00296.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/18/2022]
Abstract
Treatment of nonalcoholic fatty liver disease (NAFLD) focuses on the underlying metabolic syndrome, and Roux-en-Y gastric bypass surgery (RYGB) remains one of the most effective options. In rodents and human patients, RYGB induces an increase in the gene and protein expression levels of the M2 isoenzyme of pyruvate kinase (PKM2) in the jejunum. Since PKM2 can be secreted in the circulation, our hypothesis was that the circulating levels of PKM2 increase after RYGB. Our data, however, revealed an unexpected finding and a potential new role of PKM2 for the natural history of metabolic syndrome and NAFLD. Contrary to our initial hypothesis, RYGB-treated patients had decreased PKM2 blood levels compared with a well-matched group of patients with severe obesity before RYGB. Interestingly, PKM2 serum concentration correlated with body mass index before but not after the surgery. This prompted us to evaluate other potential mechanisms and sites of PKM2 regulation by the metabolic syndrome and RYGB. We found that in patients with NAFLD and nonalcoholic steatohepatitis (NASH), the liver had increased PKM2 expression levels, and the enzyme appears to be specifically localized in Kupffer cells. The study of murine models of metabolic syndrome and NASH replicated this pattern of expression, further suggesting a metabolic link between hepatic PKM2 and NAFLD. Therefore, we conclude that PKM2 serum and hepatic levels increase in both metabolic syndrome and NAFLD and decrease after RYGB. Thus, PKM2 may represent a new target for monitoring and treatment of NAFLD.
Collapse
Affiliation(s)
- Luca Meoli
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Nitin K Gupta
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Nima Saeidi
- Massachusetts General Hospital and Shriners Hospital for Children , Boston, Massachusetts
| | - Courtney A Panciotti
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Kathleen E Corey
- MGH Fatty Liver Clinic, MGH Gastrointestinal Unit, Massachusetts General Hospital , Boston, Massachusetts
| | - Nicholas Stylopoulos
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
15
|
|
16
|
Chen Y, Hong DY, Wang J, Ling-Hu J, Zhang YY, Pan D, Xu YN, Tao L, Luo H, Shen XC. Baicalein, unlike 4-hydroxytamoxifen but similar to G15, suppresses 17β-estradiol-induced cell invasion, and matrix metalloproteinase-9 expression and activation in MCF-7 human breast cancer cells. Oncol Lett 2017; 14:1823-1830. [PMID: 28789417 PMCID: PMC5529993 DOI: 10.3892/ol.2017.6298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Estrogen performs an important role in the growth and development of breast cancer. There are at least three major receptors, including estrogen receptor (ER)α and β, and G protein-coupled receptor 30 (GPR30), which mediate the actions of estrogen through using transcriptional and rapid non-genomic signaling pathways. Flavonoids have been considered candidates for chemopreventive agents in breast cancer. Baicalein, the primary flavonoid derived from the root of Scutellaria baicalensis Georgi, has been reported to exert an anti-estrogenic effect. In the present study, the effects of baicalein on 17β-estradiol (E2)-induced cell invasion, and matrix metalloproteinase-9 (MMP-9) expression and activation were investigated. Furthermore, its effects were compared with that of the active form of the ER modulator tamoxifen 4-hydroxytamoxifen (OHT) and the GPR30 antagonist G15 in ERα- and GPR30-positive MCF-7 breast cancer cells. The results demonstrated that OHT failed to prevent E2-induced cell invasion, upregulation and proteolytic activity of MMP-9. However, baicalein was able to significantly suppress these E2-induced effects. Furthermore, E2-stimulated invasion, and MMP-9 expression and activation were significantly attenuated following G15 treatment. In addition, baicalein significantly inhibited G-1, a specific GPR30 agonist, induced invasion, and reduced G-1 promoted expression and activity of MMP-9, consistent with effects of G15. The results of the present study suggest that baicalein is a therapeutic candidate for GPR30-positive breast cancer treatment, and besides ERα targeting the GPR30 receptor it may achieve additional therapeutic benefits in breast cancer.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Pharmacology of Chinese Materia Medica, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Duan-Yang Hong
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jing Wang
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jun Ling-Hu
- Department of Pharmacology of Chinese Materia Medica, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yan-Yan Zhang
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Di Pan
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Pharmacology of Chinese Materia Medica, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yi-Ni Xu
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ling Tao
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hong Luo
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiang-Chun Shen
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Pharmacology of Chinese Materia Medica, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
17
|
Abeni E, Salvi A, Marchina E, Traversa M, Arici B, De Petro G. Sorafenib induces variations of the DNA methylome in HA22T/VGH human hepatocellular carcinoma-derived cells. Int J Oncol 2017; 51:128-144. [PMID: 28560380 PMCID: PMC5467784 DOI: 10.3892/ijo.2017.4019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Sorafenib is currently used to treat advanced and/or unresectable hepatocellular carcinoma (HCC), but the increase of the median survival was only 3 months. Moreover, sorafenib has severe side effects and patients develop resistance quickly. Epigenetic alterations such as DNA methylation play a decisive role in the development and progression of HCC. To our knowledge, there are no studies that analysed the global DNA methylation changes in HCC cells treated with sorafenib. Using MeDip-chip technologies, we found 1230 differentially methylated genes in HA22T/VGH cells treated with sorafenib compared to untreated cells. Gene ontology and pathway analysis allowed identifying several enriched signaling pathways involved in tumorigenesis and cancer progression. Among the genes differentially methylated we found genes related to apoptosis, angiogenesis and invasion, and genes belonging to pathways known to be deregulated in HCC such as RAF/MEK/ERK, JAK-STAT, PI3K/AKT/mTOR and NF-κB. Generally, we found that oncogenes tended to be hypermethylated and the tumor suppressor genes tended to be hypomethylated after sorafenib treatment. Finally, we validated MeDip-chip results for several genes found differentially methylated such as BIRC3, FOXO3, MAPK3, SMAD2 and TSC2, using both COBRA assay and direct bisulfite sequencing and we evaluated their mRNA expression. Our findings suggest that sorafenib could affect the methylation level of genes associated to cancer-related processes and pathways in HCC cells, some of which have been previously described to be directly targeted by sorafenib.
Collapse
Affiliation(s)
- Edoardo Abeni
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Michele Traversa
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Bruna Arici
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
Levine RM, Dinh CV, Harris MA, Kokkoli E. Targeting HPV-infected cervical cancer cells with PEGylated liposomes encapsulating siRNA and the role of siRNA complexation with polyethylenimine. Bioeng Transl Med 2016; 1:168-180. [PMID: 29313012 PMCID: PMC5675078 DOI: 10.1002/btm2.10022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023] Open
Abstract
The greatest obstacle to clinical application of cancer gene therapy is lack of effective delivery tools. Gene delivery vehicles must protect against degradation, avoid immunogenic effects and prevent off target delivery which can cause harmful side effects. PEGylated liposomes have greatly improved tumor localization of small molecule drugs and are a promising tool for nucleic acid delivery as the polyethylene glycol (PEG) coating protects against immune recognition and blood clearance. In this study, small interfering RNA (siRNA) was fully encapsulated within PEGylated liposomes by complexing the siRNA with a cationic polymer, polyethyleneimine (PEI), before encapsulation. Formation methods and material compositions were then investigated for their effects on encapsulation. This technology was translated for protective delivery of siRNA designed for human papillomavirus (HPV) viral gene silencing and cervical cancer treatment. PEGylated liposomes encapsulating siRNA were functionalized with the AG86 targeting peptide-amphiphile which binds to the α6β4 integrin, a cervical cancer biomarker. It was found that both targeting and polymer complexation before encapsulation were critical components to effective transfection.
Collapse
Affiliation(s)
- Rachel M. Levine
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Christina V. Dinh
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Michael A. Harris
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Efrosini Kokkoli
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| |
Collapse
|
19
|
Plaza DF, Schmieder SS, Lipzen A, Lindquist E, Künzler M. Identification of a Novel Nematotoxic Protein by Challenging the Model Mushroom Coprinopsis cinerea with a Fungivorous Nematode. G3 (BETHESDA, MD.) 2015; 6:87-98. [PMID: 26585824 PMCID: PMC4704728 DOI: 10.1534/g3.115.023069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023]
Abstract
The dung of herbivores, the natural habitat of the model mushroom Coprinopsis cinerea, is a nutrient-rich but also very competitive environment for a saprophytic fungus. We showed previously that C. cinerea expresses constitutive, tissue-specific armories against antagonists such as animal predators and bacterial competitors. In order to dissect the inducible armories against such antagonists, we sequenced the poly(A)-positive transcriptome of C. cinerea vegetative mycelium upon challenge with fungivorous and bacterivorous nematodes, Gram-negative and Gram-positive bacteria and mechanical damage. As a response to the fungivorous nematode Aphelenchus avenae, C. cinerea was found to specifically induce the transcription of several genes encoding previously characterized nematotoxic lectins. In addition, a previously not characterized gene encoding a cytoplasmic protein with several predicted Ricin B-fold domains, was found to be strongly upregulated under this condition. Functional analysis of the recombinant protein revealed a high toxicity toward the bacterivorous nematode Caenorhabditis elegans. Challenge of the mycelium with A. avenae also lead to the induction of several genes encoding putative antibacterial proteins. Some of these genes were also induced upon challenge of the mycelium with the bacteria Escherichia coli and Bacillus subtilis. These results suggest that fungi have the ability to induce specific innate defense responses similar to plants and animals.
Collapse
Affiliation(s)
- David Fernando Plaza
- Institute of Microbiology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Anna Lipzen
- Genomic Technologies, Joint Genome Institute, Walnut Creek, California 94598
| | - Erika Lindquist
- Genomic Technologies, Joint Genome Institute, Walnut Creek, California 94598
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
20
|
Takeuchi M, Yamamoto T. Apoptosis induced by NAD depletion is inhibited by KN-93 in a CaMKII-independent manner. Exp Cell Res 2015; 335:62-7. [PMID: 26024774 DOI: 10.1016/j.yexcr.2015.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/22/2015] [Accepted: 05/21/2015] [Indexed: 12/19/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme that catalyzes the synthesis of nicotinamide mononucleotide from nicotinamide (Nam) in the salvage pathway of mammalian NAD biosynthesis. Several potent NAMPT inhibitors have been identified and used to investigate the role of intracellular NAD and to develop therapeutics. NAD depletion induced by NAMPT inhibitors depolarizes mitochondrial membrane potential and causes apoptosis in a range of cell types. However, the mechanisms behind this depolarization have not been precisely elucidated. We observed that apoptosis of THP-1 cells in response to NAMPT inhibitors was reduced by the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 via an unknown mechanism. The inactive analog of KN-93, KN-92, exhibited the same activity, but the CaMKII-inhibiting cell-permeable autocamtide-2-related inhibitory peptide II did not, indicating that the inhibition of THP-1 cell apoptosis was not dependent on CaMKII. In evaluating the mechanism of action, we confirmed that KN-93 did not inhibit decreases in NAD levels but did inhibit decreases in mitochondrial membrane potential, indicating that KN-93 exerts inhibition upstream of the mitochondrial pathway of apoptosis. Further, qPCR analysis of the Bcl-2 family of proteins showed that Bim is efficiently expressed following NAMPT inhibition and that KN-92 did not inhibit this expression. The L-type Ca(2+) channel blockers verapamil and nimodipine partially inhibited apoptosis, indicating that part of this effect is dependent on Ca(2+) channel inhibition, as both KN-93 and KN-92 are reported to inhibit L-type Ca(2+) channels. On the other hand, KN-93 and KN-92 did not markedly inhibit apoptosis induced by anti-cancer agents such as etoposide, actinomycin D, ABT-737, or TW-37, indicating that the mechanism of inhibition is specific to apoptosis induced by NAD depletion. These results demonstrate that NAD depletion induces a specific type of apoptosis that is effectively inhibited by the KN-93 series of compounds.
Collapse
Affiliation(s)
- Mikio Takeuchi
- Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka 21, Tsukuba, Ibaraki 305-8585, Japan; Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chiba 260-8675, Japan.
| | - Tomoko Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chiba 260-8675, Japan
| |
Collapse
|
21
|
Shang D, Li Z, Zhu Z, Chen H, Zhao L, Wang X, Chen Y. Baicalein suppresses 17-β-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway. Oncol Rep 2015; 33:2077-85. [PMID: 25672442 DOI: 10.3892/or.2015.3786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
Flavonoids are structurally similar to steroid hormones, particularly estrogens, and therefore have been studied for their potential effects on hormone-dependent cancers. Baicalein is the primary flavonoid derived from the root of Scutellaria baicalensis Georgi. In the present study, we investigated the effects of baicalein on 17β-estradiol (E2)-induced migration, adhesion and invasion of MCF-7 and SK-BR-3 breast cancer cells. The results demonstrated that baicalein suppressed E2-stimulated wound-healing migration and cell‑Matrigel adhesion, and ameliorated E2-promoted invasion across a Matrigel-coated Transwell membrane. Furthermore, baicalein interfered with E2-induced novel G protein-coupled estrogen receptor (GPR30)-related signaling, including a decrease in tyrosine phosphorylation of epidermal growth factor receptor (EGFR) as well as phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine kinase Akt, without affecting GPR30 expression. The results also showed that baicalein suppressed the expression of GPR30 target genes, cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF) induced by E2. Furthermore, baicalein prevented GPR30-related signaling activation and upregulation of CYR61 and CTGF mRNA levels induced by G1, a specific GPR 30 agonist. The results suggest that baicalein inhibits E2-induced migration, adhesion and invasion through interfering with GPR30 signaling pathway activation, which indicates that it may act as a therapeutic candidate for the treatment of GPR30-positive breast cancer metastasis.
Collapse
Affiliation(s)
- Dandan Shang
- Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Zheng Li
- Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Zhuxia Zhu
- Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Huamei Chen
- Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Lujun Zhao
- Department of Pharmacology of Chinese Material Medica, Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xudong Wang
- Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Yan Chen
- Department of Pharmacology of Chinese Material Medica, Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
22
|
Bian Z, Yu Y, Quan C, Guan R, Jin Y, Wu J, Xu L, Chen F, Bai J, Sun W, Fu S. RPL13A as a reference gene for normalizing mRNA transcription of ovarian cancer cells with paclitaxel and 10-hydroxycamptothecin treatments. Mol Med Rep 2014; 11:3188-94. [PMID: 25523336 DOI: 10.3892/mmr.2014.3108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Gene transcription analysis is important in cancer research, and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) has been demonstrated to be an effective method to evaluate gene transcription in cancer. RT‑qPCR requires an internal reference gene with a consistent level of mRNA transcription across various experimental conditions. However, it has been suggested that different treatments, including anticancer therapy, may influence the transcriptional stability of internal reference genes. Paclitaxel (PTX) and 10‑hydroxycamptothecin (HCPT) are widely used to treat various types of cancer, and a suitable internal reference gene is required in order to analyze the transcription profiles of the cells following treatment. In the current study, the transcriptional stability of 30 candidate reference genes was investigated in cancer cells following treatment with PTX and HCPT. The two ovarian cancer cell lines, UACC‑1598 and SKOV3, were treated with PTX and HCPT for 24 and 48 h, and the transcriptional levels of the candidate reference genes were subsequently evaluated by RT‑qPCR analysis. The transcriptional stability of the selected genes was then analyzed using qbase+ and NormFinder software. A total of 9 genes were demonstrated to exhibit high transcriptional stability and one of these genes, ribosomal protein L13a (RPL13A), was identified to exhibit high transcriptional stability in every group. The current study identified various reference genes suitable under different circumstances, while RPL13A was indicated to be the most suitable reference gene for analyzing the transcription profile of ovarian cancer cells following treatment with PTX and HCPT.
Collapse
Affiliation(s)
- Zehua Bian
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Chao Quan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Rongwei Guan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lidan Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
23
|
Generation of MCF-7 cells with aggressive metastatic potential in vitro and in vivo. Breast Cancer Res Treat 2014; 148:269-77. [PMID: 25292421 DOI: 10.1007/s10549-014-3159-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular development program characterized by loss of cell adhesion and increased cell mobility. It is essential for numerous processes including metastasis. In this study we have generated "aggressive" MCF-7 breast cancer cells (MCF-7-EMT), which show significantly increased invasion in contrast to wild type MCF-7 (MCF-7 WT) cells. In addition, we have analyzed, whether these cell lines differ in their metastatic behavior in vivo and in expression of invasion and/or EMT-relevant genes. Invasive behavior of different human breast cancer cell lines was tested. "Aggressive" MCF-7 cells (MCF-7-EMT) were generated using coculture and mammosphere culture techniques. To analyze whether or not MCF-7-EMT cells in contrast to MCF-7 WT cells form metastases in vivo, we assessed metastases in a nude mouse model. mRNA expression profiles of MCF-7 WT cells and MCF-7-EMT cells were compared using the Affymetrix micro array technique. Expression of selected genes was validated using real-time PCR. In addition, protein expression of epithelial marker E-cadherin (CDH1) and mesenchymal markers N-cadherin (CDH2), Vimentin (VIM), and TWIST was compared. The breast cancer cell lines showed different invasive behavior from hardly any invasion to a stronger cell movement. Coculture with osteoblast-like MG63 cells led to significantly increased cell invasion rates. The highest increase was shown using MCF-7 WT cells. Generated MCF-7-EMT cells showed significantly increased invasion as compared to MCF-7 WT cells. In 8 of 10 mice bearing orthotopically growing MCF-7-EMT tumors, we could detect metastases in liver and lung. In mice bearing MCF-7 WT tumors (n = 10), no metastases were found. MCF-7 WT cells and MCF-7-EMT cells were different in expression of 325 genes. Forty-four of the most regulated 50 invasion and/or EMT-related genes were upregulated and 6 genes were downregulated in MCF-7-EMT cells. Protein expression of mesenchymal markers CDH2, VIM, and TWIST was clearly increased in MCF-7-EMT cells. Protein expression of epithelial marker CDH1 was clearly decreased. With the breast cancer cell lines, MCF-7-EMT and MCF-7 WT cells, we have an excellent model of cells for further studies of EMT and invasion in vitro and in vivo.
Collapse
|
24
|
Santillán-Benítez JG, Mendieta-Zerón H, Gómez-Oliván LM, Ordóñez Quiroz A, Torres-Juárez JJ, González-Bañales JM. JAK2, STAT3 and SOCS3 gene expression in women with and without breast cancer. Gene 2014; 547:70-6. [DOI: 10.1016/j.gene.2014.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 05/14/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
25
|
Plaza DF, Lin CW, van der Velden NSJ, Aebi M, Künzler M. Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development. BMC Genomics 2014; 15:492. [PMID: 24942908 PMCID: PMC4082614 DOI: 10.1186/1471-2164-15-492] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/12/2014] [Indexed: 11/12/2022] Open
Abstract
Background It is well known that mushrooms produce defense proteins and secondary metabolites against predators and competitors; however, less is known about the correlation between the tissue-specific expression and the target organism (antagonist) specificity of these molecules. In addition, conserved transcriptional circuitries involved in developing sexual organs in fungi are not characterized, despite the growing number of gene expression datasets available from reproductive and vegetative tissue. The aims of this study were: first, to evaluate the tissue specificity of defense gene expression in the model mushroom Coprinopsis cinerea and, second, to assess the degree of conservation in transcriptional regulation during sexual development in basidiomycetes. Results In order to characterize the regulation in the expression of defense loci and the transcriptional circuitries controlling sexual reproduction in basidiomycetes, we sequenced the poly (A)-positive transcriptome of stage 1 primordia and vegetative mycelium of C. cinerea A43mutB43mut. Our data show that many genes encoding predicted and already characterized defense proteins are differentially expressed in these tissues. The predicted specificity of these proteins with regard to target organisms suggests that their expression pattern correlates with the type of antagonists these tissues are confronted with. Accordingly, we show that the stage 1 primordium-specific protein CC1G_11805 is toxic to insects and nematodes. Comparison of our data to analogous data from Laccaria bicolor and Schizophyllum commune revealed that the transcriptional regulation of nearly 70 loci is conserved and probably subjected to stabilizing selection. A Velvet domain-containing protein was found to be up-regulated in all three fungi, providing preliminary evidence of a possible role of the Velvet protein family in sexual development of basidiomycetes. The PBS-soluble proteome of C. cinerea primordia and mycelium was analyzed by shotgun LC-MS. This proteome data confirmed the presence of intracellular defense proteins in primordia. Conclusions This study shows that the exposure of different tissues in fungi to different types of antagonists shapes the expression pattern of defense loci in a tissue-specific manner. Furthermore, we identify a transcriptional circuitry conserved among basidiomycetes during fruiting body formation that involves, amongst other transcription factors, the up-regulation of a Velvet domain-containing protein. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-492) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
26
|
Transcriptional analysis of apoptotic cerebellar granule neurons following rescue by gastric inhibitory polypeptide. Int J Mol Sci 2014; 15:5596-622. [PMID: 24694544 PMCID: PMC4013584 DOI: 10.3390/ijms15045596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022] Open
Abstract
Apoptosis triggered by exogenous or endogenous stimuli is a crucial phenomenon to determine the fate of neurons, both in physiological and in pathological conditions. Our previous study established that gastric inhibitory polypeptide (Gip) is a neurotrophic factor capable of preventing apoptosis of cerebellar granule neurons (CGNs), during its pre-commitment phase. In the present study, we conducted whole-genome expression profiling to obtain a comprehensive view of the transcriptional program underlying the rescue effect of Gip in CGNs. By using DNA microarray technology, we identified 65 genes, we named survival related genes, whose expression is significantly de-regulated following Gip treatment. The expression levels of six transcripts were confirmed by real-time quantitative polymerase chain reaction. The proteins encoded by the survival related genes are functionally grouped in the following categories: signal transduction, transcription, cell cycle, chromatin remodeling, cell death, antioxidant activity, ubiquitination, metabolism and cytoskeletal organization. Our data outline that Gip supports CGNs rescue via a molecular framework, orchestrated by a wide spectrum of gene actors, which propagate survival signals and support neuronal viability.
Collapse
|
27
|
Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell-matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis. Toxicol Appl Pharmacol 2014; 275:176-81. [PMID: 24440569 DOI: 10.1016/j.taap.2014.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/14/2022]
Abstract
Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but not calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer.
Collapse
|
28
|
Guo C, Liu S, Wang J, Sun MZ, Greenaway FT. ACTB in cancer. Clin Chim Acta 2012; 417:39-44. [PMID: 23266771 DOI: 10.1016/j.cca.2012.12.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/27/2012] [Accepted: 12/01/2012] [Indexed: 01/27/2023]
Abstract
Beta-actin (ACTB) has traditionally been regarded as an endogenous housekeeping gene and has been widely used as a reference gene/protein in quantifying expression levels in tumors. However, ACTB is closely associated with a variety of cancers and accumulating evidence indicates that ACTB is de-regulated in liver, melanoma, renal, colorectal, gastric, pancreatic, esophageal, lung, breast, prostate, ovarian cancers, leukemia and lymphoma. ACTB is generally found to be up-regulated in the majority of tumor cells and tissues. The abnormal expression and polymerization of ACTB and the resulting changes to the cytoskeleton are revealed to be associated with the invasiveness and metastasis of cancers. The current review explores relevant mechanisms, integrates current understandings, and provides suggestions for future studies of the roles of ACTB in tumors.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | | | | | | | | |
Collapse
|
29
|
Selection of suitable reference genes for normalization of quantitative real-time PCR in cartilage tissue injury and repair in rabbits. Int J Mol Sci 2012. [PMID: 23203068 PMCID: PMC3509584 DOI: 10.3390/ijms131114344] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
When studying the altered expression of genes associated with cartilage regeneration by quantitative real-time RT-PCR (RT-qPCR), reference genes with highly stable expression during different stages of chondrocyte developmental are necessary to normalize gene expression accurately. Until now, no reports evaluating expression changes of commonly used reference genes in rabbit articular cartilage have been published. In this study, defects were made in rabbit articular cartilage, with or without insulin-like growth factor 1 (IGF-1) treatment, to create different chondrocyte living environments. The stability and intensity of the expressions of the candidate reference genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S Ribosomal RNA (18S rRNA), cyclophilin (CYP), hypoxanthine phosphoribosyl transferase (HPRT1), and beta-2-microglobulin (B2M) were evaluated. The data were analyzed by geNorm and NormFinder. B2M and 18S rRNA were identified to be suitable reference genes for rabbit cartilage tissues.
Collapse
|
30
|
Housekeeping gene selection advisory: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin are targets of miR-644a. PLoS One 2012; 7:e47510. [PMID: 23091630 PMCID: PMC3472982 DOI: 10.1371/journal.pone.0047510] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 09/12/2012] [Indexed: 12/17/2022] Open
Abstract
Results of overexpression or downregulation of a microRNA (miRNA) on its target mRNA expression are often validated by reverse-transcription and quantitative PCR analysis using an appropriate housekeeping gene as an internal control. The possible direct or indirect effects of a miRNA on the expression of housekeeping genes are often overlooked. Among many housekeeping genes, expressions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin have been used extensively for normalization of gene expression data. Here, we show that GAPDH and β-actin are direct targets of miR-644a. Our data demonstrate the unsuitability of GAPDH and β-actin as internal controls in miR-644a functional studies and emphasize the need to carefully consider the choice of a reference gene in miRNA experiments.
Collapse
|