1
|
Selim AA, Sakr TM, Essa BM, Sayed GH, Anwer KE. 99mTc-labeled benzenesulfonamide derivative-entrapped gold citrate nanoparticles as an auspicious tumour targeting. Sci Rep 2025; 15:4687. [PMID: 39920279 PMCID: PMC11806107 DOI: 10.1038/s41598-025-88862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Sulfonamide derivatives are a significant class of medicinal compounds. Gold nanoparticles (AuNPs) offer precise cancer treatment through targeted delivery, boasting high drug-loading capacity and low toxicity. This study aimed to develop and evaluate 99mTc-labeled benzenesulfonamide derivative-entrapped gold citrate nanoparticles as a tumor-targeting agent. A novel benzenesulfonamide derivative bearing a pyridine moiety was synthesized. Compound 3 (4-((3-cyano-4-(2,4-dichlorophenyl)-6-phenylpyridin-2-yl)amino)-N-(diaminomethylene)benzenesulfonamide) exhibited remarkable anti-cancer activity against MCF-7 cells. The chemical reduction method was employed to create compound 3-citrate-AuNPs. A comprehensive examination of the synthesized nano-platform was conducted, including zeta potential, size analysis, radiochemical yield, and in-vivo biodistribution in tumor-bearing mice. The nano-platform was successfully produced with good stability, optimal particle size (9 nm diameter for AuNPs), and high radiochemical purity for [99mTc]Tc-compound 3 (88.31 ± 2.14%). In-vivo investigations revealed that intravenously administered [99mTc]Tc-compound 3-citrate-AuNPs accumulated in tumors with a high target-to-non-target ratio. The findings validate the efficacy of the novel [99mTc]Tc-compound 3-citrate-AuNPs platform as a tumor-targeting agent.
Collapse
Affiliation(s)
- Adli A Selim
- Labelled Compounds Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 13759, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generators Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 13759, Egypt
| | - Basma M Essa
- Radioactive Isotopes and Generators Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 13759, Egypt
| | - Galal H Sayed
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Kurls E Anwer
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
2
|
Smith B, Li Y, Fields T, Tucker M, Staskiewicz A, Wong E, Ma H, Mao H, Wang X. Tumor integrin targeted theranostic iron oxide nanoparticles for delivery of caffeic acid phenethyl ester: preparation, characterization, and anti-myeloma activities. Front Pharmacol 2024; 15:1325196. [PMID: 38510655 PMCID: PMC10952826 DOI: 10.3389/fphar.2024.1325196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells preferentially in the bone marrow. Currently, emerging chemotherapy drugs with improved biosafety profiles, such as immunomodulatory agents and protease inhibitors, have been used in clinics to treat MM in both initial therapy or maintenance therapy post autologous hematopoietic stem cell transplantation (ASCT). We previously discovered that caffeic acid phenethyl ester (CAPE), a water-insoluble natural compound, inhibited the growth of MM cells by inducing oxidative stress. As part of our continuous effort to pursue a less toxic yet more effective therapeutic approach for MM, the objective of this study is to investigate the potential of CAPE for in vivo applications by using magnetic resonance imaging (MRI)-capable superparamagnetic iron oxide nanoparticles (IONP) as carriers. Cyclo (Arg-Gly-Asp-D-Phe-Cys) (RGD) is conjugated to IONP (RGD-IONP/CAPE) to target the overexpressed αvβ3 integrin on MM cells for receptor-mediated internalization and intracellular delivery of CAPE. A stable loading of CAPE on IONP can be achieved with a loading efficiency of 48.7% ± 3.3% (wt%). The drug-release studies indicate RGD-IONP/CAPE is stable at physiological (pH 7.4) and basic pH (pH 9.5) and subject to release of CAPE at acidic pH (pH 5.5) mimicking the tumor and lysosomal condition. RGD-IONP/CAPE causes cytotoxicity specific to human MM RPMI8226, U266, and NCI-H929 cells, but not to normal peripheral blood mononuclear cells (PBMCs), with IC50s of 7.97 ± 1.39, 16.75 ± 1.62, and 24.38 ± 1.71 μM after 72-h treatment, respectively. Apoptosis assays indicate RGD-IONP/CAPE induces apoptosis of RPMI8226 cells through a caspase-9 mediated intrinsic pathway, the same as applying CAPE alone. The apoptogenic effect of RGD-IONP/CAPE was also confirmed on the RPMI8226 cells co-cultured with human bone marrow stromal cells HS-5 in a Transwell model to mimic the MM microenvironment in the bone marrow. In conclusion, we demonstrate that water-insoluble CAPE can be loaded to RGD-IONP to greatly improve the biocompatibility and significantly inhibit the growth of MM cells in vitro through the induction of apoptosis. This study paves the way for investigating the MRI-trackable delivery of CAPE for MM treatment in animal models in the future.
Collapse
Affiliation(s)
- Barkley Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Yuancheng Li
- 5M Biomed, Limited Liability Company, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Travis Fields
- Division of Research, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Michael Tucker
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Anna Staskiewicz
- Division of Research, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Erica Wong
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Handong Ma
- Division of Research, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Xinyu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| |
Collapse
|
3
|
Ali M, Benfante V, Di Raimondo D, Salvaggio G, Tuttolomondo A, Comelli A. Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent. Pharmaceuticals (Basel) 2024; 17:126. [PMID: 38256959 PMCID: PMC10818631 DOI: 10.3390/ph17010126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol is a polyphenolic compound that has gained considerable attention in the past decade due to its multifaceted therapeutic potential, including anti-inflammatory and anticancer properties. However, its anticancer efficacy is impeded by low water solubility, dose-limiting toxicity, low bioavailability, and rapid hepatic metabolism. To overcome these hurdles, various nanoparticles such as organic and inorganic nanoparticles, liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles, gold nanoparticles, zinc oxide nanoparticles, zeolitic imidazolate frameworks, carbon nanotubes, bioactive glass nanoparticles, and mesoporous nanoparticles were employed to deliver resveratrol, enhancing its water solubility, bioavailability, and efficacy against various types of cancer. Resveratrol-loaded nanoparticle or resveratrol-conjugated nanoparticle administration exhibits excellent anticancer potency compared to free resveratrol. This review highlights the latest developments in nanoparticle-based delivery systems for resveratrol, focusing on the potential to overcome limitations associated with the compound's bioavailability and therapeutic effectiveness.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Giuseppe Salvaggio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
4
|
Cárdenas-Escudero J, Mármol-Rojas C, Escribano Pintor S, Galán-Madruga D, Cáceres JO. Honey polyphenols: regulators of human microbiota and health. Food Funct 2023; 14:602-620. [PMID: 36541681 DOI: 10.1039/d2fo02715a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive review of research over the last decade was conducted to carry out this work. The main objective of this work is to present relevant evidence of the effect of honey intake on the human intestinal microbiota and its relationship with the improvement of various chronic diseases, such as cirrhosis, metabolic syndrome, diabetes, and obesity, among others. Therefore, this work focuses on the health-improving honey dietary supplementation implications associated with specific changes in the human microbiota and their biochemical mechanisms to enhance the proliferation of beneficial microorganisms and the inhibition of pathogenic microorganisms. Consumption of honey polyphenols significantly improves people's health conditions, especially in patients with chronic disease. Hence, honey intake unequivocally constitutes an alternative way to enhance health and could be used to prevent some relevant chronic diseases.
Collapse
Affiliation(s)
- J Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain. .,Analytical Chemistry Department, FCNET, Universidad de Panamá, Bella Vista, Manuel E. Batista and José De Fábrega av., Ciudad Universitaria, Estafeta Universitaria, 3366, Panamá 4, Panamá
| | - C Mármol-Rojas
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - S Escribano Pintor
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - D Galán-Madruga
- National Centre for Environmental Health. Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, 28220 Majadahonda, Madrid, Spain
| | - J O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Renault-Mahieux M, Mignet N, Seguin J, Alhareth K, Paul M, Andrieux K. Co-encapsulation of flavonoids with anti-cancer drugs: a challenge ahead. Int J Pharm 2022; 623:121942. [PMID: 35728717 DOI: 10.1016/j.ijpharm.2022.121942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Flavonoids have been considered as promising molecules for cancer treatment due to their pleiotropic properties such as anti-carcinogenic, anti-angiogenic or efflux proteins inhibition. However, due to their lipophilic properties and their chemical instability, vectorization seems compulsory to administer flavonoids. Flavonoids have been co-encapsulated with other anti-cancer agents in a broad range of nanocarriers aiming to i) achieve a synergistic/additive effect at the tumor site, ii) delay drug resistance apparition by combining agents with different action mechanisms or iii) administer a lower dose of the anti-cancer drug, reducing its toxicity. However, co-encapsulation could lead to a change in the nanoparticles' diameter and drug-loading, as well as a decrease in their stability during storage. The preparation process should also take into accounts the physico-chemical properties of both the flavonoid and the anti-cancer agent. Moreover, the co-encapsulation could affect the release and activity of each drug. This review aims to study the formulation, preparation and characterization strategies of these co-loaded nanomedicines, as well as their stability. The in vitro assays to predict the nanomedicines' behavior in biological fluids, as well as their in vivo efficacy, are also discussed. A special focus concerns the evaluation of their synergistic effect on tumor treatment.
Collapse
Affiliation(s)
- Morgane Renault-Mahieux
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006 Paris, France; Pharmacy Department, AP-HP, Henri Mondor Hospital Group, F-94010, France.
| | - Nathalie Mignet
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006 Paris, France.
| | - Johanne Seguin
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006 Paris, France.
| | - Khair Alhareth
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006 Paris, France.
| | - Muriel Paul
- Pharmacy Department, AP-HP, Henri Mondor Hospital Group, F-94010, France.
| | - Karine Andrieux
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006 Paris, France.
| |
Collapse
|
6
|
Logozzi M, Di Raimo R, Mizzoni D, Fais S. Nanovesicles from Organic Agriculture-Derived Fruits and Vegetables: Characterization and Functional Antioxidant Content. Int J Mol Sci 2021; 22:ijms22158170. [PMID: 34360936 PMCID: PMC8347793 DOI: 10.3390/ijms22158170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary consumption of fruits and vegetables is related to a risk reduction in a series of leading human diseases, probably due to the plants' antioxidant content. Plant-derived nanovesicles (PDNVs) have been recently receiving great attention regarding their natural ability to deliver several active biomolecules and antioxidants. To investigate the presence of active antioxidants in fruits, we preliminarily analyzed the differences between nanovesicles from either organic or conventional agriculture-derived fruits, at equal volumes, showing a higher yield of nanovesicles with a smaller size from organic agriculture-derived fruits as compared to conventional ones. PDNVs from organic agriculture also showed a higher antioxidant level compared to nanovesicles from conventional agriculture. Using the PDNVs from fruit mixes, we found comparable levels of Total Antioxidant Capacity, Ascorbic Acid, Catalase, Glutathione and Superoxide Dismutase 1. Finally, we exposed the nanovesicle mixes to either chemical or physical lytic treatments, with no evidence of effects on the number, size and antioxidant capacity of the treated nanovesicles, thus showing a marked resistance of PDNVs to external stimuli and a high capability to preserve their content. Our study provides for the first time a series of data supporting the use of plant-derived nanovesicles in human beings' daily supplementation, for both prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Correspondence: (M.L.); (S.F.); Tel.: +39-064-9902-436 (M.L.); +39-064-9903-195 (S.F.); Fax: +39-064-9902-436 (M.L. & S.F.)
| | | | | | - Stefano Fais
- Correspondence: (M.L.); (S.F.); Tel.: +39-064-9902-436 (M.L.); +39-064-9903-195 (S.F.); Fax: +39-064-9902-436 (M.L. & S.F.)
| |
Collapse
|
7
|
Kundu M, Majumder R, Das CK, Mandal M. Natural products based nanoformulations for cancer treatment: Current evolution in Indian research. Biomed Mater 2021; 16. [PMID: 33621207 DOI: 10.1088/1748-605x/abe8f2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
The use of medicinal plants is as ancient as human civilization. The development of phytochemistry and pharmacology facilitates the identification of natural bioactive compounds and their mechanisms of action, including against cancer. The efficacy and the safety of a bioactive compound depend on its optimal delivery to the target site. Most natural bioactive compounds (phenols, flavonoids, tannins, etc.) are unable to reach their target sites due to their low water solubility, less cellular absorption, and high molecular weight, leading to their failure into clinical translation. Therefore, many scientific studies are going on to overcome the drawbacks of natural products for clinical applications. Several studies in India, as well as worldwide, have proposed the development of natural products-based nanoformulations to increase their efficacy and safety profile for cancer therapy by improving the delivery of natural bioactive compounds to their target site. Therefore, we are trying to discuss the development of natural products-based nanoformulations in India to improve the efficacy and safety of natural bioactive compounds against cancer.
Collapse
Affiliation(s)
- Moumita Kundu
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Ranabir Majumder
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Chandan Kanta Das
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Mahitosh Mandal
- SMST, Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, 721302, INDIA
| |
Collapse
|
8
|
Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020; 15:1096-1122. [PMID: 33336066 PMCID: PMC7718644 DOI: 10.1515/med-2020-0160] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes-like nanoparticles can be released by a variety of plants and vegetables. The relevance of plant-derived nanovesicles (PDNVs) in interspecies communication is derived from their content in biomolecules (lipids, proteins, and miRNAs), absence of toxicity, easy internalization by mammalian cells, as well as for their anti-inflammatory, immunomodulatory, and regenerative properties. Due to these interesting features, we review here their potential application in the treatment of inflammatory bowel disease (IBD), liver diseases, and cancer as well as their potentiality as drug carriers. Current evidence indicate that PDNVs can improve the disease state at the level of intestine in IBD mouse models by affecting inflammation and promoting prohealing effects. While few reports suggest that anticancer effects can be derived from antiproliferative and immunomodulatory properties of PDNVs, other studies have shown that PDNVs can be used as effective delivery systems for small molecule agents and nucleic acids with therapeutic effects (siRNAs, miRNAs, and DNAs). Finally, since PDNVs are characterized by a proven stability in the gastrointestinal tract, they have been considered as promising delivery systems for natural products contained therein and drugs (including nucleic acids) via the oral route.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
9
|
Al-Bari MAA, Hossain S, Mia U, Al Mamun MA. Therapeutic and Mechanistic Approaches of Tridax Procumbens Flavonoids for the Treatment of Osteoporosis. Curr Drug Targets 2020; 21:1687-1702. [PMID: 32682372 DOI: 10.2174/1389450121666200719012116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
Homeostasis of bone is closely regulated by the balanced activities between the bone resorbing activity of osteoclast cells and bone-forming ability of osteoblast cells. Multinucleated osteoclasts degrade bone matrix and involve in the dynamic bone remodelling in coordination with osteoblasts. Disruption of this regulatory balance between these cells or any imbalance in bone remodelling caused by a higher rate of resorption over construction of bone results in a decrease of bone matrix including bone mineral density (BMD). These osteoclast-dominant effects result in a higher risk of bone crack and joint demolition in several bone-related diseases, including osteoporosis and rheumatoid arthritis (RA). Tridax procumbens is a very interesting perennial plant and its secondary metabolites called here T. procumbens flavonoids (TPFs) are well-known phytochemical agents owing to various therapeutic practices such as anti-inflammatory, anti-anaemic and anti-diabetic actions. This review designed to focus the systematic convention concerning the medicinal property and mechanism of actions of TPFs for the management of bone-related diseases. Based on the current literature, the review offers evidence-based information of TPFs for basic researchers and clinicians for the prevention and treatment of bone related diseases, including osteoporosis. It also emphasizes the medical significance for more research to comprehend the cellular signalling pathways of TPFs for the regulation of bone remodelling and discusses the possible promising ethnobotanical resource that can convey the preclinical and clinical clues to develop the next generation therapeutic agents for the treatment of bonerelated disorders.
Collapse
Affiliation(s)
| | - Showna Hossain
- Department of Pharmacy, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Ujjal Mia
- Department of Pharmacy, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Abdullah Al Mamun
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| |
Collapse
|
10
|
Liu HT, Wang TE, Hsu YT, Chou CC, Huang KH, Hsu CC, Liang HJ, Chang HW, Lee TH, Tsai PS. Nanoparticulated Honokiol Mitigates Cisplatin-Induced Chronic Kidney Injury by Maintaining Mitochondria Antioxidant Capacity and Reducing Caspase 3-Associated Cellular Apoptosis. Antioxidants (Basel) 2019; 8:antiox8100466. [PMID: 31600935 PMCID: PMC6826708 DOI: 10.3390/antiox8100466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is a potent anti-cancer drug, however, its accompanied organ-toxicity hampers its clinical applications. Cisplatin-associated kidney injury is known to result from its accumulation in the renal tubule with excessive generation of reactive oxygen species. In this study, we encapsulated honokiol, a natural lipophilic polyphenol constituent extracted from Magnolia officinalis into nano-sized liposomes (nanosome honokiol) and examined the in vivo countering effects on cisplatin-induced renal injury. We observed that 5 mg/kg body weight. nanosome honokiol was the lowest effective dosage to efficiently restore renal functions of cisplatin-treated animals. The improvement is likely due the maintenance of cellular localization of cytochrome c and thus preserves mitochondria integrity and their redox activity, which as a consequence, reduced cellular oxidative stress and caspase 3-associated apoptosis. These improvements at the cellular level are later reflected on the observed reduction of kidney inflammation and fibrosis. In agreement with our earlier in vitro study showing protective effects of honokiol on kidney cell lines, we demonstrated further in the current study, that nanosuspension-formulated honokiol provides protective effects against cisplatin-induced chronic kidney damages in vivo. Our findings not only benefit cisplatin-receiving patients with reduced renal side effects, but also provide potential alternative and synergic solutions to improve clinical safety and efficacy of cisplatin treatment on cancer patients.
Collapse
Affiliation(s)
- Hung-Ting Liu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Tse-En Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Ting Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 402 Taichung, Taiwan.
| | - Kai-Hung Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Hong-Jen Liang
- Department of Food Science, Yuanpei University, 30015 Hsinchu, Taiwan.
| | - Hui-Wen Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Pei-Shiue Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
11
|
Moshawih S, S.M.N. Mydin RB, Kalakotla S, Jarrar QB. Potential application of resveratrol in nanocarriers against cancer: Overview and future trends. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Aiello P, Consalvi S, Poce G, Raguzzini A, Toti E, Palmery M, Biava M, Bernardi M, Kamal MA, Perry G, Peluso I. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol 2019; 69:150-165. [PMID: 31454670 DOI: 10.1016/j.semcancer.2019.08.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
Application of nanotechnologies to cancer therapy might increase solubility and/or bioavailability of bioactive compounds of natural or synthetic origin and offers other potential benefits in cancer therapy, including selective targeting. In the present review we aim to evaluate in vivo studies on the anticancer activity of nanoparticles (NPs) obtained from food-derived flavonoids. From a systematic search a total of 60 studies were identified. Most of the studies involved the flavanol epigallocatechin-3-O-gallate and the flavonol quercetin, in both delivery and co-delivery (with anti-cancer drugs) systems. Moreover, some studies investigated the effects of other flavonoids, such as anthocyanins aglycones anthocyanidins, flavanones, flavones and isoflavonoids. NPs inhibited tumor growth in both xenograft and chemical-induced animal models of cancerogenesis. Encapsulation improved bioavailability and/or reduced toxicity of both flavonoids and/or co-delivered drugs, such as doxorubicin, docetaxel, paclitaxel, honokiol and vincristine. Moreover, flavonoids have been successfully applied in molecular targeted nanosystems. Selectivity for cancer cells involves pH- and/or reactive oxygen species-mediated mechanisms. Furthermore, flavonoids are good candidates as drug delivery for anticancer drugs in green synthesis systems. In conclusion, although human studies are needed, NPs obtained from food-derived flavonoids have promising anticancer effects in vivo.
Collapse
Affiliation(s)
- Paola Aiello
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy; Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Sara Consalvi
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - George Perry
- Department of Biology, University of Texas at San Antonio, TX, USA.
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy.
| |
Collapse
|
14
|
Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surf B Biointerfaces 2019; 180:127-140. [DOI: 10.1016/j.colsurfb.2019.04.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 01/05/2023]
|
15
|
Epicatechin protective effects on bleomycin-induced pulmonary oxidative stress and fibrosis in mice. Biomed Pharmacother 2019; 114:108776. [DOI: 10.1016/j.biopha.2019.108776] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
|
16
|
Deryagina VP, Reutov VP. Modulation of the formation of active forms of nitrogen by ingredients of plant products in the inhibition of carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2019-6-1-18-36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- V. P. Deryagina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - V. P. Reutov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
| |
Collapse
|
17
|
Size-Dependent Biological Effects of Quercetin Nanocrystals. Molecules 2019; 24:molecules24071438. [PMID: 30979064 PMCID: PMC6479833 DOI: 10.3390/molecules24071438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Quercetin (QE) is an attractive natural compound for cancer prevention due to its beneficial anti-oxidative and anti-proliferative effects. However, QE is poorly soluble in water and slightly soluble in oil, which results in its low oral bioavailability and limits its application in the clinic. The aim of this study was to prepare QE nanocrystals (QE-NCs) with improved solubility and high drug loading, furthermore, the size-dependent anti-cancer effects of QE-NCs were studied. We prepared QE-NCs with three different particle sizes by wet milling, then, cell proliferation, migration and invasion were studied in A549 cells. The QE-NCs had antitumor effects in a dose- and size-dependent manner. Compared with the large particles, the small particles had a strong inhibitory impact on cell biological effects (p < 0.05 or p < 0.01). Moreover, Western blot assay indicated that QE-NCs may inhibit the migration and invasion of A549 cells by inhibiting the STAT3 signaling pathway, and the particle size may have an effect on this process. In this study, it was proven that NCs could dramatically enhance the anticancer efficacy of QE at the cellular level. In addition, particle size had a considerable influence on the dissolution behavior and antitumor effects of NCs.
Collapse
|
18
|
Enrico C. Nanotechnology-Based Drug Delivery of Natural Compounds and Phytochemicals for the Treatment of Cancer and Other Diseases. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64185-4.00003-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Prakash M, Basavaraj B, Chidambara Murthy K. Biological functions of epicatechin: Plant cell to human cell health. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
20
|
Herranz-López M, Losada-Echeberría M, Barrajón-Catalán E. The Multitarget Activity of Natural Extracts on Cancer: Synergy and Xenohormesis. MEDICINES (BASEL, SWITZERLAND) 2018; 6:E6. [PMID: 30597909 PMCID: PMC6473537 DOI: 10.3390/medicines6010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
It is estimated that over 60% of the approved drugs and new drug developments for cancer and infectious diseases are from natural origin. The use of natural compounds as a potential source of antitumor agents has been deeply studied in many cancer models, both in vitro and in vivo. Most of the Western medicine studies are based on the use of highly selective pure compounds with strong specificity for their targets such as colchicine or taxol. Nevertheless, approximately 60% of fairly specific drugs in their initial research fail because of toxicity or ineffectiveness in late-stage preclinical studies. Moreover, cancer is a multifaceted disease that in most cases deserves a polypharmacological therapeutic approach. Complex plant-derived mixtures such as natural extracts are difficult to characterize and hardly exhibit high pharmacological potency. However, in some cases, these may provide an advantage due to their multitargeted mode of action and potential synergistic behavior. The polypharmacology approach appears to be a plausible explanation for the multigargeted mechanism of complex natural extracts on different proteins within the same signalling pathway and in several biochemical pathways at once. This review focuses on the different aspects of natural extracts in the context of anticancer activity drug development, with special attention to synergy studies and xenohormesis.
Collapse
Affiliation(s)
- María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández 03202 Elche, Spain.
| | - María Losada-Echeberría
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández 03202 Elche, Spain.
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández 03202 Elche, Spain.
| |
Collapse
|
21
|
Kazemipour N, Nazifi S, Poor MHH, Esmailnezhad Z, Najafabadi RE, Esmaeili A. Hepatotoxicity and nephrotoxicity of quercetin, iron oxide nanoparticles, and quercetin conjugated with nanoparticles in rats. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2783-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Singh A, Dutta PK, Kumar H, Kureel AK, Rai AK. Synthesis of chitin-glucan-aldehyde-quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydr Polym 2018; 193:99-107. [PMID: 29773403 DOI: 10.1016/j.carbpol.2018.03.092] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
In the present study, we have synthesized chitin-glucan-aldehyde-quercetin (chi-glu-ald-que) conjugate via condensation reaction. Synthesis of chitin-glucan-aldehyde (chi-glu-ald) complex was facilitated by the oxidation of chitin-glucan (chi-glu) complex. Formation of conjugate was confirmed by Proton nuclear magnetic resonance spectroscopy (1H NMR) and Fourier-transform infrared spectroscopy (FT-IR). Morphological studies showed that after grafting of quercetin, several changes on surface were depicted and a more crystalline nature was observed. The chi-glu-ald-que conjugate displayed strong antioxidant activity. It showed 69% of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical, DPPH* scavenging activity at 1 mg/mL and 72% of 2, 2-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical cation, ABTS*+ scavenging activity at 1 mg/mL concentration, which are much higher than that of chi-glu complex. The anticancer activity of chi-glu-ald-que conjugate was performed in Macrophage cancer cell lines (J774) and biocompatibility was performed in Peripheral blood mononuclear cells (PBMCs). The chi-glu-ald-que conjugate showed excellent cytotoxicity against J774 cell lines but no cytotoxicity towards PBMCs.
Collapse
Affiliation(s)
- Anu Singh
- Polymer Research Laboratory, Department of Chemistry, India
| | - P K Dutta
- Polymer Research Laboratory, Department of Chemistry, India.
| | - Hridyesh Kumar
- Polymer Research Laboratory, Department of Chemistry, India
| | - Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| |
Collapse
|
23
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018; 47:514-532. [PMID: 29154385 DOI: 10.1039/c7cs00550d] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For the first time, an overview of dendrimers in combination with natural products and analogues as anti-cancer agents is presented. This reflects the development of drug delivery systems, such as dendrimers, to tackle cancers. The most significant advantages of using dendrimers in nanomedicine are their high biocompatibility, good water solubility, and their entry - with or without encapsulated, complexed or conjugated drugs - through an endocytosis process. This strategy has accelerated over the years in order to develop nanosystems as nanocarriers, to decrease the intrinsic toxicity of anti-cancer agents, to decrease the drug side effects, to increase the efficacy of the treatment, and consequently to improve patient compliance.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018. [DOI: https://doi.org/10.1039/c7cs00550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Overview of the use of dendrimers in combination with encapsulated and conjugated natural products and analogues as anti-cancer agents.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Paris
- France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University
- Xi’an
| | - Helena Tomas
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University
- Shanghai 201620
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| |
Collapse
|
25
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018. [DOI: https:/doi.org/10.1039/c7cs00550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Overview of the use of dendrimers in combination with encapsulated and conjugated natural products and analogues as anti-cancer agents.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Paris
- France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University
- Xi’an
| | - Helena Tomas
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University
- Shanghai 201620
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| |
Collapse
|
26
|
Petyaev IM, Bashmakov YK. Dark Chocolate: Opportunity for an Alliance between Medical Science and the Food Industry? Front Nutr 2017; 4:43. [PMID: 29034240 PMCID: PMC5626948 DOI: 10.3389/fnut.2017.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/06/2017] [Indexed: 01/07/2023] Open
Abstract
Dark chocolate (DC) was originally introduced in human nutrition as a medicinal product consumable in a liquid form. Century-long efforts of food industry transformed this hardly appealing product into a valuable modern culinary delight with clear predominance of confectionery brands of DC on the market. However, current epidemiological data as well as multiple experimental and clinical observations reveal that DC consumption may have a profound effect on cardiovascular, central nervous systems, hemostasis, and lipid metabolism. However, despite of growing body of modern scientific evidence revealing medicinal properties of cocoa-based products, DC remains more gourmet culinary item than medicinal food product. Even today there are no clear dietary recommendations on consumption of cocoa flavonoids (flavanols) for health purpose. Clinical trials with DC rarely include monitoring of plasma flavanol concentration in volunteers. Moreover, there is no standardized assay or any quantitative requirements for flavanol content in the commercial brands of DC. High flavanol content is often sacrificed during manufacturing for a better taste of DC due to bitterness of cocoa flavonoids. All these problems including subsequently arising ethical issues need to be addressed by joint efforts of food industry and medical science. Moreover, application of microencapsulation technology in DC manufacturing, as well as molecular selection of best flavanol producers may drastically change bioavailability of DC bioactive ingredients and DC production technology. Nevertheless, only strict causative approach, linking possible health effect of DC to its bioactive ingredients considered as nutraceuticals, may change the current landscape in nutritional research related to cocoa-based products and create a trustworthy path for their medicinal use.
Collapse
|
27
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
28
|
Mureşan-Pop M, Pop M, Borodi G, Todea M, Nagy-Simon T, Simon S. Solid dispersions of Myricetin with enhanced solubility: Formulation, characterization and crystal structure of stability-impeding Myricetin monohydrate crystals. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Li J, Shi M, Ma B, Niu R, Zhang H, Kun L. Antitumor activity and safety evaluation of nanaparticle-based delivery of quercetin through intravenous administration in mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:803-810. [DOI: 10.1016/j.msec.2017.03.191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/16/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
30
|
Wu J, Wang Y, Yang H, Liu X, Lu Z. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydr Polym 2017; 175:170-177. [PMID: 28917853 DOI: 10.1016/j.carbpol.2017.07.058] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
Abstract
Nanoparticles with size range of 10-500nm can be efficiently delivered into cancer cells by the Enhanced Permeability and Retention (EPR) effect. Here, we prepared resveratrol (Res) loaded chitosan (CS) nanoparticles with the size of 172-217nm by an ionic cross-linking method, with sodium tripolyphosphate (TPP) as the cross-linking agent, to improve the stability, solubility and tumors targeting of the natural anti-cancer drug Res. The prepared Res loaded CS-TPP nanoparticles presented long-term storage stability and UV light stability. The cumulative drug release from nanoparticles in mimetic tumor tissue condition (pH 6.5) was higher than that in physiological condition (pH 7.4). Further, Res-loaded CS-TPP nanoparticles maintained the antioxidant activity of Res even after UV light irradiation. Cell viability study shows that the as prepared drug loaded nanoparticles had similar antiproliferative activity on hepatocellular carcinoma cells SMMC 7721 and lower cytotoxicity on normal hepatocyte cells L02 compared with free Res. Fluorescence microscopy observation revealed that the nanoparticles were efficiently taken in by SMMC 7721 cells. This work indicates the potential use of drug loaded CS-TPP nanoparticles for the efficient delivery of bioactive Res for chemotherapy.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073, PR China
| | - Yaping Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073, PR China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073, PR China
| | - Xiangyu Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073, PR China
| | - Zhong Lu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073, PR China.
| |
Collapse
|
31
|
Jeong H, Samdani KJ, Yoo DH, Lee DW, Kim NH, Yoo IS, Lee JH. Resveratrol cross-linked chitosan loaded with phospholipid for controlled release and antioxidant activity. Int J Biol Macromol 2016; 93:757-766. [DOI: 10.1016/j.ijbiomac.2016.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022]
|
32
|
Muñoz V, Kappes T, Roeckel M, Vera JC, Fernández K. Modification of chitosan to deliver grapes proanthocyanidins: Physicochemical and biological evaluation. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Forte M, Conti V, Damato A, Ambrosio M, Puca AA, Sciarretta S, Frati G, Vecchione C, Carrizzo A. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7364138. [PMID: 27651855 PMCID: PMC5019908 DOI: 10.1155/2016/7364138] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.
Collapse
Affiliation(s)
- Maurizio Forte
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| | - Valeria Conti
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Antonio Damato
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| | | | - Annibale A. Puca
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
- IRCCS Multimedica, Milan, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Carmine Vecchione
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Albino Carrizzo
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| |
Collapse
|
34
|
Benlloch M, Obrador E, Valles SL, Rodriguez ML, Sirerol JA, Alcácer J, Pellicer JA, Salvador R, Cerdá C, Sáez GT, Estrela JM. Pterostilbene Decreases the Antioxidant Defenses of Aggressive Cancer Cells In Vivo: A Physiological Glucocorticoids- and Nrf2-Dependent Mechanism. Antioxid Redox Signal 2016; 24:974-90. [PMID: 26651028 PMCID: PMC4921902 DOI: 10.1089/ars.2015.6437] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Polyphenolic phytochemicals have anticancer properties. However, in mechanistic studies, lack of correlation with the bioavailable concentrations is a critical issue. Some reports had suggested that these molecules downregulate the stress response, which may affect growth and the antioxidant protection of malignant cells. Initially, we studied this potential underlying mechanism using different human melanomas (with genetic backgrounds correlating with most melanomas), growing in nude mice as xenografts, and pterostilbene (Pter, a natural dimethoxylated analog of resveratrol). RESULTS Intravenous administration of Pter decreased human melanoma growth in vivo. However, Pter, at levels measured within the tumors, did not affect melanoma growth in vitro. Pter inhibited pituitary production of the adrenocorticotropin hormone (ACTH), decreased plasma levels of corticosterone, and thereby downregulated the glucocorticoid receptor- and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent antioxidant defense system in growing melanomas. Exogenous corticosterone or genetically induced Nrf2 overexpression in melanoma cells prevented the inhibition of tumor growth and decreased antioxidant defenses in these malignant cells. These effects and mechanisms were also found in mice bearing different human pancreatic cancers. Glutathione depletion (selected as an antimelanoma strategy) facilitated the complete elimination by chemotherapy of melanoma cells isolated from mice treated with Pter. INNOVATION Although bioavailability-related limitations may preclude direct anticancer effects in vivo, natural polyphenols may also interfere with the growth and defense of cancer cells by downregulating the pituitary gland-dependent ACTH synthesis. CONCLUSIONS Pter downregulates glucocorticoid production, thus decreasing the glucocorticoid receptor and Nrf2-dependent signaling/transcription and the antioxidant protection of melanoma and pancreatic cancer cells. Antioxid. Redox Signal. 24, 974-990.
Collapse
Affiliation(s)
- María Benlloch
- 1 Department of Health and Functional Valorization, San Vicente Martir Catholic University , Valencia, Spain
| | - Elena Obrador
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Soraya L Valles
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - María L Rodriguez
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - J Antoni Sirerol
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Javier Alcácer
- 3 Pathology Laboratory, Quirón Hospital , Valencia, Spain
| | - José A Pellicer
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Rosario Salvador
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| | - Concha Cerdá
- 4 Service of Clinical Analysis-CDB, General University Hospital, University of Valencia , Valencia, Spain
| | - Guillermo T Sáez
- 4 Service of Clinical Analysis-CDB, General University Hospital, University of Valencia , Valencia, Spain .,5 Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology-INCLIVA, Service of Clinical Analysis, Dr. Peset University Hospital, University of Valencia , Valencia, Spain
| | - José M Estrela
- 2 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
35
|
Nam JS, Sharma AR, Nguyen LT, Chakraborty C, Sharma G, Lee SS. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine. Molecules 2016; 21:E108. [PMID: 26797598 PMCID: PMC6273093 DOI: 10.3390/molecules21010108] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals as dietary constituents are being explored for their cancer preventive properties. Quercetin is a major constituent of various dietary products and recently its anti-cancer potential has been extensively explored, revealing its anti-proliferative effect on different cancer cell lines, both in vitro and in vivo. Quercetin is known to have modulatory effects on cell apoptosis, migration and growth via various signaling pathways. Though, quercetin possesses great medicinal value, its applications as a therapeutic drug are limited. Problems like low oral bioavailability and poor aqueous solubility make quercetin an unreliable candidate for therapeutic purposes. Additionally, the rapid gastrointestinal digestion of quercetin is also a major barrier for its clinical translation. Hence, to overcome these disadvantages quercetin-based nanoformulations are being considered in recent times. Nanoformulations of quercetin have shown promising results in its uptake by the epithelial system as well as enhanced delivery to the target site. Herein we have tried to summarize various methods utilized for nanofabrication of quercetin formulations and for stable and sustained delivery of quercetin. We have also highlighted the various desirable measures for its use as a promising onco-therapeutic agent.
Collapse
Affiliation(s)
- Ju-Suk Nam
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Korea.
| | - Lich Thi Nguyen
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Korea.
| | - Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida 203201, India.
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Korea.
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313, India.
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Korea.
| |
Collapse
|
36
|
Sak K, Everaus H. Nanotechnological approach to improve the bioavailability of dietary flavonoids with chemopreventive and anticancer properties. NUTRACEUTICALS 2016:427-479. [DOI: 10.1016/b978-0-12-804305-9.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
37
|
Armada A, Martins C, Spengler G, Molnar J, Amaral L, Rodrigues AS, Viveiros M. Fluorimetric Methods for Analysis of Permeability, Drug Transport Kinetics, and Inhibition of the ABCB1 Membrane Transporter. Methods Mol Biol 2016; 1395:87-103. [PMID: 26910071 DOI: 10.1007/978-1-4939-3347-1_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cell membrane P-glycoprotein (P-gp; MDR1, ABCB1) is an energy-dependent efflux pump that belongs to the ATP-binding cassette (ABC) family of transporters, and has been associated with drug resistance in eukaryotic cells. Multidrug resistance (MDR) is related to an increased expression and function of the ABCB1 (P-gp) efflux pump that often causes chemotherapeutic failure in cancer. Modulators of this efflux pump, such as the calcium channel blocker verapamil (VP) and cyclosporine A (CypA), can reverse the MDR phenotype but in vivo studies have revealed disappointing results due to adverse side effects. Currently available methods are unable to visualize and assess in a real-time basis the effectiveness of ABCB1 inhibitors on the uptake and efflux of ABCB1 substrates. However, predicting and testing ABCB1 modulation activity using living cells during drug development are crucial. The use of ABCB1-transfected mouse T-lymphoma cell line to study the uptake/efflux of fluorescent probes like ethidium bromide (EB), rhodamine 123 (Rh-123), and carbocyanine dye DiOC2, in the presence and absence of potential inhibitors, is currently used in our laboratories to evaluate the ability of a drug to inhibit ABCB1-mediated drug accumulation and efflux. Here we describe and compare three in vitro methods, which evaluate the permeability, transport kinetics of fluorescent substrates, and inhibition of the ABCB1 efflux pump by drugs of chemical synthesis or extracted from natural sources, using model cancer cell lines overexpressing this transporter, namely (1) real-time fluorimetry that assesses the accumulation of ethidium bromide, (2) flow cytometry, and (3) fluorescent microscopy using rhodamine 123 and DiOC2.
Collapse
Affiliation(s)
- Ana Armada
- Grupo de Micobactérias, Unidade de Ensino e Investigação de Microbiologia Médica e Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Célia Martins
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Lisbon, 1150-008, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Joseph Molnar
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Leonard Amaral
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Unidade de Medicina das Viagens, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - António Sebastião Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Lisbon, 1150-008, Portugal
| | - Miguel Viveiros
- Grupo de Micobactérias, Unidade de Ensino e Investigação de Microbiologia Médica e Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
38
|
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 2015; 10:6055-74. [PMID: 26451111 PMCID: PMC4592057 DOI: 10.2147/ijn.s92162] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Rebekah Watkins
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Program in Nanoscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chenming Zhang
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richey M Davis
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
39
|
Li C, Zhang J, Zu YJ, Nie SF, Cao J, Wang Q, Nie SP, Deng ZY, Xie MY, Wang S. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin J Nat Med 2015; 13:641-52. [PMID: 26412423 PMCID: PMC5488276 DOI: 10.1016/s1875-5364(15)30061-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 12/21/2022]
Abstract
Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (-)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer.
Collapse
Affiliation(s)
- Chuan Li
- Department of Nutritional Sciences, Texas Tech University, Lubbock TX 79409, USA; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jia Zhang
- Department of Nutritional Sciences, Texas Tech University, Lubbock TX 79409, USA
| | - Yu-Jiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock TX 79409, USA
| | - Shu-Fang Nie
- Nutrilite Health Institute, Buena Park, CA 90622, USA
| | - Jun Cao
- Department of Nutritional Sciences, Texas Tech University, Lubbock TX 79409, USA; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qian Wang
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock TX 79409, USA.
| |
Collapse
|
40
|
Rai M, Ingle AP, Birla S, Yadav A, Santos CAD. Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol 2015; 42:696-719. [DOI: 10.3109/1040841x.2015.1018131] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Richard PU, Duskey JT, Stolarov S, Spulber M, Palivan CG. New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opin Drug Deliv 2015; 12:1527-45. [DOI: 10.1517/17425247.2015.1036738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol Pharm 2013; 10:3871-81. [PMID: 23968375 PMCID: PMC4100701 DOI: 10.1021/mp400342f] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoencapsulation of antiproliferative and chemopreventive phytoalexin trans-resveratrol (RSV) is likely to provide protection against degradation, enhancement of bioavailability, improvement in intracellular penetration and control delivery. In this study, polymeric nanoparticles (NPs) encapsulating RSV (nano-RSV) as novel prototypes for prostate cancer (PCa) treatment were designed, characterized and evaluated using human PCa cells. Nanosystems, composed of a biocompatible blend of poly(epsilon-caprolactone) (PCL) and poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol) conjugate (PLGA-PEG-COOH), were prepared by a nanoprecipitation method, and characterized in terms of morphology, particle size and zeta potential, encapsulation efficiency, thermal analyses, and in vitro release studies. Cellular uptake of NPs was then evaluated in PCa cell lines DU-145, PC-3, and LNCaP using confocal fluorescence microscopy, and antiproliferative efficacy was assessed using MTT assay. With encapsulation efficiencies ranging from 74% to 98%, RSV was successfully loaded in PCL:PLGA-PEG-COOH NPs, which showed an average diameter of 150 nm. NPs were able to control the RSV release at pH 6.5 and 7.4, mimicking the acidic tumoral microenvironment and physiological conditions, respectively, with only 55% of RSV released within 7 h. In gastrointestinal simulated fluids, NPs released about 55% of RSV in the first 2 h in acidic medium, and their total RSV content within the subsequent 5 h at pH 7.4. Confocal fluorescence microscopy observations revealed that NPs were efficiently taken up by PCa cell lines. Furthermore, nano-RSV significantly improved the cytotoxicity compared to that of free RSV toward all three cell lines, at all tested concentrations (from 10 μM to 40 μM), proving a consistent sensitivity toward both the androgen-independent DU-145 and hormone-sensitive LNCaP cells. Our findings support the potential use of developed nanoprototypes for the controlled delivery of bioactive RSV for PCa chemoprevention/chemotherapy.
Collapse
Affiliation(s)
- Vanna Sanna
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, 07100 Sassari, Italy
- Department of Dermatology, Medical Sciences Center, University of Wisconsin—Madison, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Imtiaz Ahmad Siddiqui
- Department of Dermatology, Medical Sciences Center, University of Wisconsin—Madison, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Mario Sechi
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, 07100 Sassari, Italy
- Department of Dermatology, Medical Sciences Center, University of Wisconsin—Madison, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Hasan Mukhtar
- Department of Dermatology, Medical Sciences Center, University of Wisconsin—Madison, 1300 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
43
|
Mignet N, Seguin J, Chabot GG. Bioavailability of polyphenol liposomes: a challenge ahead. Pharmaceutics 2013; 5:457-71. [PMID: 24300518 PMCID: PMC3836625 DOI: 10.3390/pharmaceutics5030457] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 12/03/2022] Open
Abstract
Dietary polyphenols, including flavonoids, have long been recognized as a source of important molecules involved in the prevention of several diseases, including cancer. However, because of their poor bioavailability, polyphenols remain difficult to be employed clinically. Over the past few years, a renewed interest has been devoted to the use of liposomes as carriers aimed at increasing the bioavailability and, hence, the therapeutic benefits of polyphenols. In this paper, we review the causes of the poor bioavailability of polyphenols and concentrate on their liposomal formulations, which offer a means of improving their pharmacokinetics and pharmacodynamics. The problems linked to their development and their potential therapeutic advantages are reviewed. Future directions for liposomal polyphenol development are suggested.
Collapse
Affiliation(s)
- Nathalie Mignet
- Authors to whom correspondence should be addressed; E-Mails: (N.M.) (G.G.C.); Tel.: +33-153-739-581 (N.M.); +33-153-739-571 (G.C.G.); Fax: +33-143-266-918 (N.M. & G.C.G.)
| | | | - Guy G. Chabot
- Authors to whom correspondence should be addressed; E-Mails: (N.M.) (G.G.C.); Tel.: +33-153-739-581 (N.M.); +33-153-739-571 (G.C.G.); Fax: +33-143-266-918 (N.M. & G.C.G.)
| |
Collapse
|