1
|
Karkhane AA, Zargoosh S, Aliakbari M, Fatemi SSA, Aminzadeh S, Karkhaneh B. In Silico and Experimental Studies on the Effect of α3 and α5 Deletion on the Biochemical Properties of Bacillus thermocatenulatus Lipase. Mol Biotechnol 2024; 66:1894-1906. [PMID: 37479905 DOI: 10.1007/s12033-023-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023]
Abstract
To investigate the effect of α3 and α5 helices on the biochemical characterization of Bacillus thermocatenulatus lipase (BTL2), both helices were deleted from native BTL2 lipase. After structural modeling and characterization, the truncated btl2 gene (Δbtl2) was cloned into E. coli BL21 under the control of the T7 promoter. After cultivation and induction of the recombinant bacteria, the Δα3α5 lipase was purified by Ni-NTA column chromatography. Next, the biochemical properties of the Δα3α5 lipase were compared with the previously expressed and purified native lipase. In the presence of the substrate tributyrin (C4), the maximum activity of native and Δα3α5 lipase was 9360 and 5000 U/mg, respectively. The deletion changed the substrate specificity from tributyrin (C4) to tricaprylin (C8) substrate. Native and Δα3α5 lipase showed similar activity patterns at all temperatures and pH values, with the activity of Δα3α5 lipase being approximately 20% lower than native lipase. Triton X100 increased the activity of native and Δα3α5 lipases by 2.1- and 2.5-fold, respectively.
Collapse
Affiliation(s)
- Ali Asghar Karkhane
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.
| | - Soha Zargoosh
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Moein Aliakbari
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Safa-Ali Fatemi
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
2
|
Omar MN, Rahman RNZRA, Noor NDM, Latip W, Knight VF, Ali MSM. Exploring the Antarctic aminopeptidase P from Pseudomonas sp. strain AMS3 through structural analysis and molecular dynamics simulation. J Biomol Struct Dyn 2024:1-13. [PMID: 38555730 DOI: 10.1080/07391102.2024.2331093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Aminopeptidase P (APPro) is a crucial metalloaminopeptidase involved in amino acid cleavage from peptide N-termini, playing essential roles as versatile biocatalysts with applications ranging from pharmaceuticals to industrial processes. Despite acknowledging its potential for catalysis in lower temperatures, detailed molecular basis and biotechnological implications in cold environments are yet to be explored. Therefore, this research aims to investigate the molecular mechanisms underlying the cold-adapted characteristics of APPro from Pseudomonas sp. strain AMS3 (AMS3-APPro) through a detailed analysis of its structure and dynamics. In this study, structure analysis and molecular dynamics (MD) simulation of a predicted model of AMS3-APPro has been performed at different temperatures to assess structural flexibility and thermostability across a temperature range of 0-60 °C over 100 ns. The MD simulation results revealed that the structure were able to remain stable at low temperatures. Increased temperatures present a potential threat to the overall stability of AMS3-APPro by disrupting the intricate hydrogen bond networks crucial for maintaining structural integrity, thereby increasing the likelihood of protein unfolding. While the metal binding site at the catalytic core exhibits resilience at higher temperatures, highlighting its local structural integrity, the overall enzyme structure undergoes fluctuations and potential denaturation. This extensive structural instability surpasses the localized stability observed at the metal binding site. Consequently, these assessments offer in-depth understanding of the cold-adapted characteristics of AMS3-APPro, highlighting its capability to uphold its native conformation and stability in low-temperature environments. In summary, this research provides valuable insights into the cold-adapted features of AMS3-APPro, suggesting its efficient operation in low thermal conditions, particularly relevant for potential biotechnological applications in cold environments.
Collapse
Affiliation(s)
- Muhamad Nadzmi Omar
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Victor Feizal Knight
- Research Centre for Chemical Defence, National Defence University of Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Monica P, Mutturi S, Kapoor M. Truncation of C-terminal amino acids of GH26 endo-mannanase (ManB-1601) affects biochemical properties and stability against anionic surfactants. Enzyme Microb Technol 2022; 157:110031. [DOI: 10.1016/j.enzmictec.2022.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
|
4
|
Zhang R, He L, Shen J, Miao Y, Tang X, Wu Q, Zhou J, Huang Z. Improving low-temperature activity and thermostability of exo-inulinase InuAGN25 on the basis of increasing rigidity of the terminus and flexibility of the catalytic domain. Bioengineered 2020; 11:1233-1244. [PMID: 33131413 PMCID: PMC8291790 DOI: 10.1080/21655979.2020.1837476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Enzymes displaying high activity at low temperatures and good thermostability are attracting attention in many studies. However, improving low-temperature activity along with the thermostability of enzymes remains challenging. In this study, the mutant Mut8S, including eight sites (N61E, K156R, P236E, T243K, D268E, T277D, Q390K, and R409D) mutated from the exo-inulinase InuAGN25, was designed on the basis of increasing the number of salt bridges through comparison between the low-temperature-active InuAGN25 and thermophilic exo-inulinases. The recombinant Mut8S, which was expressed in Escherichia coli, was digested by human rhinovirus 3 C protease to remove the amino acid fusion sequence at N-terminus, producing RfsMut8S. Compared with wild-type RfsMInuAGN25, the mutant RfsMut8S showed (1) lower root mean square deviation values, (2) lower root mean square fluctuation (RMSF) values of residues in six regions of the N and C termini but higher RMSF values in five regions of the catalytic pocket, (3) higher activity at 0-40°C, and (4) better thermostability at 50°C. This study proposes a way to increase low-temperature activity along with a thermostability improvement of exo-inulinase on the basis of increasing the rigidity of the terminus and the flexibility of the catalytic domain. These findings may prove useful in formulating rational designs for increasing the thermal performance of enzymes.
Collapse
Affiliation(s)
- Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Jidong Shen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Ying Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
5
|
The Role of Surface Exposed Lysine in Conformational Stability and Functional Properties of Lipase from Staphylococcus Family. Molecules 2020; 25:molecules25173858. [PMID: 32854267 PMCID: PMC7504586 DOI: 10.3390/molecules25173858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Surface charge residues have been recognized as one of the stability determinants in protein. In this study, we sought to compare and analyse the stability and conformational dynamics of staphylococcal lipase mutants with surface lysine mutation using computational and experimental methods. Three highly mutable and exposed lysine residues (Lys91, Lys177, Lys325) were targeted to generate six mutant lipases in silico. The model structures were simulated in water environment at 25 °C. Our simulations showed that the stability was compromised when Lys177 was substituted while mutation at position 91 and 325 improved the stability. To illustrate the putative alterations of enzyme stability in the stabilising mutants, we characterized single mutant K325G and double mutant K91A/K325G. Both mutants showed a 5 °C change in optimal temperature compared to their wild type. Single mutant K325G rendered a longer half-life at 25 °C (T1/2 = 21 h) while double mutant K91A/K325G retained only 40% of relative activity after 12 h incubation. The optimal pH for mutant K325G was shifted from 8 to 9 and similar substrate preference was observed for the wild type and two mutants. Our findings indicate that surface lysine mutation alters the enzymatic behaviour and, thus, rationalizes the functional effects of surface exposed lysine in conformational stability and activity of this lipase.
Collapse
|
6
|
Understanding the Effect of Multiple Domain Deletion in DNA Polymerase I from Geobacillus Sp. Strain SK72. Catalysts 2020. [DOI: 10.3390/catal10080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The molecular structure of DNA polymerase I or family A polymerases is made up of three major domains that consist of a single polymerase domain with two extra exonuclease domains. When the N-terminal was deleted, the enzyme was still able to perform basic polymerase activity with additional traits that used isothermal amplification. However, the 3′-5′ exonuclease domain that carries a proofreading activity was disabled. Yet, the structure remained attached to the 5′-3′ polymerization domain without affecting its ability. The purpose of this non-functional domain still remains scarce. It either gives negative effects or provides structural support to the DNA polymerase. Here, we compared the effect of deleting each domain against the polymerase activity. The recombinant wild type and its variants were successfully purified and characterized. Interestingly, SK72-Exo (a large fragment excluding the 5′-3′ exonuclease domain) exhibited better catalytic activity than the native SK72 (with all three domains) at similar optimum temperature and pH profile, and it showed longer stability at 70 °C. Meanwhile, SK72-Exo2 (polymerization domain without both the 5′-3′ and 3′-5′ exonuclease domain) displayed the lowest activity with an optimum at 40 °C and favored a more neutral environment. It was also the least stable among the variants, with almost no activity at 50 °C for the first 10 min. In conclusion, cutting both exonuclease domains in DNA polymerase I has a detrimental effect on the polymerization activity and structural stability.
Collapse
|
7
|
Kumar A, Mukhia S, Kumar N, Acharya V, Kumar S, Kumar R. A Broad Temperature Active Lipase Purified From a Psychrotrophic Bacterium of Sikkim Himalaya With Potential Application in Detergent Formulation. Front Bioeng Biotechnol 2020; 8:642. [PMID: 32671041 PMCID: PMC7329984 DOI: 10.3389/fbioe.2020.00642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial lipases with activity spanning over a broad temperature and substrate range have several industrial applications. An efficient enzyme-producing bacterium Chryseobacterium polytrichastri ERMR1:04, previously reported from Sikkim Himalaya, was explored for purification and characterization of cold-adapted lipase. Optimum lipase production was observed in 1% (v/v) rice bran oil, pH 7 at 20°C. Size exclusion and hydrophobic interaction chromatography purified the enzyme up to 21.3-fold predicting it to be a hexameric protein of 250 kDa, with 39.8 kDa monomeric unit. MALDI-TOF-MS analysis of the purified lipase showed maximum similarity with alpha/beta hydrolase (lipase superfamily). Biochemical characterization of the purified enzyme revealed optimum pH (8.0), temperature (37°C) and activity over a temperature range of 5–65°C. The tested metals (except Cu2+ and Fe2+) enhanced the enzyme activity and it was tolerant to 5% (v/v) methanol and isopropanol. The Km and Vmax values were determined as 0.104 mM and 3.58 U/mg, respectively for p-nitrophenyl palmitate. Bioinformatics analysis also supported in vitro findings by predicting enzyme's broad temperature and substrate specificity. The compatibility of the purified lipase with regular commercial detergents, coupled with its versatile temperature and substrate range, renders the given enzyme a promising biocatalyst for potential detergent formulations.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Neeraj Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
8
|
Anuar NFSK, Wahab RA, Huyop F, Amran SI, Hamid AAA, Halim KBA, Hood MHM. Molecular docking and molecular dynamics simulations of a mutant Acinetobacter haemolyticus alkaline-stable lipase against tributyrin. J Biomol Struct Dyn 2020; 39:2079-2091. [DOI: 10.1080/07391102.2020.1743364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Nurul Fatin Syamimi Khairul Anuar
- Faculty of Science, Department of Bioscience, Universiti Teknologi Malaysia, Johor, Malaysia
- Faculty of Science, Department of Chemistry, Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Johor, Malaysia
- Faculty of Science, Department of Chemistry, Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Fahrul Huyop
- Faculty of Science, Department of Bioscience, Universiti Teknologi Malaysia, Johor, Malaysia
- Faculty of Science, Department of Chemistry, Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Syazwani Itri Amran
- Faculty of Science, Department of Bioscience, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Mohammad Hakim Mohammad Hood
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| |
Collapse
|
9
|
Biocompatibility of a New Kind of Polyvinyl Alcohol Embolic Microspheres: In Vitro and In Vivo Evaluation. Mol Biotechnol 2019; 61:610-621. [PMID: 31144113 DOI: 10.1007/s12033-019-00166-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of this study is to investigate the biocompatibility of polyvinyl alcohol (PVA) embolic microspheres by in vivo and in vitro evaluations. Two specifications of PVA microspheres including colorless microspheres (1 g microspheres with 7 mL 0.9% sodium chloride (SC) per vial, size: 500-700 µm) and blue microspheres (2 g microspheres with 7 mL 0.9% SC per vial, size: 500-700 µm) were assessed for biocompatibility. The vitro cytotoxicity was evaluated in L929 cells by MTT assay. Acute systemic toxicity and 28-repeat dose intravenous subchronic toxicity were assessed in 20 ICR mice and 40 SD rates, respectively. Skin sensitization was conducted in 30 adult albino guinea pigs by maximization test, in addition, intracutaneous reaction test was performed in New Zealand white rabbits. Hemolysis ratio of PVA microspheres was evaluated with rabbit blood. Moreover, test for genotoxicity was assessed by bacterial reverse mutation test and mouse lymphoma mutagenesis assay. No cytotoxicity, hemolysis, or acute toxicity of PVA microspheres was found, and slight fluctuations of biochemical indexes were observed in test of 28-day repeat dose intravenous subchronic toxicity, while these changes remained within our historical permitted range. Maximization test and intracutaneous reactivity test disclosed no irritation to skin or tissues. According to bacterial reverse mutation test and mouse lymphoma mutagenesis assay, no genotoxicity of PVA microspheres was observed. PVA microspheres showed excellent biocompatibility both in vivo and in vitro, and they were promising embolic materials for drug-eluting beads transarterial chemoembolization (DEB-TACE) therapy.
Collapse
|
10
|
Anuar NFSK, Wahab RA, Huyop F, Halim KBA, Hamid AAA. In silico mutation on a mutant lipase from Acinetobacter haemolyticus towards enhancing alkaline stability. J Biomol Struct Dyn 2019; 38:4493-4507. [DOI: 10.1080/07391102.2019.1683074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nurul Fatin Syamimi Khairul Anuar
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Fahrul Huyop
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota Kuantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota Kuantan, Malaysia
| |
Collapse
|
11
|
Veno J, Rahman RNZRA, Masomian M, Ali MSM, Kamarudin NHA. Insight into Improved Thermostability of Cold-Adapted Staphylococcal Lipase by Glycine to Cysteine Mutation. Molecules 2019; 24:molecules24173169. [PMID: 31480403 PMCID: PMC6749283 DOI: 10.3390/molecules24173169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022] Open
Abstract
Thermostability remains one of the most desirable traits in many lipases. Numerous studies have revealed promising strategies to improve thermostability and random mutagenesis often leads to unexpected yet interesting findings in engineering stability. Previously, the thermostability of C-terminal truncated cold-adapted lipase from Staphylococcus epidermidis AT2 (rT-M386) was markedly enhanced by directed evolution. The newly evolved mutant, G210C, demonstrated an optimal temperature shift from 25 to 45 °C and stability up to 50 °C. Interestingly, a cysteine residue was randomly introduced on the loop connecting the two lids and accounted for the only cysteine found in the lipase. We further investigated the structural and mechanistic insights that could possibly cause the significant temperature shift. Both rT-M386 and G210C were modeled and simulated at 25 °C and 50 °C. The results clearly portrayed the effect of cysteine substitution primarily on the lid stability. Comparative molecular dynamics simulation analysis revealed that G210C exhibited greater stability than the wild-type at high temperature simulation. The compactness of the G210C lipase structure increased at 50 °C and resulted in enhanced rigidity hence stability. This observation is supported by the improved and stronger non-covalent interactions formed in the protein structure. Our findings suggest that the introduction of a single cysteine residue at the lid region of cold-adapted lipase may result in unexpected increased in thermostability, thus this approach could serve as one of the thermostabilization strategies in engineering lipase stability.
Collapse
Affiliation(s)
- Jiivittha Veno
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Malihe Masomian
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Selangor 47500, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
12
|
Sani HA, Shariff FM, Rahman RNZRA, Leow TC, Salleh AB. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach. Mol Biotechnol 2018; 60:1-11. [PMID: 29058211 DOI: 10.1007/s12033-017-0038-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris-HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris-HCl pH 8, while for L2 lipase it was at 70 °C in Glycine-NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.
Collapse
Affiliation(s)
- Hartini Ahmad Sani
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Fairolniza Mohd Shariff
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Thean Chor Leow
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Salleh
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Centre, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research, University Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
13
|
Optimization and in Silico Analysis of a Cold-Adapted Lipase from an Antarctic Pseudomonas sp. Strain AMS8 Reaction in Triton X-100 Reverse Micelles. Catalysts 2018. [DOI: 10.3390/catal8070289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A moderate yield of a purified enzyme can be achieved by using the simple technique of reverse micellar extraction (RME). RME is a liquid–liquid extraction method that uses a surfactant and an organic solvent to extract biomolecules. Instead of traditional chromatographic purification methods, which are tedious and expensive, RME using the nonionic surfactant Triton X-100 and toluene is used as an alternative purification technique to purify a recombinant cold-adapted lipase, AMS8. Various process parameters were optimized to maximize the activity recovery of the AMS8 lipase. The optimal conditions were found to be 50 mM sodium phosphate buffer, pH 7, 0.125 M NaCl, and 0.07 M Triton X-100 in toluene at 10 °C. Approximately 56% of the lipase activity was successfully recovered. Structural analysis of the lipase in a reverse micelle (RM) was performed using an in silico approach. The predicted model of AMS8 lipase was simulated in the Triton X-100/toluene reverse micelles from 5 to 40 °C. The lid 2 was slightly opened at 10 °C. However, the secondary structure of AMS8 was most affected in the non-catalytic domain compared to the catalytic domain, with an increased coil conformation. These results suggest that an AMS8 lipase can be extracted using Triton X-100/water/toluene micelles at low temperature. This RME approach will be an important tool for the downstream processing of recombinant cold-adapted lipases.
Collapse
|
14
|
Latip W, Raja Abd Rahman RNZ, Leow ATC, Mohd Shariff F, Kamarudin NHA, Mohamad Ali MS. The Effect of N-Terminal Domain Removal towards the Biochemical and Structural Features of a Thermotolerant Lipase from an Antarctic Pseudomonas sp. Strain AMS3. Int J Mol Sci 2018; 19:ijms19020560. [PMID: 29438291 PMCID: PMC5855782 DOI: 10.3390/ijms19020560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022] Open
Abstract
Lipase plays an important role in industrial and biotechnological applications. Lipases have been subject to modification at the N and C terminals, allowing better understanding of lipase stability and the discovery of novel properties. A thermotolerant lipase has been isolated from Antarctic Pseudomonas sp. The purified Antarctic AMS3 lipase (native) was found to be stable across a broad range of temperatures and pH levels. The lipase has a partial Glutathione-S-transferase type C (GST-C) domain at the N-terminal not found in other lipases. To understand the influence of N-terminal GST-C domain on the biochemical and structural features of the native lipase, the deletion of the GST-C domain was carried out. The truncated protein was successfully expressed in E. coli BL21(DE3). The molecular weight of truncated AMS3 lipase was approximately ~45 kDa. The number of truncated AMS3 lipase purification folds was higher than native lipase. Various mono and divalent metal ions increased the activity of the AMS3 lipase. The truncated AMS3 lipase demonstrated a similarly broad temperature range, with the pH profile exhibiting higher activity under alkaline conditions. The purified lipase showed a substrate preference for a long carbon chain substrate. In addition, the enzyme activity in organic solvents was enhanced, especially for toluene, Dimethylsulfoxide (DMSO), chloroform and xylene. Molecular simulation revealed that the truncated lipase had increased structural compactness and rigidity as compared to native lipase. Removal of the N terminal GST-C generally improved the lipase biochemical characteristics. This enzyme may be utilized for industrial purposes.
Collapse
Affiliation(s)
- Wahhida Latip
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Department of Microbiology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Department of Microbiology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Department of Biochemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
15
|
Do H, Kang E, Yang B, Cha HJ, Choi YS. A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase. Sci Rep 2017; 7:17267. [PMID: 29222480 PMCID: PMC5722948 DOI: 10.1038/s41598-017-17635-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Tyrosinase efficiently catalyzes the ortho-hydroxylation of monophenols and the oxidation of diphenols without any additional cofactors. Although it is of significant interest for the biosynthesis of catechol derivatives, the rapid catechol oxidase activity and inactivation of tyrosinase have hampered its practical utilization as a monophenol monooxygenase. Here, we prepared a functional tyrosinase that exhibited a distinguished monophenolase/diphenolase activity ratio (Vmax mono/ Vmax di = 3.83) and enhanced catalytic efficiency against L-tyrosine (kcat = 3.33 ± 0.18 s−1, Km = 2.12 ± 0.14 mM at 20 °C and pH 6.0). This enzyme was still highly active in ice water (>80%), and its activity was well conserved below 30 °C. In vitro DOPA modification, with a remarkably high yield as a monophenol monooxygenase, was achieved by the enzyme taking advantage of these biocatalytic properties. These results demonstrate the strong potential for this enzyme’s use as a monophenol monooxygenase in biomedical and industrial applications.
Collapse
Affiliation(s)
- Hyunsu Do
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Eungsu Kang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Byeongseon Yang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Yoo Seong Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
16
|
Directed Evolution of Recombinant C-Terminal Truncated Staphylococcus epidermidis Lipase AT2 for the Enhancement of Thermostability. Int J Mol Sci 2017; 18:ijms18112202. [PMID: 29113034 PMCID: PMC5713198 DOI: 10.3390/ijms18112202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
In the industrial processes, lipases are expected to operate at temperatures above 45 °C and could retain activity in organic solvents. Hence, a C-terminal truncated lipase from Staphylococcus epidermis AT2 (rT-M386) was engineered by directed evolution. A mutant with glycine-to-cysteine substitution (G210C) demonstrated a remarkable improvement of thermostability, whereby the mutation enhanced the activity five-fold when compared to the rT-M386 at 50 °C. The rT-M386 and G210C lipases were purified concurrently using GST-affinity chromatography. The biochemical and biophysical properties of both enzymes were investigated. The G210C lipase showed a higher optimum temperature (45 °C) and displayed a more prolonged half-life in the range of 40-60 °C as compared to rT-M386. Both lipases exhibited optimal activity and stability at pH 8. The G210C showed the highest stability in the presence of polar organic solvents at 50 °C compared to the rT-M386. Denatured protein analysis presented a significant change in the molecular ellipticity value above 60 °C, which verified the experimental result on the temperature and thermostability profile of G210C.
Collapse
|
17
|
Ji X, Li S, Wang B, Zhang Q, Lin L, Dong Z, Wei Y. Expression, purification and characterization of a functional, recombinant, cold-active lipase (LipA) from psychrotrophic Yersinia enterocolitica. Protein Expr Purif 2015; 115:125-31. [PMID: 26256062 DOI: 10.1016/j.pep.2015.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/15/2015] [Accepted: 08/04/2015] [Indexed: 11/30/2022]
Abstract
A novel cold-active lipase gene encoding 294 amino acid residues was obtained from the Yersinia enterocolitica strain KM1. Sequence alignment and phylogenetic analysis revealed that this novel lipase is a new member of the bacterial lipase family I.1. The lipase shares the conserved GXSXG motif and catalytic triad Ser85-Asp239-His261. The recombinant protein LipA was solubly and heterogeneously expressed in Escherichia coli, purified by Ni-affinity chromatography, and then characterized. LipA was active over a broad range spanning 15-60°C with an optimum activity at 25°C and across a wide pH range from 5.0 to 11.0 with an optimum activity at pH 7.5. The molecular weight was estimated to be 34.2 KDa. The lipase could be activated by Mg(2+) and a low concentration (10%) of ethanol, dimethyl sulfoxide, methanol and acetonitrile, whereas it was strongly inhibited by Zn(2+), Cu(2+) and Mn(2+). This cold-active lipase may be a good candidate for detergents and biocatalysts at low temperature.
Collapse
Affiliation(s)
- Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Shan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, Gansu, PR China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Zhiyang Dong
- Institute of Microbiology Chinese Academy of Sciences, Beijing, PR China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, PR China.
| |
Collapse
|
18
|
Ji X, Chen G, Zhang Q, Lin L, Wei Y. Purification and characterization of an extracellular cold-adapted alkaline lipase produced by psychrotrophic bacterium Yersinia enterocolitica strain KM1. J Basic Microbiol 2015; 55:718-28. [PMID: 25677080 DOI: 10.1002/jobm.201400730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/03/2015] [Indexed: 12/12/2022]
Abstract
An extracellular cold-adapted alkaline lipase from the psychrotrophic Yersinia enterocolitica strain KM1 was purified 26-fold to homogeneity. The enzyme was active over a broad range spanning 0-60 °C with an optimum activity at 37 °C, and it was found to be alkaline-preferring with an optimum activity at pH 9.0. The molecular weight was estimated to be 34.3 KDa and monomeric. The lipase could be activated by Ca(2+) and low concentration (10%) of ethanol, dimethyl sulphoxide, methanol, and acetonitrile, whereas it was strongly inhibited by Zn(2+), Cu(2+), SDS, EDTA, and PMSF. Using p-nitrophenyl butyrate as a substrate at 37 °C, the Km and Vmax of the enzyme were found to be 16.58 mM and 5.24 × 10(5) μM · min(-1), respectively. This extracellular cold-adapted alkaline lipase may be a good candidate for detergents and biocatalysts at low temperature.
Collapse
Affiliation(s)
- Xiuling Ji
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Guiyuan Chen
- Biochemistry and Molecule Biology, Department of Basic Medicine College, Dali University, Dali, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|