1
|
Zhang T, Wang K, Li X, Zhang C, Wang K, Zhang H. Regulation of Stomatal Responses to Pathogen and Drought Stress by the F-Box Protein AtSKIP5. MOLECULAR PLANT PATHOLOGY 2025; 26:e70074. [PMID: 40083064 PMCID: PMC11906370 DOI: 10.1111/mpp.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/24/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
E3 ubiquitin ligases are major components of the ubiquitination cascade and contribute to the stomatal responses to pathogen and drought stress in plants. The F-box SKP1-Interacting Partners (AtSKIPs) proteins are members of the SCF E3 ubiquitin ligase complexes; however, whether they have any involvement in stomatal movement remains unclear. Here, based on tissue expression profiling, we found that the AtSKIP5 protein was highly expressed in guard cells. Mutation of AtSKIP5 rendered plants more susceptible to Pseudomonas syringae pv. tomato (Pst) DC3000 and resulted in a significant impairment in stomatal closure after flg22 and Pst DC3000 treatment. Consistently, lines overexpressing AtSKIP5 were more resistant to Pst DC3000 infection and exhibited more rapid stomatal closure than did other lines. However, the AtSKIP5-overexpressing lines and Col-0 line were similarly resistant to Pst- (coronatine-deficient mutant) infection and did not exhibit stomatal reopening when exposed to Pst DC3000, a Pst- strain, or a Pst- strain accompanied by coronatine (COR) treatment. These results suggest that AtSKIP5-mediated resistance to Pst DC3000 is by controlling stomatal immunity via positive regulation of flg22-triggered stomatal closure and suppression of COR-mediated stomatal reopening. Furthermore, apoplastic immunity was compromised in the skip5 mutants, as evidenced by lower MAPK phosphorylation levels, less reactive oxygen species (ROS) production, and callose deposition induced by flg22, shifting the response in the pathogenic direction. In addition, the skip5 mutants evidenced an impairment in stomatal closure induced by abscisic acid (ABA), and a lower survival rate and greater water loss under drought stress, suggesting that AtSKIP5 serves as a positive regulator of drought tolerance via ABA-induced stomatal closure. Our results provide new insights into the importance of the stomatal responses to pathogen and drought stresses that are modulated by AtSKIP5 in Arabidopsis.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
| | - Kang Wang
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
| | - Xinyuan Li
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
| | - Cheng Zhang
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
| | - Kui Wang
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
| | - Huajian Zhang
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
2
|
Nalla LV, Kanukolanu A, Yeduvaka M, Gajula SNR. Advancements in Single-Cell Proteomics and Mass Spectrometry-Based Techniques for Unmasking Cellular Diversity in Triple Negative Breast Cancer. Proteomics Clin Appl 2025; 19:e202400101. [PMID: 39568435 PMCID: PMC11726282 DOI: 10.1002/prca.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer characterized by a lack of targeted treatment options. Intratumoral heterogeneity significantly drives disease progression and complicates therapeutic responses, necessitating advanced analytical approaches to understand its underlying biology. This review aims to explore the advancements in single-cell proteomics and their application in uncovering cellular diversity in TNBC. It highlights innovations in sample preparation, mass spectrometry-based techniques, and the potential for integrating proteomics into multi-omics platforms. METHODS The review discusses the combination of improved sample preparation methods and cutting-edge mass spectrometry techniques in single-cell proteomics. It emphasizes the challenges associated with protein analysis, such as the inability to amplify proteins akin to transcripts, and examines strategies to overcome these limitations. RESULTS Single-cell proteomics provides a direct link to phenotype and cell behavior, complementing transcriptomic approaches and offering new insights into the mechanisms driving TNBC. The integration of advanced techniques has enabled deeper exploration of cellular heterogeneity and disease mechanisms. CONCLUSION Despite the challenges, single-cell proteomics holds immense potential to evolve into a high-throughput and scalable multi-omics platform. Addressing existing hurdles will enable deeper biological insights, ultimately enhancing the diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Aarika Kanukolanu
- Department of Pharmaceutical Analysis, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Madhuri Yeduvaka
- Department of Pharmacology, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| |
Collapse
|
3
|
Mei X, Zhu K, Yan D, Jia H, Luo W, Ye J, Deng X. Developing a simple and rapid method for cell-specific transcriptome analysis through laser microdissection: insights from citrus rind with broader implications. PLANT METHODS 2024; 20:113. [PMID: 39068421 PMCID: PMC11282741 DOI: 10.1186/s13007-024-01242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND With the rapid development of single-cell sequencing technology, histological studies are no longer limited to conventional homogenized tissues. Laser microdissection enables the accurate isolation of specific tissues or cells, and when combined with next-generation sequencing, it can reveal important biological processes at the cellular level. However, traditional laser microdissection techniques have often been complicated and time-consuming, and the quality of the RNA extracted from the collected samples has been inconsistent, limiting follow-up studies. Therefore, an improved, simple, and efficient laser microdissection method is urgently needed. RESULTS We omitted the sample fixation and cryoprotectant addition steps. Instead, fresh samples were embedded in Optimal Cutting Temperature medium within 1.5 ml centrifuge tube caps, rapidly frozen with liquid nitrogen, and immediately subjected to cryosectioning. A series of section thicknesses of citrus rind were tested for RNA extraction, which showed that 18 μm thickness yielded the highest quality RNA. By shortening the dehydration time to one minute per ethanol gradient and omitting the tissue clearing step, the resulting efficient dehydration and preserved morphology ensured high-quality RNA extraction. We also propose a set of laser microdissection parameters by adjusting the laser power to optimal values, reducing the aperture size, and lowering the pulse frequency. Both the epidermal and subepidermal cells from the citrus rind were collected, and RNA extraction was completed within nine hours. Using this efficient method, the transcriptome sequencing of the isolated tissues generated high-quality data with average Q30 values and mapping rates exceeding 91%. Moreover, the transcriptome analysis revealed significant differences between the cell layers, further confirming the effectiveness of our isolation approach. CONCLUSIONS We developed a simple and rapid laser microdissection method and demonstrated its effectiveness through a study based on citrus rind, from which we generated high-quality transcriptomic data. This fast and efficient method of cell isolation, combined with transcriptome sequencing not only contributes to precise histological studies at the cellular level in citrus but also provides a promising approach for cell-specific transcriptome analysis in a broader range of other plant tissues.
Collapse
Affiliation(s)
- Xuehan Mei
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kaijie Zhu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Danni Yan
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huihui Jia
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wangyao Luo
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Junli Ye
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiuxin Deng
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Kułak K, Wojciechowska N, Samelak-Czajka A, Jackowiak P, Bagniewska-Zadworna A. How to explore what is hidden? A review of techniques for vascular tissue expression profile analysis. PLANT METHODS 2023; 19:129. [PMID: 37981669 PMCID: PMC10659056 DOI: 10.1186/s13007-023-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The evolution of plants to efficiently transport water and assimilates over long distances is a major evolutionary success that facilitated their growth and colonization of land. Vascular tissues, namely xylem and phloem, are characterized by high specialization, cell heterogeneity, and diverse cell components. During differentiation and maturation, these tissues undergo an irreversible sequence of events, leading to complete protoplast degradation in xylem or partial degradation in phloem, enabling their undisturbed conductive function. Due to the unique nature of vascular tissue, and the poorly understood processes involved in xylem and phloem development, studying the molecular basis of tissue differentiation is challenging. In this review, we focus on methods crucial for gene expression research in conductive tissues, emphasizing the importance of initial anatomical analysis and appropriate material selection. We trace the expansion of molecular techniques in vascular gene expression studies and discuss the application of single-cell RNA sequencing, a high-throughput technique that has revolutionized transcriptomic analysis. We explore how single-cell RNA sequencing will enhance our knowledge of gene expression in conductive tissues.
Collapse
Affiliation(s)
- Karolina Kułak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
5
|
Pires RC, Ferro A, Capote T, Usié A, Correia B, Pinto G, Menéndez E, Marum L. Laser Microdissection of Woody and Suberized Plant Tissues for RNA-Seq Analysis. Mol Biotechnol 2023; 65:419-432. [PMID: 35976558 DOI: 10.1007/s12033-022-00542-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/05/2022] [Indexed: 10/15/2022]
Abstract
An accurate profile of gene expression at a cellular level can contribute to a better understanding of biological processes and complexities involved in regulatory mechanism of woody plants. Laser microdissection is one technique that allows isolation of specific, target cells or tissue from a heterogeneous cell population. This technique entails microscopic visualization of the selected tissue and use a laser beam to separate the desired cells from surrounding tissue. Initial identification of these cells is made based on morphology and/or histological staining. Some works have been made in several tissues and plant models. However, there are few studies of laser microdissection application in woody species, particularly, lignified and suberized cells. Moreover, the presence of high level of suberin in cell walls can be a big challenge for the application of this approach. In our study it was developed a technique for tissue isolation, using laser microdissection of four different plant cell types (phellogen, lenticels, cortex and xylem) from woody tissues of cork oak (Quercus suber), followed by RNA extraction and RNA-Seq. We tested several methodologies regarding laser microdissection, cryostat equipments, fixation treatments, duration of single-cells collection and number of isolated cells by laser microdissection and RNA extraction procedures. A simple and efficient protocol for tissue isolation by laser microdissection and RNA purification was obtained, with a final method validation of RNA-Seq analysis. The optimized methodology combining RNA-Seq for expression analysis will contribute to elucidate the molecular pathways associated with different development processes of the xylem and phellem in oaks, including the lenticular channels formation.
Collapse
Affiliation(s)
- Rita Costa Pires
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
| | - Ana Ferro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,MED - Mediterranean Institute for Agriculture, Environment and Development, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.,Center for Genomics and Systems Biology, New York University Abu Dhabi, NYUAD Campus, 129188, Abu Dhabi, United Arab Emirates
| | - Tiago Capote
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,MED - Mediterranean Institute for Agriculture, Environment and Development, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.,Center for Genomics and Systems Biology, New York University Abu Dhabi, NYUAD Campus, 129188, Abu Dhabi, United Arab Emirates
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal
| | - Bárbara Correia
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,B-hive Innovations Ltd., Boole Technology Centre, Beevor Street, Lincoln, LN6 7DJ, UK
| | - Glória Pinto
- Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Esther Menéndez
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research (IIFA), University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal.,Department of Microbiology and Genetics/CIALE, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Liliana Marum
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal. .,MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.
| |
Collapse
|
6
|
Qin W, Li Y, Peng B, Liu H, Chen T, Yan X, Zhang Y, Wang C, Yao X, Fu X, Li L, Tang K. A high-efficiency trichome collection system by laser capture microdissection. FRONTIERS IN PLANT SCIENCE 2022; 13:985969. [PMID: 36072328 PMCID: PMC9441851 DOI: 10.3389/fpls.2022.985969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Trichomes, which are classified as glandular or non-glandular, are hair-like epidermal structures that are present on aerial parts of most plant species. Glandular secretory trichomes (GSTs) have the capacity to secrete and store specialized metabolites, which are widely used as natural pesticides, food additives, fragrance ingredients or pharmaceuticals. Isolating individual trichomes is an essential way for identifying trichome-specific gene functions and discovering novel metabolites. However, the isolation of trichomes is difficult and time-consuming. Here, we report a method to isolate the GSTs from leaf epidermis dispense with fixation using laser capture microdissection (LCM). In this study, 150 GSTs were captured efficiently from Artemisia annua leaves and enriched for artemisinin measurement. UPLC analysis of microdissected samples indicated specific accumulation of secondary metabolites could be detected from a small number of GSTs. In addition, qRT-PCR revealed that the GST-specific structural genes involved in artemisinin biosynthesis pathway were highly expressed in GSTs. Taken together, we developed an efficient method to collect comparatively pure GSTs from unfixed leaved, so that the metabolites were relatively obtained intact. This method can be implemented in metabolomics research of purely specific plant cell populations and has the potential to discover novel secondary metabolites.
Collapse
|
7
|
Yamada K, Nakanowatari M, Yumoto E, Satoh S, Asahina M. Spatiotemporal plant hormone analysis from cryosections using laser microdissection-liquid chromatography-mass spectrometry. JOURNAL OF PLANT RESEARCH 2022; 135:377-386. [PMID: 34812978 DOI: 10.1007/s10265-021-01360-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Laser microdissection (LMD) is used for isolating specific regions or single cells from a wide variety of tissue samples under direct microscopic observation. The LMD method enables the harvest of the cells of interest in a region or specific cells for several analyses, such as DNA/RNA analysis, proteomics, metabolomics, and other molecular analyses. Currently, LMD is used to study various biological events at the tissue or cellular level; it has been used in a wide range of research fields. In this report, we describe techniques for isolating different tissues/specific cells from cryosections of incised Arabidopsis flowering stems by LMD for spatiotemporal quantitative plant hormone analysis. The endogenous indole-3-acetic acid levels in the epidermis/cortex, vascular bundles, and pith of Arabidopsis flowering stems were approximately 19.0 pg mm-3, 33.5 pg mm-3, and 3.32 pg mm-3, respectively, and these endogenous levels were altered spatiotemporally after incision. We also analyzed jasmonic acid from LMD-isolated cells and showed that the endogenous levels increased in the range of approximately 200-3,500 pg mm-3 depending on the tissue and region at 1 h after incision and then decreased to less than 100 pg mm-3 or undetectable levels at 24 h after incision. Quantitative analyses of phytohormones, including jasmonic acid-related molecules, gibberellin, abscisic acid, and cytokinins, could also be performed using the same cell samples. These results showed that spatiotemporal changes in plant hormones could be quantitatively and simultaneously analyzed by LMD-isolated cells from cryosections with positional information. The combination of quantitative analysis by liquid chromatography-mass spectrometry (LC-MS) and sampling by the LMD method provides a comprehensive and quantitative understanding of spatiotemporal changes in plant hormones in a region- and tissue-specific manner. Therefore, LMD-LC-MS methods will contribute to our understanding of the physiological events that control the process of plant growth and development.
Collapse
Affiliation(s)
- Kazuki Yamada
- Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Miyuki Nakanowatari
- Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masashi Asahina
- Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
| |
Collapse
|
8
|
Shimadzu S, Furuya T, Ozawa Y, Fukuda H, Kondo Y. Spatio-temporal imaging of cell fate dynamics in single plant cells using luminescence microscope. QUANTITATIVE PLANT BIOLOGY 2022; 3:e15. [PMID: 37077981 PMCID: PMC10095866 DOI: 10.1017/qpb.2022.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/20/2022] [Accepted: 06/20/2022] [Indexed: 05/03/2023]
Abstract
Stem cell fates are spatio-temporally regulated during plant development. Time-lapse imaging of fluorescence reporters is the most widely used method for spatio-temporal analysis of biological processes. However, excitation light for imaging fluorescence reporters causes autofluorescence and photobleaching. Unlike fluorescence reporters, luminescence proteins do not require excitation light, and therefore offer an alternative reporter for long-term and quantitative spatio-temporal analysis. We established an imaging system for luciferase, which enabled monitoring cell fate marker dynamics during vascular development in a vascular cell induction system called VISUAL. Single cells expressing the cambium marker, proAtHB8:ELUC, had sharp luminescence peaks at different time points. Furthermore, dual-color luminescence imaging revealed spatio-temporal relationships between cells that differentiated into xylem or phloem, and cells that transitioned from procambium to cambium. This imaging system enables not only the detection of temporal gene expression, but also facilitates monitoring of spatio-temporal dynamics of cell identity transitions at the single cell level.
Collapse
Affiliation(s)
- Shunji Shimadzu
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Tomoyuki Furuya
- Graduate School of Science, Kobe University, Kobe, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yasuko Ozawa
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroo Fukuda
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Japan
| | - Yuki Kondo
- Graduate School of Science, Kobe University, Kobe, Japan
- Author for correspondence: Y. Kondo, E-mail:
| |
Collapse
|
9
|
Anjam MS, Siddique S, Marhavy P. RNA Isolation from Nematode-Induced Feeding Sites in Arabidopsis Roots Using Laser Capture Microdissection. Methods Mol Biol 2022; 2494:313-324. [PMID: 35467217 DOI: 10.1007/978-1-0716-2297-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nematodes are diverse multicellular organisms that are most abundantly found in the soil. Most nematodes are free-living and feed on a range of organisms. Based on their feeding habits, soil nematodes can be classified into four groups: bacterial, omnivorous, fungal, and plant-feeding. Plant-parasitic nematodes (PPNs) are a serious threat to global food security, causing substantial losses to the agricultural sector. Root-knot and cyst nematodes are the most important of PPNs, significantly limiting the yield of commercial crops such as sugar beet, mustard, and cauliflower. The life cycle of these nematodes consists of four molting stages (J1-J4) that precede adulthood. Nonetheless, only second-stage juveniles (J2), which hatch from eggs, are infective worms that can parasitize the host's roots. The freshly hatched juveniles (J2) of beet cyst nematode, Heterodera schachtii, establish a permanent feeding site inside the roots of the host plant. A cocktail of proteinaceous secretions is injected into a selected cell which later develops into a syncytium via local cell wall dissolution of several hundred neighboring cells. The formation of syncytium is accompanied by massive transcriptional, metabolic, and proteomic changes inside the host tissues. It creates a metabolic sink in which solutes are translocated to feed the nematodes throughout their life cycle. Deciphering the molecular signaling cascades during syncytium establishment is thus essential in studying the plant-nematode interactions and ensuring sustainability in agricultural practices. However, isolating RNA, protein, and metabolites from syncytial cells remains challenging. Extensive use of laser capture microdissection (LCM) in animal and human tissues has shown this approach to be a powerful technique for isolating a single cell from complex tissues. Here, we describe a simplified protocol for Arabidopsis-Heterodera schachtii infection assays, which is routinely applied in several plant-nematode laboratories. Next, we provide a detailed protocol for isolating high-quality RNA from syncytial cells induced by Heterodera schachtii in the roots of Arabidopsis thaliana plants.
Collapse
Affiliation(s)
- Muhammad Shahzad Anjam
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
- Institute of Molecular Biology and Biotechnology (IMBB), Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Peter Marhavy
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden.
| |
Collapse
|
10
|
Filipecki M, Żurczak M, Matuszkiewicz M, Święcicka M, Kurek W, Olszewski J, Koter MD, Lamont D, Sobczak M. Profiling the Proteome of Cyst Nematode-Induced Syncytia on Tomato Roots. Int J Mol Sci 2021; 22:ijms222212147. [PMID: 34830029 PMCID: PMC8625192 DOI: 10.3390/ijms222212147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cyst nematodes are important herbivorous pests in agriculture that obtain nutrients through specialized root structures termed syncytia. Syncytium initiation, development, and functioning are a research focus because syncytia are the primary interface for molecular interactions between the host plant and parasite. The small size and complex development (over approximately two weeks) of syncytia hinder precise analyses, therefore most studies have analyzed the transcriptome of infested whole-root systems or syncytia-containing root segments. Here, we describe an effective procedure to microdissect syncytia induced by Globodera rostochiensis from tomato roots and to analyze the syncytial proteome using mass spectrometry. As little as 15 mm2 of 10-µm-thick sections dissected from 30 syncytia enabled the identification of 100–200 proteins in each sample, indicating that mass-spectrometric methods currently in use achieved acceptable sensitivity for proteome profiling of microscopic samples of plant tissues (approximately 100 µg). Among the identified proteins, 48 were specifically detected in syncytia and 7 in uninfected roots. The occurrence of approximately 50% of these proteins in syncytia was not correlated with transcript abundance estimated by quantitative reverse-transcription PCR analysis. The functional categories of these proteins confirmed that protein turnover, stress responses, and intracellular trafficking are important components of the proteome dynamics of developing syncytia.
Collapse
Affiliation(s)
- Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
- Correspondence: ; Tel.: +48-22-5932171
| | - Marek Żurczak
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Magdalena Święcicka
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| | - Wojciech Kurek
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| | - Jarosław Olszewski
- Veterinary Research Centre, Centre for Biomedicine Research, Centre for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute for Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Marek Daniel Koter
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Douglas Lamont
- ‘FingerPrints’ Proteomics Facility, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK;
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| |
Collapse
|
11
|
Biological potential of bioactive metabolites derived from fungal endophytes associated with medicinal plants. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Velada I, Menéndez E, Teixeira RT, Cardoso H, Peixe A. Laser Microdissection of Specific Stem-Base Tissue Types from Olive Microcuttings for Isolation of High-Quality RNA. BIOLOGY 2021; 10:biology10030209. [PMID: 33801829 PMCID: PMC7999021 DOI: 10.3390/biology10030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary Only a small portion of the stem cells participate in the process of adventitious root formation and the cells/tissues types involved in this process is species-dependent. In olive, it is still unclear which type of cells acquire competence for rooting. Regardless, the entire stem nodal segment (containing a mixture of distinct cell types) continues to be used in studies related to the molecular mechanisms underlying this process. Laser microdissection (LM) technology has been applied to isolate specific tissue and cell types. However, it is difficult to find a standard LM protocol suitable for all plant species and cell types and, thus, LM procedures must be developed and optimized for each particular tissue. In this study, we aimed to evaluate the efficiency of a LM protocol in olive microcuttings stem-base samples. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types used for further high-quality RNA isolation. This will encourage future cell type-specific transcriptomic studies, contributing at deciphering rooting-competent cells in olive stems and to better understand the molecular mechanisms underlying the process of adventitious root formation. Abstract Higher plants are composed of different tissue and cell types. Distinct cells host different biochemical and physiological processes which is reflected in differences in gene expression profiles, protein and metabolite levels. When omics are to be carried out, the information provided by a specific cell type can be diluted and/or masked when using a mixture of distinct cells. Thus, studies performed at the cell- and tissue-type level are gaining increasing interest. Laser microdissection (LM) technology has been used to isolate specific tissue and cell types. However, this technology faces some challenges depending on the plant species and tissue type under analysis. Here, we show for the first time a LM protocol that proved to be efficient for harvesting specific tissue types (phloem, cortex and epidermis) from olive stem nodal segments and obtaining RNA of high quality. This is important for future transcriptomic studies to identify rooting-competent cells. Here, nodal segments were flash-frozen in liquid nitrogen-cooled isopentane and cryosectioned. Albeit the lack of any fixatives used to preserve samples’ anatomy, cryosectioned sections showed tissues with high morphological integrity which was comparable with that obtained with the paraffin-embedding method. Cells from the phloem, cortex and epidermis could be easily distinguished and efficiently harvested by LM. Total RNA isolated from these tissues exhibited high quality with RNA Quality Numbers (determined by a Fragment Analyzer System) ranging between 8.1 and 9.9. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types of olive stems and obtaining high-quality RNA.
Collapse
Affiliation(s)
- Isabel Velada
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
- Correspondence:
| | - Esther Menéndez
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Rita Teresa Teixeira
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Augusto Peixe
- MED—Mediterranean Institute for Agriculture, Environment and Development and Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| |
Collapse
|
13
|
Single Cell Type Specific RNA Isolation and Gene Expression Analysis in Rice Using Laser Capture Microdissection (LCM)-Based Method. Methods Mol Biol 2021. [PMID: 33471338 DOI: 10.1007/978-1-0716-1068-8_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The success of single cell type-specific gene expression or functional study largely depends on the efficient isolation of high-quality RNA from them. Laser capture microdissection (LCM) is an efficient technique that allows accessing and dissecting out a specific individual cell or cell type from a microscopic heterogeneous tissue in a minimally disruptive way. Here, we describe an efficient and inexpensive LCM-based method for the extraction of RNAs with high yield and integrity from laser-microdissected mesophyll and bundle sheath cells of rice leaf. The integrity of isolated RNA is assessed with bioanalyzer analysis, and the presence of mRNA of a specific gene is validated through RT-PCR. This RNA could further be used for uncovering single cell type-specific gene expression signature using next-generation transcriptome sequence or through regular RT-PCR.
Collapse
|
14
|
Rasouli F, Kiani-Pouya A, Zhang H, Shabala S. Developing and validating protocols for mechanical isolation of guard-cell enriched epidermal peels for omics studies. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:803-814. [PMID: 32513383 DOI: 10.1071/fp20085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Stomata, which are microscopic valves on the leaf surface formed by two guard cells (GC), play a critical role in the regulation of leaf water and gas exchange and, hence, determine plant adaptive potential. However, little data is available on GC biochemistry, protein abundance and gene expression, mainly due to technical difficulties and challenges in isolating sufficient amounts of high-quality pure GC. In the present study we applied some modifications to the mechanical isolation of guard-cell to generalise this method for diverse growth conditions as well as plant species. Epidermal peel fragments enriched in guard cells were mechanically isolated from quinoa, spinach and sugar beet leaves grown at two conditions (normal and salt stress). Multiple analysis was performed to confirm the suitability and superiority of the modified technique to the original method. At the first step, the viability and purity of GC-enriched epidermal fragments were assessed under the microscope. Then, the RNA integrity, gene expression, and 1D SDS-PAGE tests were performed to validate the suitability of this technique for omics studies. The data revealed a wide range of proteins as well as a high integrity of RNA extracted from guard cell samples. The expression level of several GC-specific genes and mesophyll-dominant genes were investigated using a comparative analysis of transcriptome datasets of GC and whole-leaf samples. We found that Rubisco and photosynthesis-related proteins such as chlorophyll a/b binding protein were substantially higher in the whole leaf compared with the GCs. More importantly, GC-specific genes such as OST1, SLAC1, MYB60, FAMA and HT1 were highly expressed in the GCs, confirming that our guard cell preparation was highly enriched in GC gene transcripts. Real-time quantitative reverse transcription PCR further confirmed the efficacy of the GC isolation technique for exploring responses of GC to diverse types of stress at the molecular level.
Collapse
Affiliation(s)
- Fatemeh Rasouli
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Ali Kiani-Pouya
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Heng Zhang
- Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, 528000 Foshan, China; and Corresponding author.
| |
Collapse
|
15
|
Legrès LG. [Laser microdissection applications in histology: an open way to molecular studies]. Med Sci (Paris) 2019; 35:871-879. [PMID: 31845879 DOI: 10.1051/medsci/2019166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the most fascinating aspects of the use of a laser beam in the field of biology has emerged with the development of devices able to perform fine dissections of biological tissues. Laser microdissection can collect phenotypically identical cells from tissue regions laid on a microscope slide in order to make differential molecular analyses on these microdissected cells. Laser microdissection can be used many areas including oncology to specify molecular mechanisms that enable to adapt a treatment related to diagnosis and research in biology, but also forensic science for tissue selection, neurology for post-mortem studies on patients with Alzheimer's disease, for clonality studies from cell cultures and cytogenetics to decipher chromosomal rearrangements. This technology represents the missing link between clinical observations and the intrinsic physiological mechanisms of biological tissues and its major applications will be addressed here.
Collapse
Affiliation(s)
- Luc G Legrès
- Institut de recherche Saint-Louis, Paris, France, UMR_S 976 Inserm, Université de Paris, Hôpital Saint-Louis, 1 avenue Claude-Vellefaux, F-75010 Paris, France
| |
Collapse
|
16
|
Olsen S, Krause K. A rapid preparation procedure for laser microdissection-mediated harvest of plant tissues for gene expression analysis. PLANT METHODS 2019; 15:88. [PMID: 31388345 PMCID: PMC6676614 DOI: 10.1186/s13007-019-0471-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/26/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Gene expression changes that govern essential biological processes can occur at the cell-specific level. To gain insight into such events, laser microdissection is applied to cut out specific cells or tissues from which RNA for gene expression analysis is isolated. However, the preparation of plant tissue sections for laser microdissection and subsequent RNA isolation usually involves fixation and embedding, processes that are often time-consuming and can lower the yield and quality of isolated RNA. RESULTS Infection sites of the parasitic plant Cuscuta reflexa growing on its compatible host plant Pelargonium zonale were sectioned using a vibratome and dried on glass slides at 4 °C before laser microdissection. High quality RNA (RQI > 7) was isolated from 1 mm2, 3 mm2 and 6 mm2 total surface areas of laser microdissection-harvested C. reflexa tissue, with the yield of RNA correlating to the amount of collected material (on average 7 ng total RNA/mm2). The expression levels of two parasite genes previously found to be highly expressed during host plant infection were shown to differ individually between specific regions of the infection site. By drying plant sections under low pressure to reduce the dehydration time, the induced expression of two wound-related genes during preparation was avoided. CONCLUSIONS Plants can be prepared quickly and easily for laser microdissection by direct sectioning of fresh tissue followed by dehydration on glass slides. We show that RNA isolated from material treated in this manner maintains high quality and enables the investigation of differential gene expression at a high morphological resolution.
Collapse
Affiliation(s)
- Stian Olsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| |
Collapse
|
17
|
Optimized cutting laser trajectory for laser capture microdissection. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Verma S, Gautam V, Sarkar AK. Improved laser capture microdissection (LCM)-based method for isolation of RNA, including miRNA and expression analysis in woody apple bud meristem. PLANTA 2019; 249:2015-2020. [PMID: 30976910 DOI: 10.1007/s00425-019-03127-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Isolation of high-quality RNA, including miRNA, from microscopic woody apple bud meristem using laser capture microdissection-based method. It is often challenging to study the expression of microRNAs (miRNAs) or genes in less accessible inner tissues of tree species rich in polyphenols or polysaccharides. Here, we report a laser capture microdissection (LCM)-based method for efficient and cost-effective isolation and expression analysis of miRNAs and genes in the meristem tissue of woody apple bud. The tissue fixation, processing, infiltration, and sectioning steps were optimized for LCM-based excision and subsequent RNA isolation. Further, we have confirmed that RNA isolated from LCM-derived apple bud meristem contained miRNAs and was of good quantity and quality, sufficient for downstream expression analysis.
Collapse
Affiliation(s)
- Swati Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
19
|
Kortz A, Hochholdinger F, Yu P. Cell Type-Specific Transcriptomics of Lateral Root Formation and Plasticity. FRONTIERS IN PLANT SCIENCE 2019; 10:21. [PMID: 30809234 PMCID: PMC6379339 DOI: 10.3389/fpls.2019.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/08/2019] [Indexed: 05/25/2023]
Abstract
Lateral roots are a major determinant of root architecture and are instrumental for the efficient uptake of water and nutrients. Lateral roots consist of multiple cell types each expressing a unique transcriptome at a given developmental stage. Therefore, transcriptome analyses of complete lateral roots provide only average gene expression levels integrated over all cell types. Such analyses have the risk to mask genes, pathways and networks specifically expressed in a particular cell type during lateral root formation. Cell type-specific transcriptomics paves the way for a holistic understanding of the programming and re-programming of cells such as pericycle cells, involved in lateral root initiation. Recent discoveries have advanced the molecular understanding of the intrinsic genetic control of lateral root initiation and elongation. Moreover, the impact of nitrate availability on the transcriptional regulation of lateral root formation in Arabidopsis and cereals has been studied. In this review, we will focus on the systemic dissection of lateral root formation and its interaction with environmental nitrate through cell type-specific transcriptome analyses. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in plants.
Collapse
Affiliation(s)
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Wang HLV, Chekanova JA. An Overview of Methodologies in Studying lncRNAs in the High-Throughput Era: When Acronyms ATTACK! Methods Mol Biol 2019; 1933:1-30. [PMID: 30945176 PMCID: PMC6684206 DOI: 10.1007/978-1-4939-9045-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of pervasive transcription in eukaryotic genomes provided one of many surprising (and perhaps most surprising) findings of the genomic era and led to the uncovering of a large number of previously unstudied transcriptional events. This pervasive transcription leads to the production of large numbers of noncoding RNAs (ncRNAs) and thus opened the window to study these diverse, abundant transcripts of unclear relevance and unknown function. Since that discovery, recent advances in high-throughput sequencing technologies have identified a large collection of ncRNAs, from microRNAs to long noncoding RNAs (lncRNAs). Subsequent discoveries have shown that many lncRNAs play important roles in various eukaryotic processes; these discoveries have profoundly altered our understanding of the regulation of eukaryotic gene expression. Although the identification of ncRNAs has become a standard experimental approach, the functional characterization of these diverse ncRNAs remains a major challenge. In this chapter, we highlight recent progress in the methods to identify lncRNAs and the techniques to study the molecular function of these lncRNAs and the application of these techniques to the study of plant lncRNAs.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
- Present address: Department of Biology, Emory University, Atlanta, GA, USA
| | - Julia A Chekanova
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
21
|
Singh A, Gautam V, Singh S, Sarkar Das S, Verma S, Mishra V, Mukherjee S, Sarkar AK. Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. PLANTA 2018; 248:545-558. [PMID: 29968061 DOI: 10.1007/s00425-018-2927-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/12/2018] [Indexed: 05/07/2023]
Abstract
Present review addresses the advances made in the understanding of biogenesis of plant small RNAs and their role in plant development. We discuss the elaborate role of microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs) in various aspects of plant growth and development and highlight relevance of small RNA mobility. Small non-coding RNAs regulate various aspects of plant development. Small RNAs (sRNAs) of 21-24 nucleotide length are derived from double-stranded RNAs through the combined activity of several biogenesis and processing components. These sRNAs function by negatively regulating the expression of target genes. miRNAs and ta-siRNAs constitute two important classes of endogenous small RNAs in plants, which play important roles in plant growth and developmental processes like embryogenesis, organ formation and patterning, shoot and root growth, and reproductive development. Biogenesis of miRNAs is a multistep process which includes transcription, processing and modification, and their loading onto RNA-induced silencing complex (RISC). RISC-loaded miRNAs carry out post-transcriptional silencing of their target(s). Recent studies identified orthologues of different biogenesis components of novel and conserved small RNAs from different model plants. Although many small RNAs have been identified from diverse plant species, only a handful of them have been functionally characterized. In this review, we discuss the advances made in understanding the biogenesis, functional conservation/divergence in miRNA-mediated gene regulation, and the developmental role of small RNAs in different plant species.
Collapse
Affiliation(s)
- Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shabari Sarkar Das
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swati Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shalini Mukherjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
22
|
Roux B, Rodde N, Moreau S, Jardinaud MF, Gamas P. Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti. Methods Mol Biol 2018; 1830:191-224. [PMID: 30043372 DOI: 10.1007/978-1-4939-8657-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding the development of multicellular organisms requires the identification of regulators, notably transcription factors, and specific transcript populations associated with tissue differentiation. Laser capture microdissection (LCM) is one of the techniques that enable the analysis of distinct tissues or cells within an organ. Coupling this technique with RNA sequencing (RNAseq) makes it extremely powerful to obtain a genome-wide and dynamic view of gene expression. Moreover, RNA sequencing allows two or potentially more interacting organisms to be analyzed simultaneously. In this chapter, a LCM-RNAseq protocol optimized for root and symbiotic root nodule analysis is presented, using the model legume Medicago truncatula (in interaction with Sinorhizobium meliloti in the nodule samples). This includes the description of procedures for plant material fixation, embedding, and micro-dissection; it is followed by a presentation of techniques for RNA extraction and amplification, adapted for the simultaneous analysis of plant and bacterial cells in interaction or, more generally, polyadenylated and non-polyadenylated RNAs. Finally, step-by-step statistical analyses of RNAseq data are described. Those are critical for quality assessment of the whole procedure and for the identification of differentially expressed genes.
Collapse
Affiliation(s)
- Brice Roux
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- BIAM, Université Aix-Marseille, CNRS, CEA, Saint-Paul-lez-Durance, France
| | - Nathalie Rodde
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- CNRGV, INRA, Castanet-Tolosan, France
| | - Sandra Moreau
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- INPT-Université de Toulouse, ENSAT, Castanet-Tolosan, France
| | - Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
23
|
|
24
|
Zhang S, Thakare D, Yadegari R. Laser-Capture Microdissection of Maize Kernel Compartments for RNA-Seq-Based Expression Analysis. Methods Mol Biol 2017; 1676:153-163. [PMID: 28986909 DOI: 10.1007/978-1-4939-7315-6_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Laser-capture microdissection (LCM) enables isolation of single cells or groups of cells for a variety of downstream applications including transcriptome profiling. Recently, this methodology has found a more widespread use particularly with the advent of next-generation sequencing techniques that enable deep profiling of the limited amounts of RNA obtained from fixed or frozen sections. When used with fixed tissues, a major experimental challenge is to balance the tissue integrity needed for microscopic visualization of the cell types of interest with that of the RNA quality necessary for deep profiling. Complex biological structures such as seeds or kernels pose an especially difficult case in this context as in many instances the key internal structures such as the embryo and the endosperm are relatively inaccessible. Here, we present an optimized LCM protocol for maize kernel that has been developed specifically to enable profiling of the early stages of endosperm development using RNA-Seq.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721-0036, USA
| | - Dhiraj Thakare
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721-0036, USA
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721-0036, USA.
| |
Collapse
|
25
|
Cañas RA, Li Z, Pascual MB, Castro-Rodríguez V, Ávila C, Sterck L, Van de Peer Y, Cánovas FM. The gene expression landscape of pine seedling tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1064-1087. [PMID: 28635135 DOI: 10.1111/tpj.13617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/13/2017] [Accepted: 05/31/2017] [Indexed: 05/20/2023]
Abstract
Conifers dominate vast regions of the Northern hemisphere. They are the main source of raw materials for timber industry as well as a wide range of biomaterials. Despite their inherent difficulties as experimental models for classical plant biology research, the technological advances in genomics research are enabling fundamental studies on these plants. The use of laser capture microdissection followed by transcriptomic analysis is a powerful tool for unravelling the molecular and functional organization of conifer tissues and specialized cells. In the present work, 14 different tissues from 1-month-old maritime pine (Pinus pinaster) seedlings have been isolated and their transcriptomes analysed. The results increased the sequence information and number of full-length transcripts from a previous reference transcriptome and added 39 841 new transcripts. In total, 2376 transcripts were ubiquitously expressed in all of the examined tissues. These transcripts could be considered the core 'housekeeping genes' in pine. The genes have been clustered in function to their expression profiles. This analysis reduced the number of profiles to 38, most of these defined by their expression in a unique tissue that is much higher than in the other tissues. The expression and localization data are accessible at ConGenIE.org (http://v22.popgenie.org/microdisection/). This study presents an overview of the gene expression distribution in different pine tissues, specifically highlighting the relationships between tissue gene expression and function. This transcriptome atlas is a valuable resource for functional genomics research in conifers.
Collapse
Affiliation(s)
- Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - M Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
26
|
Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D. Advances on plant-pathogen interactions from molecular toward systems biology perspectives. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:720-737. [PMID: 27870294 PMCID: PMC5516170 DOI: 10.1111/tpj.13429] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future.
Collapse
Affiliation(s)
- Rémi Peyraud
- LIPMUniversité de ToulouseINRACNRSCastanet‐TolosanFrance
| | | | | | - Stéphane Genin
- LIPMUniversité de ToulouseINRACNRSCastanet‐TolosanFrance
| | | | - Dominique Roby
- LIPMUniversité de ToulouseINRACNRSCastanet‐TolosanFrance
| |
Collapse
|
27
|
Affiliation(s)
- Falguni Pati
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| |
Collapse
|
28
|
Pati F, Gantelius J, Svahn HA. 3D Bioprinting of Tissue/Organ Models. Angew Chem Int Ed Engl 2016; 55:4650-65. [PMID: 26895542 DOI: 10.1002/anie.201505062] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/17/2022]
Abstract
In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.
Collapse
Affiliation(s)
- Falguni Pati
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
29
|
Sanchez-Lucas R, Mehta A, Valledor L, Cabello-Hurtado F, Romero-Rodrıguez MC, Simova-Stoilova L, Demir S, Rodriguez-de-Francisco LE, Maldonado-Alconada AM, Jorrin-Prieto AL, Jorrín-Novo JV. A year (2014-2015) of plants in Proteomics journal. Progress in wet and dry methodologies, moving from protein catalogs, and the view of classic plant biochemists. Proteomics 2016; 16:866-76. [PMID: 26621614 DOI: 10.1002/pmic.201500351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/23/2022]
Abstract
The present review is an update of the previous one published in Proteomics 2015 Reviews special issue [Jorrin-Novo, J. V. et al., Proteomics 2015, 15, 1089-1112] covering the July 2014-2015 period. It has been written on the bases of the publications that appeared in Proteomics journal during that period and the most relevant ones that have been published in other high-impact journals. Methodological advances and the contribution of the field to the knowledge of plant biology processes and its translation to agroforestry and environmental sectors will be discussed. This review has been organized in four blocks, with a starting general introduction (literature survey) followed by sections focusing on the methodology (in vitro, in vivo, wet, and dry), proteomics integration with other approaches (systems biology and proteogenomics), biological information, and knowledge (cell communication, receptors, and signaling), ending with a brief mention of some other biological and translational topics to which proteomics has made some contribution.
Collapse
Affiliation(s)
- Rosa Sanchez-Lucas
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia (CENARGEN), Brasília, DF, Brazil
| | - Luis Valledor
- Department of Biology of Organisms and Systems (BOS), University of Oviedo, Oviedo, Spain
| | | | - M Cristina Romero-Rodrıguez
- Centro Multidisciplinario de Investigaciones Tecnológicas, and Departamento de Fitoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Lyudmila Simova-Stoilova
- Plant Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sekvan Demir
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Luis E Rodriguez-de-Francisco
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain.,INTEC-Sto. Domingo, Santo Domingo, República Dominicana
| | - Ana M Maldonado-Alconada
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Ana L Jorrin-Prieto
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Jesus V Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| |
Collapse
|
30
|
Gautam V, Singh A, Singh S, Sarkar AK. An Efficient LCM-Based Method for Tissue Specific Expression Analysis of Genes and miRNAs. Sci Rep 2016; 6:21577. [PMID: 26861910 PMCID: PMC4748277 DOI: 10.1038/srep21577] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/26/2016] [Indexed: 12/26/2022] Open
Abstract
Laser Capture Microdissection (LCM) is a powerful tool to isolate and study gene expression pattern of desired and less accessible cells or tissues from a heterogeneous population. Existing LCM-based methods fail to obtain high quality RNA including small RNAs from small microdissected plant tissue and therefore, are not suitable for miRNA expression studies. Here, we describe an efficient and cost-effective method to obtain both high quality RNA and miRNAs from LCM-derived embryonic root apical meristematic tissue, which is difficult to access. We have significantly modified and improved the tissue fixation, processing, sectioning and RNA isolation steps and minimized the use of kits. Isolated RNA was checked for quality with bioanalyzer and used for gene expression studies. We have confirmed the presence of 19-24 nucleotide long mature miRNAs using modified stem-loop RT-PCR. This modified LCM-based method is suitable for tissue specific expression analysis of both genes and small RNAs (miRNAs).
Collapse
Affiliation(s)
- Vibhav Gautam
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sharmila Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
31
|
Abstract
Laser capture microdissection (LCM) is a powerful technique for harvesting specific cells from a heterogeneous population. As each cell and tissue has its unique genetic, proteomic, and metabolic profile, the use of homogeneous samples is important for a better understanding of complex processes in both animal and plant systems. In case of plants, LCM is very suitable as the highly regular tissue organization and stable cell walls from these organisms enable visual identification of various cell types without staining of tissue sections, which can prevent some downstream analysis. Considering the applicability of LCM to any plant species, here we provide a step-by-step protocol for selecting specific cells or tissues through this technology.
Collapse
|
32
|
Anjam MS, Ludwig Y, Hochholdinger F, Miyaura C, Inada M, Siddique S, Grundler FMW. An improved procedure for isolation of high-quality RNA from nematode-infected Arabidopsis roots through laser capture microdissection. PLANT METHODS 2016; 12:25. [PMID: 27123040 PMCID: PMC4847226 DOI: 10.1186/s13007-016-0123-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/19/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cyst nematodes are biotrophs that form specialized feeding structures in the roots of host plants, which consist of a syncytial fusion of hypertrophied cells. The formation of syncytium is accompanied by profound transcriptional changes and active metabolism in infected tissues. The challenge in gene expression studies for syncytium has always been the isolation of pure syncytial material and subsequent extraction of intact RNA. Root fragments containing syncytium had been used for microarray analyses. However, the inclusion of neighbouring cells dilutes the syncytium-specific mRNA population. Micro-sectioning coupled with laser capture microdissection (LCM) offers an opportunity for the isolation of feeding sites from heterogeneous cell populations. But recovery of intact RNA from syncytium dissected by LCM is complicated due to extended steps of fixation, tissue preparation, embedding and sectioning. RESULTS In the present study, we have optimized the procedure of sample preparation for LCM to isolate high quality of RNA from cyst nematode induced syncytia in Arabidopsis roots which can be used for transcriptomic studies. We investigated the effect of various sucrose concentrations as cryoprotectant on RNA quality and morphology of syncytial sections. We also compared various types of microscopic slides for strong adherence of sections while removing embedding material. CONCLUSION The use of optimal sucrose concentrations as cryoprotection plays a key role in RNA stability and morphology of sections. Treatment with higher sucrose concentrations minimizes the risk of RNA degradation, whereas longer incubation times help maintaining the morphology of tissue sections. Our method allows isolating high-quality RNA from nematode feeding sites that is suitable for downstream applications such as microarray experiments.
Collapse
Affiliation(s)
- Muhammad Shahzad Anjam
- />INRES - Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
- />Institute of Molecular Biology and Bio-technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Yvonne Ludwig
- />INRES - Crop Functional Genomics, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Frank Hochholdinger
- />INRES - Crop Functional Genomics, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Chisato Miyaura
- />Department of Biotechnology and Life Science, and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 Japan
| | - Masaki Inada
- />Department of Biotechnology and Life Science, and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 Japan
| | - Shahid Siddique
- />INRES - Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Florian M. W. Grundler
- />INRES - Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-Universitaet Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| |
Collapse
|
33
|
Girard IJ, Mcloughlin AG, de Kievit TR, Fernando DWG, Belmonte MF. Integrating Large-Scale Data and RNA Technology to Protect Crops from Fungal Pathogens. FRONTIERS IN PLANT SCIENCE 2016; 7:631. [PMID: 27303409 PMCID: PMC4885860 DOI: 10.3389/fpls.2016.00631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/25/2016] [Indexed: 05/13/2023]
Abstract
With a rapidly growing human population it is expected that plant science researchers and the agricultural community will need to increase food productivity using less arable land. This challenge is complicated by fungal pathogens and diseases, many of which can severely impact crop yield. Current measures to control fungal pathogens are either ineffective or have adverse effects on the agricultural enterprise. Thus, developing new strategies through research innovation to protect plants from pathogenic fungi is necessary to overcome these hurdles. RNA sequencing technologies are increasing our understanding of the underlying genes and gene regulatory networks mediating disease outcomes. The application of invigorating next generation sequencing strategies to study plant-pathogen interactions has and will provide unprecedented insight into the complex patterns of gene activity responsible for crop protection. However, questions remain about how biological processes in both the pathogen and the host are specified in space directly at the site of infection and over the infection period. The integration of cutting edge molecular and computational tools will provide plant scientists with the arsenal required to identify genes and molecules that play a role in plant protection. Large scale RNA sequence data can then be used to protect plants by targeting genes essential for pathogen viability in the production of stably transformed lines expressing RNA interference molecules, or through foliar applications of double stranded RNA.
Collapse
Affiliation(s)
- Ian J. Girard
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| | | | | | | | - Mark F. Belmonte
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
- *Correspondence: Mark F. Belmonte,
| |
Collapse
|
34
|
Blokhina O, Valerio C, Sokołowska K, Zhao L, Kärkönen A, Niittylä T, Fagerstedt K. Laser Capture Microdissection Protocol for Xylem Tissues of Woody Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1965. [PMID: 28101088 PMCID: PMC5209384 DOI: 10.3389/fpls.2016.01965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/12/2016] [Indexed: 05/07/2023]
Abstract
Laser capture microdissection (LCM) enables precise dissection and collection of individual cell types from complex tissues. When applied to plant cells, and especially to woody tissues, LCM requires extensive optimization to overcome such factors as rigid cell walls, large central vacuoles, intercellular spaces, and technical issues with thickness and flatness of the sections. Here we present an optimized protocol for the laser-assisted microdissection of developing xylem from mature trees: a gymnosperm (Norway spruce, Picea abies) and an angiosperm (aspen, Populus tremula) tree. Different cell types of spruce and aspen wood (i.e., ray cells, tracheary elements, and fibers) were successfully microdissected from tangential, cross and radial cryosections of the current year's growth ring. Two approaches were applied to achieve satisfactory flatness and anatomical integrity of the spruce and aspen specimens. The commonly used membrane slides were ineffective as a mounting surface for the wood cryosections. Instead, in the present protocol we use glass slides, and introduce a glass slide sandwich assembly for the preparation of aspen sections. To ascertain that not only the anatomical integrity of the plant tissue, but also the molecular features were not compromised during the whole LCM procedure, good quality total RNA could be extracted from the microdissected cells. This showed the efficiency of the protocol and established that our methodology can be integrated in transcriptome analyses to elucidate cell-specific molecular events regulating wood formation in trees.
Collapse
Affiliation(s)
- Olga Blokhina
- Viikki Plant Science Centre, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Concetta Valerio
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural SciencesUmeå, Sweden
| | - Katarzyna Sokołowska
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural SciencesUmeå, Sweden
- Department of Plant Developmental Biology, Institute of Experimental Biology, University of WrocławWrocław, Poland
| | - Lei Zhao
- Viikki Plant Science Centre, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Anna Kärkönen
- Viikki Plant Science Centre, Department of Agricultural Sciences, University of HelsinkiHelsinki, Finland
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural SciencesUmeå, Sweden
- *Correspondence: Kurt Fagerstedt, Totte Niittylä,
| | - Kurt Fagerstedt
- Viikki Plant Science Centre, Department of Biosciences, University of HelsinkiHelsinki, Finland
- *Correspondence: Kurt Fagerstedt, Totte Niittylä,
| |
Collapse
|