1
|
Hajsadeghi S, Iranpour A, Mirshafiee S, Nekouian R, Mollababaei M, Motevalli H, Yasin Ahmadi SA, Dakkali MS. Impact of smoking on microRNAs in significant coronary artery disease. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2025; 63:49-59. [PMID: 39543851 DOI: 10.2478/rjim-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Given the importance of coronary artery disease (CAD) and the range of cardiovascular disease phenotypes in smokers, as well as the potential genetic and epigenetic factors, we were motivated to explore the impact of smoking on some selected microRNAs associated with significant CAD. METHODS A total of 60 individuals were selected in four groups including non-smoker without significant CAD (S-A-), non-smokers with significant CAD (S-A+), smokers without significant CAD (S+A-) and smokers with significant CAD (S+A+). Micro-RNA expression was investigated using real-time PCR. General linear model was used to calculate fold change (FC) considering S-A- as the reference group. RESULTS For mir-34a, down-regulation was observed in S+A- (FC =0.13, P =0.007) and S+A+ (FC =0.23, P =0.036) groups. For mir-126-3p, down-regulation was observed in S-A+ group (FC =0.05, P =0.024). For mir-199, up-regulation was observed for S+A- group (FC =9.38, P =0.007). The only significant interaction between pack-years of smoking and number of significantly narrowed vessels (≥75% stenosis) was for mir-199 which was in favor of down-regulation (P =0.006), while the main effects were in favor of up-regulation (P <0.05). CONCLUSION Mir-34a expression may be affected by smoking, whereas mir-126-3p expression may be affected by atherosclerosis, the most common reason of CAD. The significant down-regulation of mir-199 for the interaction of smoking dose and severity of CAD was a notable finding showing the harmful consequence of this interaction. Further studies are needed for this micro-RNA.
Collapse
Affiliation(s)
- Shokoufeh Hajsadeghi
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Aida Iranpour
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Mirshafiee
- Department of Cardiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Nekouian
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mollababaei
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Motevalli
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Amir Yasin Ahmadi
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Popescu AI, Rață AL, Vlad D, Vlad C, Popescu R, Onofrei RR, Morelli M, Pantea S, Barac S. miRNA in the Diagnosis and Treatment of Critical Limb Ischemia. Biomedicines 2024; 12:2026. [PMID: 39335540 PMCID: PMC11428243 DOI: 10.3390/biomedicines12092026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic threatening limb ischemia of the inferior limbs (CLTI) is the final stage of peripheral arterial disease (PAD) and is one of the most feared atherosclerotic manifestations because if left untreated, in time, it can lead to amputation. Although there are currently numerous treatment techniques, both open and endovascular, it is a pathology that has no underlying treatment. Therefore, current studies are very much focused on new therapeutic possibilities that can be applied in the early stages of the atherosclerotic process. In numerous studies in the literature, miRNAs have been identified as important markers of atherosclerosis. The present study aims to identify the expression of three miRNAs-miR-199a, miR-20a, and miR-30c-in patients with chronic limb-threatening ischemia in the pre- and post-revascularization periods. The aim of the study is to identify whether these three markers play a role in critical ischemia and whether they have the potential for future use in new treatments of this pathology.
Collapse
Affiliation(s)
- Alexandra Ioana Popescu
- Pharmacology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Andreea Luciana Rață
- Surgical Emergencies Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Daliborca Vlad
- Pharmacology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristian Vlad
- Pharmacology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Cell and Molecular Biology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ramona Roxana Onofrei
- Department of Rehabilitation, Physical Medicine and Rheumatology, Research Center for Assessment of Human Motion, Functionality and Disability, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marialuisa Morelli
- Vascular Surgery Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stelian Pantea
- Surgical Emergencies Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Sorin Barac
- Vascular Surgery Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
3
|
González-López P, Yu Y, Lin S, Escribano Ó, Gómez-Hernández A, Gisterå A. Dysregulation of micro-RNA 143-3p as a Biomarker of Carotid Atherosclerosis and the Associated Immune Reactions During Disease Progression. J Cardiovasc Transl Res 2024; 17:768-778. [PMID: 38270847 PMCID: PMC11371874 DOI: 10.1007/s12265-024-10482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Atherosclerosis commonly remains undiagnosed until disease manifestations occur. The disease is associated with dysregulated micro(mi)RNAs, but how this is linked to atherosclerosis-related immune reactions is largely unknown. A mouse model of carotid atherosclerosis, human APOB100-transgenic Ldlr-/- (HuBL), was used to study the spatiotemporal dysregulation of a set of miRNAs. Middle-aged HuBL mice with established atherosclerosis had decreased levels of miR-143-3p in their carotid arteries. In young HuBL mice, early atherosclerosis was observed in the carotid bifurcation, which had lower levels of miR-15a-5p, miR-143-3p, and miR-199a-3p, and higher levels of miR-155-5p. The dysregulation of these miRNAs was reflected by specific immune responses during atheroprogression. Finally, levels of miR-143-3p were 70.6% lower in extracellular vesicles isolated from the plasma of patients with carotid stenosis compared to healthy controls. Since miR-143-3p levels progressively decrease when transitioning between early and late experimental carotid atherosclerosis, we propose it as a biomarker for atherosclerosis.
Collapse
Affiliation(s)
- Paula González-López
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Yinda Yu
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Shiying Lin
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Óscar Escribano
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Anton Gisterå
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
- Bioclinicum J8:20, Karolinska University Hospital, Visionsgatan 4, Solna, SE-17164, Stockholm, Sweden.
| |
Collapse
|
4
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
5
|
Li Y, Wu Y, Qin X, Gu J, Liu A, Cao J. Constructing a competitive endogenous RNA network of EndMT-related atherosclerosis through weighted gene co-expression network analysis. Front Cardiovasc Med 2024; 10:1322252. [PMID: 38268851 PMCID: PMC10806165 DOI: 10.3389/fcvm.2023.1322252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction and plaque formation. Under pro-inflammatory conditions, endothelial cells can undergo endothelial-to-mesenchymal transition (EndMT), contributing to atherosclerosis development. However, the specific regulatory mechanisms by which EndMT contributes to atherosclerosis remain unclear and require further investigation. Dan-Shen-Yin (DSY), a traditional Chinese herbal formula, is commonly used for cardiovascular diseases, but its molecular mechanisms remain elusive. Emerging evidence indicates that competing endogenous RNA (ceRNA) networks play critical roles in atherosclerosis pathogenesis. In this study, we constructed an EndMT-associated ceRNA network during atherosclerosis progression by integrating gene expression profiles from the Gene Expression Omnibus (GEO) database and weighted gene co-expression network analysis. Functional enrichment analysis revealed this EndMT-related ceRNA network is predominantly involved in inflammatory responses. ROC curve analysis showed the identified hub genes can effectively distinguish between normal vasculature and atherosclerotic lesions. Furthermore, Kaplan-Meier analysis demonstrated that high expression of IL1B significantly predicts ischemic events in atherosclerosis. Molecular docking revealed most DSY bioactive components can bind key EndMT-related lncRNAs, including AC003092.1, MIR181A1HG, MIR155HG, WEE2-AS1, and MIR137HG, suggesting DSY may mitigate EndMT in atherosclerosis by modulating the ceRNA network.
Collapse
Affiliation(s)
- Yawei Li
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yubiao Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiude Qin
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinchao Gu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijun Liu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Cao
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Witarto BS, Visuddho V, Aldian FM, Atmaja MSS, Ariyanto MV, Witarto AP, Wungu CDK, Susilo H, Alsagaff MY, Rohman MS. Blood-based circulating microRNAs as diagnostic biomarkers for subclinical carotid atherosclerosis: A systematic review and meta-analysis with bioinformatics analysis. Diabetes Metab Syndr 2023; 17:102860. [PMID: 37742360 DOI: 10.1016/j.dsx.2023.102860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Atherosclerosis in carotid arteries can remain clinically undetected in its early development until an acute cerebrovascular event such as stroke emerges. Recently, microRNAs (miRNAs) circulating in blood have emerged as potential diagnostic biomarkers, but their performance in detecting subclinical carotid atherosclerosis has yet to be systematically researched. AIM To investigate the diagnostic performance of circulating miRNAs in detecting subclinical carotid atherosclerosis. METHODS We systematically searched five electronic databases from inception to July 23, 2022. Subclinical carotid atherosclerosis was defined using carotid intima-media thickness (CIMT). Diagnostic accuracy parameters and correlation coefficients were pooled. A gene network visualisation and enrichment bioinformatics analysis were additionally conducted to search for potential target genes and pathway regulations of the miRNAs. RESULTS Fifteen studies (15 unique miRNAs) comprising 2542 subjects were identified. Circulating miRNAs had a pooled sensitivity of 85% (95% CI 80%-89%), specificity of 84% (95% CI 78%-88%), positive likelihood ratio of 5.19 (95% CI 3.97-6.80), negative likelihood ratio of 0.18 (95% CI 0.13-0.23), diagnostic odds ratio of 29.48 (95% CI 21.15-41.11), and area under the summary receiver operating characteristic curve of 0.91 (95% CI 0.88-0.93), with a strong correlation to CIMT (pooled coefficient 0.701; 95% CI 0.664-0.731). Bioinformatics analysis revealed a major role of the miRNAs, as shown by their relation with CCND1, KCTD15, SPARC, WWTR1, VEGFA genes, and multiple pathways involved in the pathogenesis of carotid atherosclerosis. CONCLUSION Circulating miRNAs had excellent accuracy in detecting subclinical carotid atherosclerosis, suggesting their utilisation as novel diagnostic tools.
Collapse
Affiliation(s)
| | - Visuddho Visuddho
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fan Maitri Aldian
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | | | | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
| | - Hendri Susilo
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia; Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia.
| | - Mochamad Yusuf Alsagaff
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia; Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
7
|
Gu X, Weng R, Hou J, Liu S. Endothelial miR-199a-3p regulating cell adhesion molecules by targeting mTOR signaling during inflammation. Eur J Pharmacol 2022; 925:174984. [PMID: 35489420 DOI: 10.1016/j.ejphar.2022.174984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Adherence of monocytes to endothelial cells is the initial stage for development of coronary artery disease (CAD). MiRNAs have been reported to participate in this process by regulating the expression of cell adhesion molecules. This study aimed to explore the function of miR-199a-3p in endothelial inflammation and adhesion. METHODS We assessed the expression of miR-199a-3p in CAD patients and ApoE-/- mice. The relationship between miR-199a-3p level and endothelial inflammation and adhesion was examined. ELISA was used to test the level of IL-6 and IL-8. Dual luciferase reporter assay was used to evaluate the binding between miR-199a-3p and mTOR. RESULTS A decreased expression of miR-199a-3p was observed in the PBMCs and plasma of CAD patients, aorta of ApoE-/- mice and inflammatory HUVECs. MiR-199a-3p significantly suppressed the expression levels of pro-inflammatory cytokine (IL-6, IL-8), endothelial adhesion molecules (ICAM-1, VCAM-1) and monocyte-endothelial cells interaction. MiR-199a-3p directly targeted and repressed mTOR, and its suppression effect on ICAM-1 and VCAM-1 was abolished by mTOR inhibitor rapamycin, and rescued by mTOR activator MHY1485. Overexpression of miR-199a-3p promoted autophagy in HUVECs and inhibiting autophagy by chloroquine attenuated the effect of miR-199a-3p on ICAM-1 and VCAM-1 expression. Inhibition of autophagy promoted endothelial adhesion molecule expression and monocyte-EC interaction. CONCLUSIONS Our results suggested that miR-199a-3p suppressed endothelial inflammation and adhesion by targeting mTOR signaling and increasing autophagy. Our findings point to an important role for miR-199a-3p in the early stage of cardiovascular disease.
Collapse
Affiliation(s)
- Xiaodong Gu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, 514031, PR China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, PR China
| | - Ruiqiang Weng
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, 514031, PR China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, PR China
| | - Jingyuan Hou
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, 514031, PR China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, PR China.
| | - Sudong Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, 514031, PR China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, 514031, PR China.
| |
Collapse
|
8
|
Effect of endothelial progenitor cell-derived extracellular vesicles on endothelial cell ferroptosis and atherosclerotic vascular endothelial injury. Cell Death Discov 2021; 7:235. [PMID: 34493702 PMCID: PMC8423825 DOI: 10.1038/s41420-021-00610-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disorder characterized by endothelial dysfunction. Endothelial progenitor cells (EPCs) can overcome endothelial dysfunction and reduce AS risk. This study focused on the role of EPC-secreted extracellular vesicles (EPC-EVs) in AS. First, mouse EPCs and mouse aortic endothelial cells (MAECs) were isolated and identified. EVs were isolated from EPCs and identified. EPC-EVs were co-cultured with MAECs and the internalization of EVs was observed. Glutathione (GSH) consumption, reactive oxygen species (ROS) production, lipid peroxidation, and iron accumulation and cell death in endothelial cells were detected. The binding relationship between miR-199a-3p and specificity protein 1 (SP1) was confirmed using dual-luciferase and RIP assays. The mouse model of AS was established. The relationships between miR-199a-3p expression and aortic area plaque and serum pro-inflammatory factor were analyzed. The degree of atherosclerotic lesion was detected using oil red O staining and the serum inflammatory factors were detected using ELISA. Our results elicited that EPC-EVs inhibited cell death, GSH consumption, ROS production, lipid peroxidation, and iron accumulation in endothelial cells, thereby suppressing ferroptosis of endothelial cells. EPC-EVs transferred miR-199a-3p into endothelial cells. miR-199a-3p targeted SP1. Silencing miR-199a-3p or overexpression of SP1 in endothelial cells reversed the effect of EPC-EVs on ferroptosis of endothelial cells. In vivo experiments confirmed that EPC-EVs inhibited ferroptosis of endothelial cells and then alleviated the occurrence of AS via the miR-199a-3p/SP1 axis. To conclude, EPC-EVs transferred miR-199a-3p to inhibit SP1, thus repressing ferroptosis of endothelial cells and retarding the occurrence of AS.
Collapse
|