1
|
Sung SH, Jeong H, Park JH, Park M, Lee G. Clinical Evidence of Bee Venom Acupuncture for Ankle Pain: A Review of Clinical Research. Toxins (Basel) 2025; 17:257. [PMID: 40423339 DOI: 10.3390/toxins17050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
The prevalence of ankle pain in adults is 9-15%, with up to 45% of sports-related injuries attributed to ankle pain and injuries. If ankle pain is not controlled in a timely manner, it can lead to ankle instability, resulting in further damage, recurrence of pain, and secondary injuries. The present study aimed to assess the therapeutic potential and safety profile of bee venom acupuncture (BVA) in the management of ankle pain. Ten electronic databases were searched for articles published up to March 2025. We included clinical studies that utilized BVA for the treatment of ankle pain and studies that included pain- and function-related assessment tools. The safety of bee venom acupuncture (BVA) was assessed by extracting adverse events from the included studies and categorizing them according to the Common Terminology Criteria for Adverse Events (CTCAE). A total of 14 clinical studies were selected, of which 9 were case reports, 2 were case-controlled clinical trials (CCTs), and 3 were randomized controlled trials (RCTs). The conditions causing ankle pain were mostly traumatic (42.9%), followed by inflammatory (21.4%) and neuropathic disorders (14.3%). BVA was applied at concentrations ranging from 0.05 to 0.5 mg/mL, with a per-session volume ranging from 0.04 to 2.5 mL. In most studies, BVA was reported to improve both ankle pain and function simultaneously. Among the 14 studies, four participants reported adverse events following BVA treatment, all of which were classified as grade 1 or grade 2, indicating mild to moderate severity. This review suggests that BVA may be recommended for controlling ankle pain based on clinical evidence. However, the number of high-quality RCTs is limited, and half of the studies did not report side effects, indicating the need for further clinical research to verify its safety and efficacy.
Collapse
Affiliation(s)
- Soo-Hyun Sung
- Department of Policy Development, National Institute of Korean Medicine Development, Seoul 04554, Republic of Korea
| | - Hyein Jeong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Hyun Park
- Department of Pathology, College of Korean Medicine, Daegu Haany University, 1 Haanydaero, Gyeongsan 38610, Republic of Korea
| | - Minjung Park
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seungnam 13120, Republic of Korea
| | - Gihyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| |
Collapse
|
2
|
Qu W, Wu X, Wu W, Wang Y, Sun Y, Deng L, Walker M, Chen C, Dai H, Han Q, Ding Y, Xia Y, Smith G, Li R, Liu NK, Xu XM. Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury. Neural Regen Res 2025; 20:1467-1482. [PMID: 39075913 PMCID: PMC11624882 DOI: 10.4103/nrr.nrr-d-23-01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00029/figure1/v/2024-07-28T173839Z/r/image-tiff Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties. A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury. A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity, and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar, thus limiting axonal reentry into the host spinal cord. Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury. We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders, Schwann cells migrated for considerable distances in both rostral and caudal directions. Such Schwann cell migration led to enhanced axonal regrowth, including the serotonergic and dopaminergic axons originating from supraspinal regions, and promoted recovery of locomotor and urinary bladder functions. Importantly, the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury, even when treatment was delayed for 3 months to mimic chronic spinal cord injury. These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.
Collapse
Affiliation(s)
- Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yan Sun
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heqiao Dai
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying Ding
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yongzhi Xia
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Ravenscraft B, Lee DH, Dai H, Watson AL, Aparicio GI, Han X, Deng LX, Liu NK. Mitochondrial Cardiolipin-Targeted Tetrapeptide, SS-31, Exerts Neuroprotective Effects Within In Vitro and In Vivo Models of Spinal Cord Injury. Int J Mol Sci 2025; 26:3327. [PMID: 40244206 PMCID: PMC11989705 DOI: 10.3390/ijms26073327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Spinal cord injury (SCI) affects millions globally, leading to severe motor and sensory deficits with no effective clinical treatment. Cardiolipin (CL), a mitochondria-specific phospholipid, plays a critical role in bioenergetics and apoptosis. Emerging evidence suggests that CL alterations contribute to secondary SCI pathology, but their precise role and underlying mechanisms remain fully understudied. In this study, we investigated the protective effects of SS-31 on CL alteration, neuronal death, tissue damage, and behavioral recovery after SCI using both in vitro and in vivo models, lipidomics analysis, histological evaluation, and behavioral assessments. In vitro investigations used primary spinal cord neuron cultures, challenged with either rotenone or glutamatergic excitotoxicity, with protective capabilities measured via cell death assays and neurite morphological analysis. In vivo investigations used female adult C57Bl/6 mice, challenged with a contusive SCI. The results showed that SS-31 reduced rotenone- and glutamate-induced mitochondrial dysfunction and neuronal death in a dose-dependent manner in vitro. Additionally, SS-31 attenuated rotenone- and glutamate-induced neurite degeneration in vitro. Lipidomics analysis revealed a reduction in CL at 24 h post-SCI in adult mice, which was attenuated by SS-31 in a dose-dependent manner. Consistent with this effect, SS-31 improved behavioral recovery after SCI in adult mice, although it had no significant effect on tissue damage. These findings suggest that CL alteration may play a key role in the pathogenesis of SCI, at least in the C57BL/6 mouse, and as such could be an attractive therapeutic target for ameliorating secondary SCI.
Collapse
Affiliation(s)
- Baylen Ravenscraft
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA (D.-H.L.)
| | - Do-Hun Lee
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA (D.-H.L.)
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heqiao Dai
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA (D.-H.L.)
| | - Abbie Lea Watson
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA (D.-H.L.)
| | - Gabriela Inés Aparicio
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA (D.-H.L.)
- Neurorestoration Center, Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Xianlin Han
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Ling-Xiao Deng
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA (D.-H.L.)
| | - Nai-Kui Liu
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA (D.-H.L.)
| |
Collapse
|
4
|
Zulkifli SZ, Pungot NH, Saaidin AS, Jani NA, Mohammat MF. Synthesis and diverse biological activities of substituted indole β-carbolines: a review. Nat Prod Res 2024; 38:3793-3806. [PMID: 37770197 DOI: 10.1080/14786419.2023.2261141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
β-Carboline bearing indole is one of the heterocyclic compounds that play a vital role in medicinal chemistry with various pharmacological effects such as anticancer, anti-acetylcholinesterase, anti-inflammation, antimalarial, antibacterial, anti-diabetic, and antioxidant. Over the last two decades, many studies on the synthesis and biological activity of indole β-carboline compounds have been conducted yet there is no appropriate data summary has been presented. Thus, the goal of this review was to highlight the synthesis pathway and bioactivity of substituted indole β-carboline reported from 2005 to date. In addition, this will encourage further investigation into the synthesis and evaluation of new indole β-carboline, in the hope of contributing to the development of potentially new medications for the treatment of various ailments.
Collapse
Affiliation(s)
- Siti Zafirah Zulkifli
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Noor Hidayah Pungot
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Nor Akmalazura Jani
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kuala Pilah, Negeri Sembilan, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
5
|
Deng J, Sun C, Zheng Y, Gao J, Cui X, Wang Y, Zhang L, Tang P. In vivo imaging of the neuronal response to spinal cord injury: a narrative review. Neural Regen Res 2024; 19:811-817. [PMID: 37843216 PMCID: PMC10664102 DOI: 10.4103/1673-5374.382225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 10/17/2023] Open
Abstract
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury (SCI). However, this subject has been neglected in part because appropriate tools are lacking. Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease. This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques, and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI. We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations. Finally, we identify the challenges and possible solutions for spinal cord neuron imaging.
Collapse
Affiliation(s)
- Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
- Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Ying Zheng
- Medical School of Chinese PLA, Beijing, China
| | - Jianpeng Gao
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
6
|
Hibbard EA, Du X, Zhang Y, Xu XM, Deng L, Sengelaub DR. Differential effects of exercise and hormone treatment on spinal cord injury-induced changes in micturition and morphology of external urethral sphincter motoneurons. Restor Neurol Neurosci 2024; 42:151-165. [PMID: 39213108 PMCID: PMC11851999 DOI: 10.3233/rnn-241385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Spinal cord injury (SCI) results in lesions that destroy tissue and spinal tracts, leading to deficits in locomotor and autonomic function. We have previously shown that after SCI, surviving motoneurons innervating hindlimb muscles exhibit extensive dendritic atrophy, which can be attenuated by treadmill training or treatment with gonadal hormones post-injury. We have also shown that following SCI, both exercise and treatment with gonadal hormones improve urinary function. Animals exercised with forced running wheel training show improved urinary function as measured by bladder cystometry and sphincter electromyography, and treatment with gonadal hormones improves voiding patterns as measured by metabolic cage testing. Objective The objective of the current study was to examine the potential protective effects of exercise or hormone treatment on the structure and function of motoneurons innervating the external urethral sphincter (EUS) after contusive SCI. Methods Gonadally intact young adult male rats received either a sham or a thoracic contusion injury. Immediately after injury, one cohort of animals was implanted with subcutaneous Silastic capsules filled with estradiol (E) and dihydrotestosterone (D) or left blank; continuous hormone treatment occurred for 4 weeks post-injury. A separate cohort of SCI-animals received either 12 weeks of forced wheel running exercise or no exercise treatment starting two weeks after injury. At the end of treatment, urinary void volume was measured using metabolic cages and EUS motoneurons were labeled with cholera toxin-conjugated horseradish peroxidase, allowing for assessment of dendritic morphology in three dimensions. Results Locomotor performance was improved in exercised animals after SCI. Void volumes increased after SCI in all animals; void volume was unaffected by treatment with exercise, but was dramatically improved by treatment with E + D. Similar to what we have previously reported for hindlimb motoneurons after SCI, dendritic length of EUS motoneurons was significantly decreased after SCI compared to sham animals. Exercise did not reverse injury-induced atrophy, however E + D treatment significantly protected dendritic length. Conclusions These results suggest that some aspects of urinary dysfunction after SCI can be improved through treatment with gonadal hormones, potentially through their effects on EUS motoneurons. Moreover, a more comprehensive treatment regime that addresses multiple SCI-induced sequelae, i.e., locomotor and voiding deficits, would include both hormones and exercise.
Collapse
Affiliation(s)
- Emily A. Hibbard
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Xiaolong Du
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yihong Zhang
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lingxiao Deng
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dale R. Sengelaub
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
7
|
Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti JRLP. Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? BIOLOGY 2023; 12:1139. [PMID: 37627023 PMCID: PMC10452099 DOI: 10.3390/biology12081139] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-lasting morbidity and mortality worldwide, being a devastating condition related to the impairment of the nervous system after an external traumatic event resulting in transitory or permanent functional disability, with a significant burden to the healthcare system. Harmful events underlying TBI can be classified into two sequential stages, primary and secondary, which are both associated with breakdown of the tissue homeostasis due to impairment of the blood-brain barrier, osmotic imbalance, inflammatory processes, oxidative stress, excitotoxicity, and apoptotic cell death, ultimately resulting in a loss of tissue functionality. The present study provides an updated review concerning the roles of brain edema, inflammation, excitotoxicity, and oxidative stress on brain changes resulting from a TBI. The proper characterization of the phenomena resulting from TBI can contribute to the improvement of care, rehabilitation and quality of life of the affected people.
Collapse
Affiliation(s)
- Marco Aurelio M. Freire
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Gabriel Sousa Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Daniel Falcao
- VCU Health Systems, Virginia Commonwealth University, 23219 Richmond, VA, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Jose Rodolfo Lopes P. Cavalcanti
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| |
Collapse
|
8
|
Kim S, Chaudhary PK, Kim S. Role of Prednisolone in Platelet Activation by Inhibiting TxA 2 Generation through the Regulation of cPLA 2 Phosphorylation. Animals (Basel) 2023; 13:ani13081299. [PMID: 37106862 PMCID: PMC10135208 DOI: 10.3390/ani13081299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Glucocorticoids have been commonly used in the treatment of inflammation and immune-mediated diseases in human beings and small animals such as cats and dogs. However, excessive use can lead to Cushing's syndrome along with several thrombotic and cardiovascular diseases. Although it is well-known that glucocorticoids exert a significant effect on coagulation, the effect of cortisol on platelet function is much less clear. Thus, we aimed to study the effects of prednisolone, one of the commonly used glucocorticoids, on the regulation of platelet function using murine platelets. We first evaluated the concentration-dependent effect of prednisolone on 2-MeSADP-induced platelet function and found that the 2-MeSADP-induced secondary wave of aggregation and dense granule secretion were completely inhibited from 500 nM prednisolone. Since 2-MeSADP-induced secretion and the resultant secondary wave of aggregation are mediated by TxA2 generation, this result suggested a role of prednisolone in platelet TxA2 generation. Consistently, prednisolone did not affect the 2-MeSADP-induced aggregation in aspirinated platelets, where the secondary wave of aggregation and secretion were blocked by eliminating the contribution of TxA2 generation by aspirin. In addition, thrombin-induced platelet aggregation and secretion were inhibited in the presence of prednisolone by inhibiting the positive-feedback effect of TxA2 generation on platelet function. Furthermore, prednisolone completely inhibited 2-MeSADP-induced TxA2 generation, confirming the role of prednisolone in TxA2 generation. Finally, Western blot analysis revealed that prednisolone significantly inhibited 2-MeSADP-induced cytosolic phospholipase A2 (cPLA2) and ERK phosphorylation in non-aspirinated platelets, while only cPLA2 phosphorylation, but not ERK phosphorylation, was significantly inhibited by prednisolone in aspirinated platelets. In conclusion, prednisolone affects platelet function by the inhibition of TxA2 generation through the regulation of cPLA2 phosphorylation, thereby shedding light on its clinical characterization and treatment efficacy in dogs with hypercortisolism in the future.
Collapse
Affiliation(s)
- Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Preeti Kumari Chaudhary
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
9
|
Calderón-Estrella F, Franco-Bourland RE, Rios C, de Jesús-Nicolás D, Pineda B, Méndez-Armenta M, Mata-Bermúdez A, Diaz-Ruiz A. Early treatment with dapsone after spinal cord injury in rats decreases the inflammatory response and promotes long-term functional recovery. Heliyon 2023; 9:e14687. [PMID: 37009237 PMCID: PMC10060111 DOI: 10.1016/j.heliyon.2023.e14687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Failure of therapeutic strategies for the management and recovery from traumatic spinal cord injury (SCI) is a serious concern. Dapsone (DDS) has been reported as a neuroprotective drug after SCI, although the phase after SC damage (acute or chronic) of its major impact on functional recovery has yet to be defined. Here, we evaluated DDS acute-phase anti-inflammatory effects and their impact on early functional recovery, one week after moderate SCI, and late functional recovery, 7 weeks thereafter. Female Wistar rats were randomly assigned to each of five experimental groups: sham group; four groups of rats with SCI, treated with DDS (0, 12.5, 25.0, and 37.5 mg/kg ip), starting 3 h after injury. Plasma levels of GRO/KC, and the number of neutrophils and macrophages in cell suspensions from tissue taken at the site of injury were measured as inflammation biomarkers. Hindlimb motor function of injured rats given DDS 12.5 and 25.0 mg/kg daily for 8 weeks was evaluated on the BBB open-field ordinal scale. Six hours after injury all DDS doses decreased GRO/KC plasma levels; 24 h after injury, neutrophil numbers decreased with DDS doses of 25.0 and 37.5 mg/kg; macrophage numbers decreased only at the 37.5 mg/kg dose. In the acute phase, functional recovery was dose-dependent. Final recovery scores were 57.5 and 106.2% above the DDS-vehicle treated control group, respectively. In conclusion, the acute phase dose-dependent anti-inflammatory effects of DDS impacted early motor function recovery affecting final recovery at the end of the study.
Collapse
Affiliation(s)
- Francisco Calderón-Estrella
- Posgrado en Ciencias Biológicas de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04369, Mexico
| | | | - Camilo Rios
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, 14389, Mexico
- Laboratorio de Neurofarmacología Molecular, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, 04960, Mexico
| | - Diana de Jesús-Nicolás
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, 14269, Mexico
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, 14269, Mexico
| | - Marisela Méndez-Armenta
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, 14269, Mexico
| | - Alfonso Mata-Bermúdez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, 14269, Mexico
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, 14269, Mexico
- Corresponding author.
| |
Collapse
|
10
|
Wiklund L, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Nozari A, Feng L, Sharma HS. TiO 2-Nanowired Delivery of Chinese Extract of Ginkgo biloba EGb-761 and Bilobalide BN-52021 Enhanced Neuroprotective Effects of Cerebrolysin Following Spinal Cord Injury at Cold Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:353-384. [PMID: 37480466 DOI: 10.1007/978-3-031-32997-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel during combat or peacekeeping operations are exposed to extreme climates of hot or cold environments for longer durations. Spinal cord injury is quite common in military personnel following central nervous system (CNS) trauma indicating a possibility of altered pathophysiological responses at different ambient temperatures. Our previous studies show that the pathophysiology of brain injury is exacerbated in animals acclimated to cold (5 °C) or hot (30 °C) environments. In these diverse ambient temperature zones, trauma exacerbated oxidative stress generation inducing greater blood-brain barrier (BBB) permeability and cell damage. Extracts of Ginkgo biloba EGb-761 and BN-52021 treatment reduces brain pathology following heat stress. This effect is further improved following TiO2 nanowired delivery in heat stress in animal models. Several studies indicate the role of EGb-761 in attenuating spinal cord induced neuronal damages and improved functional deficit. This is quite likely that these effects are further improved following nanowired delivery of EGb-761 and BN-52021 with cerebrolysin-a balanced composition of several neurotrophic factors and peptide fragments in spinal cord trauma. In this review, TiO2 nanowired delivery of EGb-761 and BN-52021 with nanowired cerebrolysin is examined in a rat model of spinal cord injury at cold environment. Our results show that spinal cord injury aggravates cord pathology in cold-acclimated rats and nanowired delivery of EGb-761 and BN-52021 with cerebrolysin significantly induced superior neuroprotection, not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Hari Shanker Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Liu NK, Deng LX, Wang M, Lu QB, Wang C, Wu X, Wu W, Wang Y, Qu W, Han Q, Xia Y, Ravenscraft B, Li JL, You SW, Wipf P, Han X, Xu XM. Restoring mitochondrial cardiolipin homeostasis reduces cell death and promotes recovery after spinal cord injury. Cell Death Dis 2022; 13:1058. [PMID: 36539405 PMCID: PMC9768173 DOI: 10.1038/s41419-022-05369-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Alterations in phospholipids have long been associated with spinal cord injury (SCI). However, their specific roles and signaling cascades in mediating cell death and tissue repair remain unclear. Here we investigated whether alterations of cardiolipin (CL), a family of mitochondrion-specific phospholipids, play a crucial role in mitochondrial dysfunction and neuronal death following SCI. Lipidomic analysis was used to determine the profile of CL alteration in the adult rat spinal cord following a moderate contusive SCI at the 10th thoracic (T10) level. Cellular, molecular, and genetic assessments were performed to determine whether CL alterations mediate mitochondrial dysfunction and neuronal death after SCI, and, if so, whether reversing CL alteration leads to neuroprotection after SCI. Using lipidomic analysis, we uncovered CL alterations at an early stage of SCI. Over 50 distinct CL species were identified, of which 50% showed significantly decreased abundance after SCI. The decreased CL species contained mainly polyunsaturated fatty acids that are highly susceptible to peroxidation. In parallel, 4-HNE, a lipid peroxidation marker, significantly increased after SCI. We found that mitochondrial oxidative stress not only induced CL oxidation, but also resulted in CL loss by activating cPLA2 to hydrolyze CL. CL alterations induced mitochondrial dysfunction and neuronal death. Remarkably, pharmacologic inhibition of CL alterations with XJB-5-131, a novel mitochondria-targeted electron and reactive oxygen species scavenger, reduced cell death, tissue damage and ameliorated motor deficits after SCI in adult rats. These findings suggest that CL alteration could be a novel mechanism that mediates injury-induced neuronal death, and a potential therapeutic target for ameliorating secondary SCI.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Miao Wang
- Frontage Laboratories, Exton, PA, 19341, USA
| | - Qing-Bo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chunyan Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yongzhi Xia
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baylen Ravenscraft
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Si-Wei You
- Institute of Neuroscience, The Fourth Military Medical University, Xi'an, P. R. China
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xianlin Han
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
12
|
Li Y, Zou Z, An J, Wu Q, Tong L, Mei X, Tian H, Wu C. Chitosan-modified hollow manganese dioxide nanoparticles loaded with resveratrol for the treatment of spinal cord injury. Drug Deliv 2022; 29:2498-2512. [PMID: 35903814 PMCID: PMC9477490 DOI: 10.1080/10717544.2022.2104957] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Spinal cord injury (SCI) is a serious central nervous system disease, and secondary injury, including oxidative stress, the inflammatory response and accompanying neuronal apoptosis, will aggravate the condition. Due to the existence of the blood–spinal cord barrier (BSCB), the existing drugs for SCI treatment are difficulty to reach the injury site and thus their efficacy is limited. In this study, we designed chitosan-modified hollow manganese dioxide nanoparticles (CM) for the delivery of resveratrol to help it pass through the BSCB. Resveratrol (Res), a poorly soluble drug, was adsorbed into CM with a particle size of approximately 130 nm via the adsorption method, and the drug loading reached 21.39 ± 2.53%. In vitro dissolution experiment, the Res release of the loaded sample (CMR) showed slowly release behavior and reached about 87% at 36 h. In vitro at the cellular level and in vivo at the animal level experiments demonstrated that CMR could alleviate significantly oxidative stress by reducing level of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and increasing glutathione peroxidase (GSH) level. Additionally, immunofluorescence (iNOS, IL-1β, and Cl caspase-3) and western blot (iNOS, cox-2, IL-1β, IL-10, Cl caspase-3, bax, and bcl-2) were used to detect the expression of related factors, which verified that CMR could also reduce inflammation and neuronal apoptosis. These results indicated that CM, as a potential central nervous system drug delivery material, was suitable for SCI treatment.
Collapse
Affiliation(s)
- Yingqiao Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhiru Zou
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qian Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Le Tong
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xifan Mei
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
13
|
Kratz D, Wilken-Schmitz A, Sens A, Hahnefeld L, Scholich K, Geisslinger G, Gurke R, Thomas D. Post-mortem changes of prostanoid concentrations in tissues of mice: Impact of fast cervical dislocation and dissection delay. Prostaglandins Other Lipid Mediat 2022; 162:106660. [PMID: 35714920 DOI: 10.1016/j.prostaglandins.2022.106660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Prostanoids are potent lipid mediators involved in a wide variety of physiological functions like blood pressure regulation or inflammation as well as cardiovascular and malign diseases. Elucidation of their modes of action is mainly carried out in pre-clinical animal models by quantifying prostanoids in tissues of interest. Unfortunately, prostanoids are prone to post-mortem artifact formation and de novo synthesis can already be caused by external stimuli during the euthanasia of animals like prolonged hypercapnia or ischemia. Therefore, this study investigates the suitability and impact of fast cervical dislocation for the determination of prostanoids (6-keto-PGF1α, TXB2, PGF2α, PGD2, PGE2) in seven tissues of mice (spinal cord, brain, sciatic nerve, kidney, liver, lung, and spleen) to minimize time-dependent effects and approximate physiological concentrations. Tissues were dissected in a standardized sequence directly or after 10 min to investigate the influence of dissection delays. The enzyme inhibitor indomethacin (10 µM) in combination with low processing temperatures was employed to preserve prostanoid concentrations during sample preparation. Quantification of prostanoids was performed via LC-MS/MS. This study shows, that prostanoids are differentially susceptible to post-mortem artifact formation which is closely connected to their physiological function and metabolic stability in the respective tissues. Prostanoids in the brain, spinal cord, and kidney that are not involved in the regulatory response post-mortem, i.e. blood flow regulation (6-keto-PGF1α, PGE2, PGF2α) showed high reproducibility even after dissection delay and could be assessed after fast cervical dislocation if prerequisites like standardized pre-analytical workflows with immediate dissection and inhibition of residual enzymatic activity are in place. However, in tissues with high metabolic activity (liver, lung) more stable prostanoid metabolites should be used. Moreover, prostanoids in the spleen were strongly affected by dissection delays and presumably the method of euthanasia itself.
Collapse
Affiliation(s)
- D Kratz
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - A Wilken-Schmitz
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - A Sens
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - L Hahnefeld
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - K Scholich
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - G Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - R Gurke
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - D Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Malada Edelstein YF, Solomonov Y, Hadad N, Alfahel L, Israelson A, Levy R. Early upregulation of cytosolic phospholipase A 2α in motor neurons is induced by misfolded SOD1 in a mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2021; 18:274. [PMID: 34823547 PMCID: PMC8620709 DOI: 10.1186/s12974-021-02326-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal multifactorial neurodegenerative disease characterized by the selective death of motor neurons. Cytosolic phospholipase A2 alpha (cPLA2α) upregulation and activation in the spinal cord of ALS patients has been reported. We have previously shown that cPLA2α upregulation in the spinal cord of mutant SOD1 transgenic mice (SOD1G93A) was detected long before the development of the disease, and inhibition of cPLA2α upregulation delayed the disease's onset. The aim of the present study was to determine the mechanism for cPLA2α upregulation. METHODS Immunofluorescence analysis and western blot analysis of misfolded SOD1, cPLA2α and inflammatory markers were performed in the spinal cord sections of SOD1G93A transgenic mice and in primary motor neurons. Over expression of mutant SOD1 was performed by induction or transfection in primary motor neurons and in differentiated NSC34 motor neuron like cells. RESULTS Misfolded SOD1 was detected in the spinal cord of 3 weeks old mutant SOD1G93A mice before cPLA2α upregulation. Elevated expression of both misfolded SOD1 and cPLA2α was specifically detected in the motor neurons at 6 weeks with a high correlation between them. Elevated TNFα levels were detected in the spinal cord lysates of 6 weeks old mutant SOD1G93A mice. Elevated TNFα was specifically detected in the motor neurons and its expression was highly correlated with cPLA2α expression at 6 weeks. Induction of mutant SOD1 in primary motor neurons induced cPLA2α and TNFα upregulation. Over expression of mutant SOD1 in NSC34 cells caused cPLA2α upregulation which was prevented by antibodies against TNFα. The addition of TNFα to NSC34 cells caused cPLA2α upregulation in a dose dependent manner. CONCLUSIONS Motor neurons expressing elevated cPLA2α and TNFα are in an inflammatory state as early as at 6 weeks old mutant SOD1G93A mice long before the development of the disease. Accumulated misfolded SOD1 in the motor neurons induced cPLA2α upregulation via induction of TNFα.
Collapse
Affiliation(s)
- Yafa Fetfet Malada Edelstein
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, 84105, Beer Sheva, Israel
| | - Yulia Solomonov
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, 84105, Beer Sheva, Israel
| | - Nurit Hadad
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, 84105, Beer Sheva, Israel
| | - Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rachel Levy
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka University Medical Center, 84105, Beer Sheva, Israel.
| |
Collapse
|
15
|
Neutrophil, Extracellular Matrix Components, and Their Interlinked Action in Promoting Secondary Pathogenesis After Spinal Cord Injury. Mol Neurobiol 2021; 58:4652-4665. [PMID: 34159551 DOI: 10.1007/s12035-021-02443-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Secondary pathogenesis following primary mechanical damage to the spinal cord is believed to be the ultimate reason for the limitation of currently available therapies. Precisely, the complex cascade of secondary events-mediated scar formation is the sole hurdle in the recovery process due to its inhibitory effect on axonal regeneration, plasticity, and remyelination. Neutrophils initiate this secondary injury along with other extracellular matrix components such as matrix metalloproteinase (MMPs), and chondroitin sulfate proteoglycans (CSPGs). Together, they mediate inflammation, necrosis, apoptosis, lesion, and scar formation at the injury site. Activated neutrophil releases several proteases, cytokines, and chemokines that cause complete tissue destruction. Thus, neutrophil activation and infiltration in the acute phase of injury act as a roadmap for inducing tissue destruction. MMPs, are extracellular proteolytic enzymes that degrade the ECM proteins, increases vascular permeability, and are predominantly released by neutrophils. These MMPs, in turn, cleave NG2 proteoglycan, a subtype of CSPG, into the active form. This active or shed form is involved in both the fibrotic as well as glial scar formation. Since neutrophils and ECM components are closely associated with each other in pathological conditions. Herein, we emphasize the interaction of neutrophils and their influence on ECM protein expression during the acute and chronic phases to identify a promising targets for designing a therapeutic approach in spinal cord injury.
Collapse
|
16
|
Liu NK, Byers JS, Lam T, Lu QB, Sengelaub DR, Xu XM. Inhibition of Cytosolic Phospholipase A 2 Has Neuroprotective Effects on Motoneuron and Muscle Atrophy after Spinal Cord Injury. J Neurotrauma 2021; 38:1327-1337. [PMID: 25386720 DOI: 10.1089/neu.2014.3690] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Surviving motoneurons undergo dendritic atrophy after spinal cord injury (SCI), suggesting an important therapeutic target for neuroprotective strategies to improve recovery of function after SCI. Our previous studies showed that cytosolic phospholipase A2 (PLA2) may play an important role in the pathogenesis of SCI. In the present study, we investigated whether blocking cytosolic PLA2 (cPLA2) pharmacologically with arachidonyl trifluoromethyl ketone (ATK) or genetically using cPLA2 knockout (KO) mice attenuates motoneuron atrophy after SCI. C57BL/6 mice received either sham or contusive SCI at the T10 level. At 30 min after SCI, mice were treated with ATK or vehicle. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. ATK administration reduced percent lesion volume and increased percent volume of spared white matter, compared to the vehicle-treated control animals. SCI with or without ATK treatment had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with ATK. Similarly, vastus lateralis muscle weights of untreated SCI animals were smaller than those of sham surgery controls, and these reductions were prevented by ATK treatment. No effects on fiber cross-sectional areas, motor endplate area, or density were observed across treatment groups. Remarkably, genetically deleting cPLA2 in cPLA2 KO mice attenuated dendritic atrophy after SCI. These findings suggest that, after SCI, cord tissue damage and regressive changes in motoneuron and muscle morphology can be reduced by inhibition of cPLA2, further supporting a role for cPLA2 as a neurotherapeutic target for SCI treatment.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James S Byers
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Tom Lam
- Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Qing-Bo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dale R Sengelaub
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Liu Y, Xie JX, Niu F, Xu Z, Tan P, Shen C, Gao H, Liu S, Ma Z, So KF, Wu W, Chen C, Gao S, Xu XM, Zhu H. Surgical intervention combined with weight-bearing walking training improves neurological recoveries in 320 patients with clinically complete spinal cord injury: a prospective self-controlled study. Neural Regen Res 2021; 16:820-829. [PMID: 33229715 PMCID: PMC8178778 DOI: 10.4103/1673-5374.297080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although a large number of trials in the SCI field have been conducted, few proven gains have been realized for patients. In the present study, we determined the efficacy of a novel combination treatment involving surgical intervention and long-term weight-bearing walking training in spinal cord injury (SCI) subjects clinically diagnosed as complete or American Spinal Injury Association Impairment Scale (AIS) Class A (AIS-A). A total of 320 clinically complete SCI subjects (271 male and 49 female), aged 16–60 years, received early (≤ 7 days, n = 201) or delayed (8–30 days, n = 119) surgical interventions to reduce intraspinal or intramedullary pressure. Fifteen days post-surgery, all subjects received a weight-bearing walking training with the “Kunming Locomotion Training Program (KLTP)” for a duration of 6 months. The neurological deficit and recovery were assessed using the AIS scale and a 10-point Kunming Locomotor Scale (KLS). We found that surgical intervention significantly improved AIS scores measured at 15 days post-surgery as compared to the pre-surgery baseline scores. Significant improvement of AIS scores was detected at 3 and 6 months and the KLS further showed significant improvements between all pair-wise comparisons of time points of 15 days, 3 or 6 months indicating continued improvement in walking scores during the 6-month period. In conclusion, combining surgical intervention within 1 month post-injury and weight-bearing locomotor training promoted continued and statistically significant neurological recoveries in subjects with clinically complete SCI, which generally shows little clinical recovery within the first year after injury and most are permanently disabled. This study was approved by the Science and Research Committee of Kunming General Hospital of PLA and Kunming Tongren Hospital, China and registered at ClinicalTrials.gov (Identifier: NCT04034108) on July 26, 2019.
Collapse
Affiliation(s)
- Yansheng Liu
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Jia-Xin Xie
- Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Fang Niu
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Zhexi Xu
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Pengju Tan
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Caihong Shen
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Hongkun Gao
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Song Liu
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Zhengwen Ma
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kwok-Fai So
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region; Guangdong-Hongkong-Macau Institute for Central Nervous System Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Wutian Wu
- Guangdong-Hongkong-Macau Institute for Central Nervous System Regeneration, Jinan University, Guangzhou, Guangdong Province; Re-Stem Biotechnology, Co., Ltd., Suzhou, Jiangsu Province, China
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Zhu
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| |
Collapse
|
18
|
Li J, Huang L, Yu LT, Tao G, Wang ZY, Hao WZ, Huang JQ. Feruloylated Oligosaccharides Alleviate Central Nervous Inflammation in Mice Following Spinal Cord Contusion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15490-15500. [PMID: 33170671 DOI: 10.1021/acs.jafc.0c05553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the empirical models of the chronic central inflammatory response, a spinal cord injury (SCI) deteriorates the neuronal survival and results in irreversible motor and sensory dysfunction below the injury area. Our previous studies have reported that maize bran feruloylated oligosaccharides (FOs) exert significant anti-inflammatory activities both in diabetes and colitis. However, no direct evidence of FOs alleviating central nervous inflammation was stated. This study aimed to investigate the therapeutic effect of FOs on SCI and its potential mechanism. Our results indicated that 4 weeks of FO administration effectively mitigated the inflammatory response via decreasing the number of microglia (labelled with Iba1), result in the expression of IL-1α, IL-2, IL-6, IL-18 and TNF-α downregulating, but the level of IL-10 and BDNF increases in the injured spinal cord. Moreover, FOs enhanced neuronal survival, ameliorated the scar cavities, and improved behaviors, including Basso mouse scale (BMS) scores and the gait of mice after SCI. Together, these results demonstrated that administration of FOs showed superior functional recovery effects in a SCI model. Also, FOs may modulate inflammatory activities by regulating the expression of proinflammatory factors, decreasing the production of inflammatory cells, and promoting functional recovery through the MAPK pathway following SCI.
Collapse
Affiliation(s)
- Jing Li
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, Guangdong 510632, China
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ling-Tai Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston 77204, United States
| | - Zi-Ying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wen-Zhi Hao
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jun-Qing Huang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
19
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
20
|
cPLA2 activation contributes to lysosomal defects leading to impairment of autophagy after spinal cord injury. Cell Death Dis 2019; 10:531. [PMID: 31296844 PMCID: PMC6624263 DOI: 10.1038/s41419-019-1764-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
The autophagy–lysosomal pathway plays an essential role in cellular homeostasis as well as a protective function against a variety of diseases including neurodegeneration. Conversely, inhibition of autophagy, for example due to lysosomal dysfunction, can lead to pathological accumulation of dysfunctional autophagosomes and consequent neuronal cell death. We previously reported that autophagy is inhibited and contributes to neuronal cell death following spinal cord injury (SCI). In this study, we examined lysosomal function and explored the mechanism of lysosomal defects following SCI. Our data demonstrated that expression levels and processing of the lysosomal enzyme cathepsin D (CTSD) are decreased by 2 h after SCI. Enzymatic activity levels of CTSD and another lysosomal enzyme, N-acetyl-alpha-glucosaminidase, are both decreased 24 h post injury, indicating general lysosomal dysfunction. Subcellular fractionation and immunohistochemistry analysis demonstrated that this dysfunction is due to lysosomal membrane permeabilization and leakage of lysosomal contents into the cytosol. To directly assess extent and mechanisms of damage to lysosomal membranes, we performed mass spectrometry-based lipidomic analysis of lysosomes purified from SCI and control spinal cord. At 2 h post injury our data demonstrated increase in several classes of lysosophospholipids, the products of phospholipases (PLAs), as well as accumulation of PLA activators, ceramides. Phospholipase cPLA2, the main PLA species expressed in the CNS, has been previously implicated in mediation of secondary injury after SCI, but the mechanisms of its involvement remain unclear. Our data demonstrate that cPLA2 is activated within 2 h after SCI preferentially in the lysosomal fraction, where it colocalizes with lysosomal-associated membrane protein 2 in neurons. Inhibition of cPLA2 in vivo decreased lysosomal damage, restored autophagy flux, and reduced neuronal cell damage. Taken together our data implicate lysosomal defects in pathophysiology of SCI and for the first time indicate that cPLA2 activation leads to lysosomal damage causing neuronal autophagosome accumulation associated with neuronal cell death.
Collapse
|
21
|
Sengelaub DR, Xu XM. Protective effects of gonadal hormones on spinal motoneurons following spinal cord injury. Neural Regen Res 2018; 13:971-976. [PMID: 29926818 PMCID: PMC6022470 DOI: 10.4103/1673-5374.233434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 11/29/2022] Open
Abstract
Spinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. The majority of treatment strategies after SCI have concentrated on the damaged spinal cord, for example working to reduce lesion size or spread, or encouraging regrowth of severed descending axonal projections through the lesion, hoping to re-establish synaptic connectivity with caudal targets. In our work, we have focused on a novel target for treatment after SCI, surviving spinal motoneurons and their target musculature, with the hope of developing effective treatments to preserve or restore lost function following SCI. We previously demonstrated that motoneurons, and the muscles they innervate, show pronounced atrophy after SCI. Importantly, SCI-induced atrophy of motoneuron dendrites can be attenuated by treatment with gonadal hormones, testosterone and its active metabolites, estradiol and dihydrotestosterone. Similarly, SCI-induced reductions in muscle fiber cross-sectional areas can be prevented by treatment with androgens. Together, these findings suggest that regressive changes in motoneuron and muscle morphology seen after SCI can be ameliorated by treatment with gonadal hormones, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system.
Collapse
Affiliation(s)
- Dale R. Sengelaub
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
Sengelaub DR, Han Q, Liu NK, Maczuga MA, Szalavari V, Valencia SA, Xu XM. Protective Effects of Estradiol and Dihydrotestosterone following Spinal Cord Injury. J Neurotrauma 2018; 35:825-841. [PMID: 29132243 PMCID: PMC5863086 DOI: 10.1089/neu.2017.5329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. We previously demonstrated that motoneurons and the muscles they innervate show pronounced atrophy after SCI, and these changes are prevented by treatment with testosterone. Here, we assessed whether the testosterone active metabolites estradiol and dihydrotestosterone have similar protective effects after SCI. Young adult female rats received either sham or T9 spinal cord contusion injuries and were treated with estradiol, dihydrotestosterone, both, or nothing via Silastic capsules. Basso-Beattie-Bresnahan locomotor testing was performed weekly and voiding behavior was assessed at 3 weeks post-injury. Four weeks after SCI, lesion volume and tissue sparing, quadriceps muscle fiber cross-sectional area, and motoneuron dendritic morphology were assessed. Spontaneous locomotor behavior improved after SCI, but hormone treatments had no effect. Voiding behavior was disrupted after SCI, but was significantly improved by treatment with either estradiol or dihydrotestosterone; combined treatment was maximally effective. Treatment with estradiol reduced lesion volume, but dihydrotestosterone alone and estradiol combined with dihydrotestosterone were ineffective. SCI-induced decreases in motoneuron dendritic length were attenuated by all hormone treatments. SCI-induced reductions in muscle fiber cross-sectional areas were prevented by treatment with either dihydrotestosterone or estradiol combined with dihydrotestosterone, but estradiol treatment was ineffective. These findings suggest that deficits in micturition and regressive changes in motoneuron and muscle morphology seen after SCI are ameliorated by treatment with estradiol or dihydrotestosterone, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system.
Collapse
Affiliation(s)
- Dale R. Sengelaub
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Qi Han
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nai-Kui Liu
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A. Maczuga
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Violetta Szalavari
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | | | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
23
|
Zhang C, Rong W, Zhang GH, Wang AH, Wu CZ, Huo XL. Early electrical field stimulation prevents the loss of spinal cord anterior horn motoneurons and muscle atrophy following spinal cord injury. Neural Regen Res 2018; 13:869-876. [PMID: 29863018 PMCID: PMC5998640 DOI: 10.4103/1673-5374.232483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our previous study revealed that early application of electrical field stimulation (EFS) with the anode at the lesion and the cathode distal to the lesion reduced injury potential, inhibited secondary injury and was neuroprotective in the dorsal corticospinal tract after spinal cord injury (SCI). The objective of this study was to further evaluate the effect of EFS on protection of anterior horn motoneurons and their target musculature after SCI and its mechanism. Rats were randomized into three equal groups. The EFS group received EFS for 30 minutes immediately after injury at T10. SCI group rats were only subjected to SCI and sham group rats were only subjected to laminectomy. Luxol fast blue staining demonstrated that spinal cord tissue in the injury center was better protected; cross-sectional area and perimeter of injured tissue were significantly smaller in the EFS group than in the SCI group. Immunofluorescence and transmission electron microscopy showed that the number of spinal cord anterior horn motoneurons was greater and the number of abnormal neurons reduced in the EFS group compared with the SCI group. Wet weight and cross-sectional area of vastus lateralis muscles were smaller in the SCI group to in the sham group. However, EFS improved muscle atrophy and behavioral examination showed that EFS significantly increased the angle in the inclined plane test and Tarlov's motor grading score. The above results confirm that early EFS can effectively impede spinal cord anterior horn motoneuron loss, promote motor function recovery and reduce muscle atrophy in rats after SCI.
Collapse
Affiliation(s)
- Cheng Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Rong
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, China
| | - Guang-Hao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ai-Hua Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chang-Zhe Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Lin Huo
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Zhang S, Kartha S, Lee J, Winkelstein BA. Techniques for Multiscale Neuronal Regulation via Therapeutic Materials and Drug Design. ACS Biomater Sci Eng 2017; 3:2744-2760. [DOI: 10.1021/acsbiomaterials.7b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Jasmine Lee
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, David Rittenhouse Laboratory, Philadelphia, Pennsylvania 19104, United States
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurosurgery, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Shultz RB, Zhong Y. Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 2017; 12:702-713. [PMID: 28616020 PMCID: PMC5461601 DOI: 10.4103/1673-5374.206633] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Minocycline hydrochloride (MH), a semi-synthetic tetracycline derivative, is a clinically available antibiotic and anti-inflammatory drug that also exhibits potent neuroprotective activities. It has been shown to target multiple secondary injury mechanisms in spinal cord injury, via its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The secondary injury mechanisms that MH can potentially target include inflammation, free radicals and oxidative stress, glutamate excitotoxicity, calcium influx, mitochondrial dysfunction, ischemia, hemorrhage, and edema. This review discusses the potential mechanisms of the multifaceted actions of MH. Its anti-inflammatory and neuroprotective effects are partially achieved through conserved mechanisms such as modulation of p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways as well as inhibition of matrix metalloproteinases (MMPs). Additionally, MH can directly inhibit calcium influx through the N-methyl-D-aspartate (NMDA) receptors, mitochondrial calcium uptake, poly(ADP-ribose) polymerase-1 (PARP-1) enzymatic activity, and iron toxicity. It can also directly scavenge free radicals. Because it can target many secondary injury mechanisms, MH treatment holds great promise for reducing tissue damage and promoting functional recovery following spinal cord injury.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Kong X, Gao J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med 2016; 21:941-954. [PMID: 27957787 PMCID: PMC5387136 DOI: 10.1111/jcmm.13034] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/29/2016] [Indexed: 01/18/2023] Open
Abstract
Acute spinal cord injury (SCI) has become epidemic in modern society. Despite advances made in the understanding of the pathogenesis and improvements in early recognition and treatment, it remains a devastating event, often producing severe and permanent disability. SCI has two phases: acute and secondary. Although the acute phase is marked by severe local and systemic events such as tissue contusion, ischaemia, haemorrhage and vascular damage, the outcome of SCI are mainly influenced by the secondary phase. SCI causes inflammatory responses through the activation of innate immune responses that contribute to secondary injury, in which polarization‐based macrophage activation is a hallmarker. Macrophages accumulated within the epicentre and the haematoma of the injured spinal cord play a significant role in this inflammation. Depending on their phenotype and activation status, macrophages may initiate secondary injury mechanisms and/or promote CNS regeneration and repair. When it comes to therapies for SCI, very few can be performed in the acute phase. However, as macrophage activation and polarization switch are exquisitely sensitive to changes in microenvironment, some trials have been conducted to modulate macrophage polarization towards benefiting the recovery of SCI. Given this, it is important to understand how macrophages and SCI interrelate and interact on a molecular pathophysiological level. This review provides a comprehensive overview of the immuno‐pathophysiological features of acute SCI mainly from the following perspectives: (i) the overview of the pathophysiology of acute SCI, (ii) the roles of macrophage, especially its polarization switch in acute SCI, and (iii) newly developed neuroprotective therapies modulating macrophage polarization in acute SCI.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Wu X, Walker CL, Lu Q, Wu W, Eddelman DB, Parish JM, Xu XM. RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA 2 Activation. Mol Neurobiol 2016; 54:6885-6895. [PMID: 27771900 DOI: 10.1007/s12035-016-0187-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Activation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A2 (cPLA2), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA2. Inhibition of RhoA, Rho kinase and cPLA2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA2. The immunofluorescence staining showed that ROCK1 or ROCK2, two isoforms of Rho kinase, was co-localized with cPLA2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK1 or ROCK2 bonded directly with cPLA2 and phospho-cPLA2. When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA2 activation.
Collapse
Affiliation(s)
- Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qingbo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Daniel B Eddelman
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jonathan M Parish
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
28
|
Liu Y, Shields LBE, Gao Z, Wang Y, Zhang YP, Chu T, Zhu Q, Shields CB, Cai J. Current Understanding of Platelet-Activating Factor Signaling in Central Nervous System Diseases. Mol Neurobiol 2016; 54:5563-5572. [PMID: 27613281 DOI: 10.1007/s12035-016-0062-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
Platelet-activating factor (PAF) is a bioactive lipid mediator which serves as a reciprocal messenger between the immune and nervous systems. PAF, a pluripotent inflammatory mediator, is extensively expressed in many cells and tissues and has either beneficial or detrimental effects on the progress of inflammation-related neuropathology. Its wide distribution and various biological functions initiate a cascade of physiological or pathophysiological responses during development or diseases. Current evidence indicates that excess PAF accumulation in CNS diseases exacerbates the inflammatory response and pathological consequences, while application of PAF inhibitors or PAFR antagonists by blocking this signaling pathway significantly reduces inflammation, protects cells, and improves the recovery of neural functions. In this review, we integrate the current findings of PAF signaling in CNS diseases and elucidate topics less appreciated but important on the role of PAF signaling in neurological diseases. We propose that the precise use of PAF inhibitors or PAFR antagonists that target the specific neural cells during the appropriate temporal window may constitute a potential therapy for CNS diseases.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Zhongwen Gao
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
| | - Yuanyi Wang
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Tianci Chu
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | | | - Jun Cai
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA.
| |
Collapse
|
29
|
Yunes Quartino PJ, Pusterla JM, Galván Josa VM, Fidelio GD, Oliveira RG. CNS myelin structural modification induced in vitro by phospholipases A2. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:123-9. [PMID: 26514604 DOI: 10.1016/j.bbamem.2015.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022]
Abstract
Myelin is the self-stacked membrane surrounding axons; it is also the target of several pathological and/or neurodegenerative processes like multiple sclerosis. These processes involve, among others, the hydrolytic attack by phospholipases. In this work we describe the changes in isolated myelin structure after treatment with several secreted PLA2 (sPLA2), by using small angle x-ray scattering (SAXS) measurements. It was observed that myelin treated with all the tested sPLA2s (from cobra and bee venoms and from pig pancreas) preserved the lamellar structure but displayed an enlarged separation between membranes in certain zones. Additionally, the peak due to membrane asymmetry was clearly enhanced. The coherence length was also lower than the non-treated myelin, indicating increased disorder. These SAXS results were complemented by Langmuir film experiments to follow myelin monolayer hydrolysis at the air/water interface by a decrease in electric surface potential at different surface pressures. All enzymes produced hydrolysis with no major qualitative difference between the isoforms tested.
Collapse
Affiliation(s)
- Pablo J Yunes Quartino
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina
| | - Julio M Pusterla
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina
| | - Victor M Galván Josa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FaMAF, Universidad Nacional de Córdoba, Argentina
| | - Gerardo D Fidelio
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina
| | - Rafael G Oliveira
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
30
|
Agarwal R, Thornton ME, Fonteh AN, Harrington MG, Chmait RH, Grubbs BH. Amniotic fluid levels of phospholipase A2 in fetal rats with retinoic acid induced myelomeningocele: the potential "second hit" in neurologic damage. J Matern Fetal Neonatal Med 2015; 29:3003-8. [PMID: 26513600 DOI: 10.3109/14767058.2015.1112373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES There is growing evidence of ongoing, in utero neurological damage in fetuses with myelomeningocele (MMC). Phospholipase A2 (PLA2) has known neurotoxic properties and is predominantly present in its secretory isoform (sPLA2) in meconium, the passage of which is increased in MMC fetuses. The objective of this study was to determine if amniotic fluid (AF) levels of PLA2 are elevated in a rat model of MMC. METHODS Timed pregnant Sprague-Dawley rats were gavage fed 60 mg/kg/bodyweight retinoic acid (RA) in olive oil at embryonic day 10 (E10). Amniocentesis was performed at multiple gestational time points on MMC fetuses, RA-exposed fetuses without MMC and control fetuses. AF PLA2 levels were analyzed by a fluorescent enzyme activity assay. PLA2 isoforms were determined by measuring activity in the presence of specific inhibitors. RESULTS There was no difference in AF PLA2 activity between groups on E15. PLA2 activity was significantly increased in MMC fetuses on E17, E19 and E21 (p < 0.001). Secretory PLA2 primarily accounted for the overall greater activity. CONCLUSIONS PLA2 levels are elevated in the AF of fetal rats with MMC and may contribute to ongoing neural injury. This pathway may be a useful drug target to limit ongoing damage and better preserve neurologic function.
Collapse
Affiliation(s)
- R Agarwal
- a Keck School of Medicine of the University of Southern California , Los Angeles , CA , USA
| | - M E Thornton
- b Division of Maternal-Fetal Medicine , Department of Obstetrics and Gynecology, Los Angeles County-University of Southern California Medical Center , Los Angeles , CA , USA , and
| | - A N Fonteh
- c Molecular Neurology Program, Huntington Medical Research Institutes , Pasadena , CA , USA
| | - M G Harrington
- c Molecular Neurology Program, Huntington Medical Research Institutes , Pasadena , CA , USA
| | - R H Chmait
- b Division of Maternal-Fetal Medicine , Department of Obstetrics and Gynecology, Los Angeles County-University of Southern California Medical Center , Los Angeles , CA , USA , and
| | - B H Grubbs
- b Division of Maternal-Fetal Medicine , Department of Obstetrics and Gynecology, Los Angeles County-University of Southern California Medical Center , Los Angeles , CA , USA , and
| |
Collapse
|
31
|
Wen T, Hou J, Wang F, Zhang Y, Zhang T, Sun T. Comparative analysis of molecular mechanism of spinal cord injury with time based on bioinformatics data. Spinal Cord 2015; 54:431-8. [PMID: 26503224 DOI: 10.1038/sc.2015.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/16/2015] [Accepted: 09/01/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVES This study was designed to explore the molecular mechanisms of spinal cord injury (SCI) with time. METHODS The gene expression profile (GSE45006) including four non-injured spinal cord samples as sham-control group and 20 thoracic transected spinal cords samples as experimental group at different times was downloaded from Gene Expression Omnibus database. The time-course changes of the SCI-related differentially expressed genes (DEGs) were identified. In addition, time-series expression profile clusters of DEGs were obtained, followed by gene ontology (GO) and pathway enrichment analysis of the DEGs. Moreover, the transcriptional regulatory network was constructed. RESULTS There were 1420, 492, 743, 568 and 533 DEGs respectively at d1, d3, w1, w2 and w8 compared with that of sham group. Importantly, 101 overlapped regulated DEGs were identified at five time points and 370 collaboratively regulated genes were identified in cluster 6. Significant functions of overlapped regulated DEGs were obtained including response to wounding and developmental process. In addition, the DEGs, such as CD14 molecule (CD14) and chemokine (C-C motif) ligand 2 (CCL2), were enriched mostly in the pathways related to tuberculosis, phagosome and NF-kappa B signaling pathway. From the transcriptional regulatory network, we identified some transription factors (TFs), including member of E26 transformation-specific (ETS) oncogene family (ELK1) and zinc finger and BTB domain containing 7A (Zbtb7a). CONCLUSION The DEGs related to immune response during SCI may provide underlying targets for treatment of SCI. Moreover, the TFs ZBTB7A and ELK1 and their target gene (dual specificity phosphatase 18 (DUSP18)) might be therapeutic targets for the treatment of SCI.
Collapse
Affiliation(s)
- T Wen
- Chinese PLA Medical College, Beijing, China.,Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - J Hou
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - F Wang
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - Y Zhang
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - T Zhang
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - T Sun
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| |
Collapse
|
32
|
Wang W, Liu R, Xu Z, Niu X, Mao Z, Meng Q, Cao X. Further insight into molecular mechanism underlying thoracic spinal cord injury using bioinformatics methods. Mol Med Rep 2015; 12:7851-8. [PMID: 26497545 PMCID: PMC4758289 DOI: 10.3892/mmr.2015.4442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/24/2015] [Indexed: 02/02/2023] Open
Abstract
The present study aimed to explore the molecular mechanisms underlying the development of thoracic spinal cord injury (SCI). The gene expression profile of GSE20907, which included 12 thoracic non-injured spinal cord control samples and 12 thoracic transected spinal cord samples at different stages of SCI, was obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using the limma package in R/Bioconductor. DEG-associated pathways were analyzed using the Kyoto encyclopedia of genes and genomes database. A protein-protein interaction (PPI) network was constructed and transcription factors (TFs) were predicted using cytoscape. Compared with the control samples, there were 1,942, 396, 188 and 396 DEGs identified at day 3 (d3), week 1 (wk1), wk2 and month 1 (m1), respectively. Cluster analysis indicated that the DEGs at m1 were similar to those in the control group. Downregulated DEGs were enriched in nervous system disease pathways, such as Parkinson's disease. Upregulated DEGs were enriched in immune response-associated pathways, such as Fc γ R-mediated phagocytosis at early stages (d3 and wk1). Upregulated DEGs were enriched in pathways associated with cancer and pyrimidine metabolism at wk2 and m1, respectively. In the PPI network, nodes including RAC2, CD4, STAT3 and JUN were identified. Furthermore, ATF3, JUN and EGR1 were identified as TFs associated with SCI. In conclusion, the results of the present study showed that the number of DEGs decreased in a time-dependent manner following SCI. OLIG1, ATF3 and JUN may represent SCI regeneration-associated genes. Immune-associated inflammation was shown to be important in SCI, and SCI exhibits causal associations with other diseases, including cardiovascular disease and cancers. The present study provided novel insight into the molecular mechanisms of SCI regeneration, which may aid in the development of strategies to enhance recovery following SCI.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Orthopaedic Surgery, General Hospital of Jinan Military Command, Jinan, Shandong 250031, P.R. China
| | - Rongjun Liu
- Department of Emergency Surgery, General Hospital of Jinan Military Command, Jinan, Shandong 250031, P.R. China
| | - Zhanwang Xu
- Department of Orthopedics, First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Xiufeng Niu
- Department of Hepatobiliary Surgery, General Hospital of Jinan Military Command, Jinan, Shandong 250031, P.R. China
| | - Zhaohu Mao
- Department of Spinal Cord Injury, General Hospital of Jinan Military Command, Jinan, Shandong 250031, P.R. China
| | - Qingxi Meng
- Department of Spinal Cord Injury, General Hospital of Jinan Military Command, Jinan, Shandong 250031, P.R. China
| | - Xuecheng Cao
- Department of Orthopaedic Surgery, General Hospital of Jinan Military Command, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
33
|
Wang H, Liu NK, Zhang YP, Deng L, Lu QB, Shields CB, Walker MJ, Li J, Xu XM. Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury. Exp Neurol 2015; 271:368-78. [PMID: 26164199 DOI: 10.1016/j.expneurol.2015.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/01/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is devastating, causing sensorimotor impairments and paralysis. Persisting functional limitations on physical activity negatively affect overall health in individuals with SCI. Physical training may improve motor function by affecting cellular and molecular responses of motor pathways in the central nervous system (CNS) after SCI. Although motoneurons form the final common path for motor output from the CNS, little is known concerning the effect of exercise training on spared motoneurons below the level of injury. Here we examined the effect of treadmill training on morphological, trophic, and synaptic changes in the lumbar motoneuron pool and on behavior recovery after a moderate contusive SCI inflicted at the 9th thoracic vertebral level (T9) using an Infinite Horizon (IH, 200 kDyne) impactor. We found that treadmill training significantly improved locomotor function, assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale, and reduced foot drops, assessed by grid walking performance, as compared with non-training. Additionally, treadmill training significantly increased the total neurite length per lumbar motoneuron innervating the soleus and tibialis anterior muscles of the hindlimbs as compared to non-training. Moreover, treadmill training significantly increased the expression of a neurotrophin brain-derived neurotrophic factor (BDNF) in the lumbar motoneurons as compared to non-training. Finally, treadmill training significantly increased synaptic density, identified by synaptophysin immunoreactivity, in the lumbar motoneuron pool as compared to non-training. However, the density of serotonergic terminals in the same regions did not show a significant difference between treadmill training and non-training. Thus, our study provides a biological basis for exercise training as an effective medical practice to improve recovery after SCI. Such an effect may be mediated by synaptic plasticity, and neurotrophic modification in the spared lumbar motoneuron pool caudal to a thoracic contusive SCI.
Collapse
Affiliation(s)
- Hongxing Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, United States
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Qing-Bo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, United States
| | - Melissa J Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jianan Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China.
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
34
|
Wang Y, Gao Z, Zhang Y, Feng SQ, Liu Y, Shields LBE, Zhao YZ, Zhu Q, Gozal D, Shields CB, Cai J. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor. Mol Neurobiol 2015; 53:3448-3461. [PMID: 26084439 DOI: 10.1007/s12035-015-9263-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022]
Abstract
Platelet-activating factor (PAF) is a unique phosphoglycerine that mediates the biological functions of both immune and nervous systems. Excessive PAF plays an important role in neural injury via its specific receptor (PAFR). In this study, we hypothesized that PAF signaling activates reactive gliosis after spinal cord injury (SCI), and blocking the PAF pathway would modify the glia scar formation and promote functional recovery. PAF microinjected into the normal wild-type spinal cord induced a dose-dependent activation of microglia and astrocytes. In the SCI mice, PAFR null mutant mice showed a better functional recovery in grip and rotarod performances than wild-type mice. Although both microglia and astrocytes were activated after SCI in wild-type and PAFR null mutant mice, expressions of IL-6, vimentin, nestin, and GFAP were not significantly elevated in PAFR null mutants. Disruption of PAF signaling inhibited the expressions of proteoglycan CS56 and neurocan (CSPG3). Intriguingly, compared to the wild-type SCI mice, less axonal retraction/dieback at 7 dpi but more NFH-labeled axons at 28 dpi was found in the area adjacent to the epicenter in PAFR null mutant SCI mice. Moreover, treatment with PAFR antagonist Ginkgolide B (GB) at the chronic phase rather than acute phase enhanced the functional recovery in the wild-type SCI mice. These findings suggest that PAF signaling participates in reactive gliosis after SCI, and blocking of this signaling enhances functional recovery and to some extent may promote axon regrowth.
Collapse
Affiliation(s)
- Yuanyi Wang
- Department of Spine Surgery, First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.,Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
| | - Zhongwen Gao
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA.,Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yiping Zhang
- Norton Healthcare, Norton Neuroscience Institute, Louisville, KY, 40202, USA
| | - Shi-Qing Feng
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA.,Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yulong Liu
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA.,Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Lisa B E Shields
- Norton Healthcare, Norton Neuroscience Institute, Louisville, KY, 40202, USA
| | - Ying-Zheng Zhao
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA.,Pharmacy School, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - David Gozal
- Comer Children's Hospital, Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| | - Christopher B Shields
- Norton Healthcare, Norton Neuroscience Institute, Louisville, KY, 40202, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jun Cai
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA. .,Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
35
|
Ong WY, Farooqui T, Kokotos G, Farooqui AA. Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders. ACS Chem Neurosci 2015; 6:814-31. [PMID: 25891385 DOI: 10.1021/acschemneuro.5b00073] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipases A2 (PLA2) are a diverse group of enzymes that hydrolyze membrane phospholipids into arachidonic acid and lysophospholipids. Arachidonic acid is metabolized to eicosanoids (prostaglandins, leukotrienes, thromboxanes), and lysophospholipids are converted to platelet-activating factors. These lipid mediators play critical roles in the initiation, maintenance, and modulation of neuroinflammation and oxidative stress. Neurological disorders including excitotoxicity; traumatic nerve and brain injury; cerebral ischemia; Alzheimer's disease; Parkinson's disease; multiple sclerosis; experimental allergic encephalitis; pain; depression; bipolar disorder; schizophrenia; and autism are characterized by oxidative stress, inflammatory reactions, alterations in phospholipid metabolism, accumulation of lipid peroxides, and increased activities of brain phospholipase A2 isoforms. Several old and new synthetic inhibitors of PLA2, including fatty acid trifluoromethyl ketones; methyl arachidonyl fluorophosphonate; bromoenol lactone; indole-based inhibitors; pyrrolidine-based inhibitors; amide inhibitors, 2-oxoamides; 1,3-disubstituted propan-2-ones and polyfluoroalkyl ketones as well as phytochemical based PLA2 inhibitors including curcumin, Ginkgo biloba and Centella asiatica extracts have been discovered and used for the treatment of neurological disorders in cell culture and animal model systems. The purpose of this review is to summarize information on selective and potent synthetic inhibitors of PLA2 as well as several PLA2 inhibitors from plants, for treatment of oxidative stress and neuroinflammation associated with the pathogenesis of neurological disorders.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department
of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | - Tahira Farooqui
- Department
of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - George Kokotos
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis,
Athens 15771, Greece
| | - Akhlaq A. Farooqui
- Department
of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
36
|
Liu NK, Xu XM. Neuroprotection and its molecular mechanism following spinal cord injury. Neural Regen Res 2015; 7:2051-62. [PMID: 25624837 PMCID: PMC4296426 DOI: 10.3969/j.issn.1673-5374.2012.26.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/10/2012] [Indexed: 12/27/2022] Open
Abstract
Acute spinal cord injury initiates a complex cascade of molecular events termed ‘secondary injury’, which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery & Goodman Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery & Goodman Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
37
|
Liu NK, Deng LX, Zhang YP, Lu QB, Wang XF, Hu JG, Oakes E, Bonventre JV, Shields CB, Xu XM. Cytosolic phospholipase A2 protein as a novel therapeutic target for spinal cord injury. Ann Neurol 2014; 75:644-58. [PMID: 24623140 PMCID: PMC4320750 DOI: 10.1002/ana.24134] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 02/28/2014] [Accepted: 03/10/2014] [Indexed: 12/17/2022]
Abstract
Objective The objective of this study was to investigate whether cytosolic phospholipase A2 (cPLA2), an important isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of spinal cord injury (SCI). Methods A combination of molecular, histological, immunohistochemical, and behavioral assessments were used to test whether blocking cPLA2 activation pharmacologically or genetically reduced cell death, protected spinal cord tissue, and improved behavioral recovery after a contusive SCI performed at the 10th thoracic level in adult mice. Results SCI significantly increased cPLA2 expression and activation. Activated cPLA2 was localized mainly in neurons and oligodendrocytes. Notably, the SCI-induced cPLA2 activation was mediated by the extracellular signal-regulated kinase signaling pathway. In vitro, activation of cPLA2 by ceramide-1-phosphate or A23187 induced spinal neuronal death, which was substantially reversed by arachidonyl trifluoromethyl ketone, a cPLA2 inhibitor. Remarkably, blocking cPLA2 pharmacologically at 30 minutes postinjury or genetically deleting cPLA2 in mice ameliorated motor deficits, and reduced cell loss and tissue damage after SCI. Interpretation cPLA2 may play a key role in the pathogenesis of SCI, at least in the C57BL/6 mouse, and as such could be an attractive therapeutic target for ameliorating secondary tissue damage and promoting recovery of function after SCI.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials 2013; 35:2355-2364. [PMID: 24332460 DOI: 10.1016/j.biomaterials.2013.11.074] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/23/2013] [Indexed: 12/15/2022]
Abstract
An urgent unmet need exists for early-stage treatment of spinal cord injury (SCI). Currently methylprednisolone is the only therapeutic agent used in clinics, for which the efficacy is controversial and the side effect is well-known. We demonstrated functional restoration of injured spinal cord by self-assembled nanoparticles composed of ferulic acid modified glycol chitosan (FA-GC). Chitosan and ferulic acid are strong neuroprotective agents but their systemic delivery is difficult. Our data has shown a prolonged circulation time of the FA-GC nanoparticles allowing for effective delivery of both chitosan and ferulic acid to the injured site. Furthermore, the nanoparticles were found both in the gray matter and white matter. The in vitro tests demonstrated that nanoparticles protected primary neurons from glutamate-induced excitotoxicity. Using a spinal cord contusion injury model, significant recovery in locomotor function was observed in rats that were intravenously administered nanoparticles at 2 h post injury, as compared to non-improvement by methylprednisolone administration. Histological analysis revealed that FA-GC treatment significantly preserved axons and myelin and also reduced cavity volume, astrogliosis, and inflammatory response at the lesion site. No obvious adverse effects of nanoparticles to other organs were found. The restorative effect of FA-GC presents a promising potential for treating human SCIs.
Collapse
|
39
|
Hu JG, Wang XF, Deng LX, Liu NK, Gao X, Chen J, Zhou FC, Xu XM. Cotransplantation of Glial Restricted Precursor Cells and Schwann Cells Promotes Functional Recovery after Spinal Cord Injury. Cell Transplant 2013; 22:2219-36. [DOI: 10.3727/096368912x661373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oligodendrocyte (OL) replacement can be a promising strategy for spinal cord injury (SCI) repair. However, the poor posttransplantation survival and inhibitory properties to axonal regeneration are two major challenges that limit their use as donor cells for repair of CNS injuries. Therefore, strategies aimed at enhancing the survival of grafted oligodendrocytes as well as reducing their inhibitory properties, such as the use of more permissive oligodendrocyte progenitor cells (OPCs), also called glial restricted precursor cells (GRPs), should be highly prioritized. Schwann cell (SC) transplantation is a promising translational strategy to promote axonal regeneration after CNS injuries, partly due to their expression and secretion of multiple growth-promoting factors. Whether grafted SCs have any effect on the biological properties of grafted GRPs remains unclear. Here we report that either SCs or SC-conditioned medium (SCM) promoted the survival, proliferation, and migration of GRPs in vitro. When GRPs and SCs were cografted into the normal or injured spinal cord, robust survival, proliferation, and migration of grafted GRPs were observed. Importantly, grafted GRPs differentiated into mature oligodendrocytes and formed new myelin on axons caudal to the injury. Finally, cografts of GRPs and SCs promoted recovery of function following SCI. We conclude that cotransplantation of GRPs and SCs, the only two kinds of myelin-forming cells in the nervous system, act complementarily and synergistically to promote greater anatomical and functional recovery after SCI than when either cell type is used alone.
Collapse
Affiliation(s)
- Jian-Guo Hu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital, Bengbu Medical College, Bengbu, P.R. China
| | - Xiao-Fei Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
40
|
Wu Y, Wang L, Dai C, Ma G, Zhang Y, Zhang X, Wu Z. Neuroprotection by platelet-activating factor acetylhydrolase in a mouse model of transient cerebral ischemia. Neurosci Lett 2013; 558:26-30. [PMID: 24189491 DOI: 10.1016/j.neulet.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 11/30/2022]
Abstract
Neuronal damage after transient cerebral ischemia is exacerbated by signaling pathways involving activated platelet-activating factor (PAF) and ameliorated by PAF-acetylhydrolase (PAF-AH); but whether cerebral neurons can be rescued by human recombinant PAF-AH (rPAF-AH) remains unknown. Adult male mice underwent a 60 min middle cerebral artery occlusion (MCAO) and reperfusion for 24h. Then, the mice received intravenous tail injections with different drugs. Neurological behavioral function was evaluated by Bederson's test, and cerebral infarction volume was assessed with tetrazolium chloride (TTC) staining. mRNA and protein expression levels of matrix metalloproteinase-2 (MMP-2, collagenase-1), MMP-9 (gelatinase-B), and vascular endothelial growth factor (VEGF) were determined by quantitative real-time PCR (RT-PCR) and western blot analysis, respectively. Compared with the vehicle group, rPAF-AH significantly improved sensorimotor function (42%, P=0.0001). The volume of non-infarcted brain tissue was increased by the rPAF-AH treatment (16.3±4.6% vs. 46.0±10.3%, respectively). rPAF-AH significantly reduced mRNA and protein levels of MMP-2 and MMP-9, but increased the mRNA (P<0.001) and protein levels (P<0.01) of VEGF. These results demonstrate that rPAF-AH provides neuroprotection against ischemic injury. Neuroprotection might be induced not only by decrease in MMP-2 and MMP-9 expression, but also by increased VEGF expression.
Collapse
Affiliation(s)
- Yijuan Wu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, Guangdong, China; Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Chengbo Dai
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Guixian Ma
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Xiong Zhang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China.
| | - Zhuohua Wu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast 2013; 2013:945034. [PMID: 24288627 PMCID: PMC3833318 DOI: 10.1155/2013/945034] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/17/2013] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI) triggers inflammation with activation of innate immune responses that contribute to secondary injury including oligodendrocyte apoptosis, demyelination, axonal degeneration, and neuronal death. Macrophage activation, accumulation, and persistent inflammation occur in SCI. Macrophages are heterogeneous cells with extensive functional plasticity and have the capacity to switch phenotypes by factors present in the inflammatory microenvironment of the injured spinal cord. This review will discuss the role of different polarized macrophages and the potential effect of macrophage-based therapies for SCI.
Collapse
|
42
|
Wu W, Wu W, Zou J, Shi F, Yang S, Liu Y, Lu P, Ma Z, Zhu H, Xu XM. Axonal and Glial Responses to a Mid-Thoracic Spinal Cord Hemisection in the Macaca fascicularis Monkey. J Neurotrauma 2013; 30:826-39. [DOI: 10.1089/neu.2012.2681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Wenjie Wu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wei Wu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jian Zou
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Department of Clinical Laboratory Sciences, the First Wuxi Affiliated Hospital of Nanjing Medical University, Wuxi, People's Republic of China
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fujun Shi
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Senfu Yang
- Jinghong Breeding Station, Yunnan Laboratory Primates Inc., Yunnan, People's Republic of China
| | - Yansheng Liu
- PLA Clinical Center for Spinal Cord Injury, Kunming General Hospital of PLA, Kunming, People's Republic of China
- Kunming Tongren Hospital, Kunming, People's Republic of China
| | - Peihua Lu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhengwen Ma
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Zhu
- PLA Clinical Center for Spinal Cord Injury, Kunming General Hospital of PLA, Kunming, People's Republic of China
- Kunming Tongren Hospital, Kunming, People's Republic of China
| | - Xiao-Ming Xu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- PLA Clinical Center for Spinal Cord Injury, Kunming General Hospital of PLA, Kunming, People's Republic of China
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
43
|
Licofelone modulates neuroinflammation and attenuates mechanical hypersensitivity in the chronic phase of spinal cord injury. J Neurosci 2013; 33:652-64. [PMID: 23303944 DOI: 10.1523/jneurosci.6128-11.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammation is a major factor shaping outcome during the early, acute phase of traumatic spinal cord injury (SCI). It is known that pro-inflammatory signaling within the injured spinal cord drives pathological alterations in neurosensory processing and shapes functional outcome early after injury. However, it is unclear whether inflammation persists into the chronic phase of injury or shapes sensory processing long after injury. To investigate these possibilities, we have performed biochemical and behavioral assessments 9 months after moderate thoracic spinal contusion injury in the rat. We have found that levels of the pro-inflammatory lipid mediators leukotriene B4 and prostaglandin E2 are elevated in the chronic spinal cord lesion site. Additionally, using metabolomic profiling, we have detected elevated levels of pro-oxidative and inflammatory metabolites, along with alterations in multiple biological pathways within the chronic lesion site. We found that 28 d treatment of chronically injured rats with the dual COX/5-LOX inhibitor licofelone elevated levels of endogenous anti-oxidant and anti-inflammatory metabolites within the lesion site. Furthermore, licofelone treatment reduced hypersensitivity of hindpaws to mechanical, but not thermal, stimulation, indicating that mechanical sensitivity is modulated by pro-inflammatory signaling in the chronic phase of injury. Together, these findings provide novel evidence of inflammation and oxidative stress within spinal cord tissue far into the chronic phase of SCI, and demonstrate a role for inflammatory modulation of mechanical sensitivity in the chronic phase of injury.
Collapse
|
44
|
Figueroa JD, Cordero K, Llán MS, De Leon M. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury. J Neurotrauma 2013; 30:853-68. [PMID: 23294084 DOI: 10.1089/neu.2012.2718] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome.
Collapse
Affiliation(s)
- Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine and Departments of Basic Sciences and Pathology and Human Anatomy, Loma Linda University, Loma Linda, California, USA
| | | | | | | |
Collapse
|
45
|
Leptin attenuates lipopolysaccharide-induced apoptosis of thymocytes partially via down-regulation of cPLA2 and p38 MAPK activation. Int Immunopharmacol 2013; 15:620-7. [PMID: 23376443 DOI: 10.1016/j.intimp.2013.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 01/11/2023]
Abstract
Leptin, a 16-kDa protein that is mainly secreted by adipocytes, plays a protective role in many cell types. It has been shown that leptin acts in the central and peripheral immune system to protect thymocytes. Cytosolic phospholipase A(2) (cPLA(2)) is an enzyme that can specifically initiate the release of arachidonic acid (AA) to produce eicosanoids, which regulate inflammation and immune responses. Our previous work has shown that leptin is important to prevent apoptosis of thymocytes. However, the role of cPLA(2) is still unclear, and the precise mechanism also remains to be elucidated. In this work, we demonstrated that leptin inhibited the LPS-induced toxicity and apoptosis of thymocytes. Western blot and RT-PCR showed that leptin led to a reduction of cPLA(2) activity and mRNA level, as well as caspase-3 cleavage. Moreover, we found that leptin could decrease the activation of p38 MAPK. Accordingly, we pre-treated apoptotic thymocytes with the p38 MAPK inhibitor, SB203580 and observed an effect similar to the leptin alone treated group. SB203580 also suppressed expression of cPLA(2) and cleavage of caspase-3. Based on these results, we suggest that leptin could attenuate LPS-induced apoptotic injury in mouse thymocyte cells, mainly through the p38/cPLA(2) signalling pathway. The study of the regulatory role of leptin in LPS-induced thymocyte apoptosis can help to explain the role of leptin in the immune system and may provide a novel treatment option in cases of severe trauma, infection, shock, organ failure and autoimmune disease caused by thymic atrophy.
Collapse
|
46
|
Byers JS, Huguenard AL, Kuruppu D, Liu NK, Xu XM, Sengelaub DR. Neuroprotective effects of testosterone on motoneuron and muscle morphology following spinal cord injury. J Comp Neurol 2012; 520:2683-96. [PMID: 22314886 PMCID: PMC3960947 DOI: 10.1002/cne.23066] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Treatment with testosterone is neuroprotective/neurotherapeutic after a variety of motoneuron injuries. Here we assessed whether testosterone might have similar beneficial effects after spinal cord injury (SCI). Young adult female rats received either sham or T9 spinal cord contusion injuries and were implanted with blank or testosterone-filled Silastic capsules. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. Contusion injury resulted in large lesions, with no significant differences in lesion volume, percent total volume of lesion, or spared white or gray matter between SCI groups. SCI with or without testosterone treatment also had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with testosterone. Similarly, the vastus lateralis muscle weights and fiber cross-sectional areas of untreated SCI animals were smaller than those of sham-surgery controls, and these reductions were both prevented by testosterone treatment. No effects on motor endplate area or density were observed across treatment groups. These findings suggest that regressive changes in motoneuron and muscle morphology seen after SCI can be prevented by testosterone treatment, further supporting a role for testosterone as a neurotherapeutic agent in the injured nervous system.
Collapse
Affiliation(s)
- James S. Byers
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| | - Anna L. Huguenard
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| | - Dulanji Kuruppu
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dale R. Sengelaub
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
47
|
Zhao Z, Liu N, Huang J, Lu PH, Xu XM. Inhibition of cPLA2 activation by Ginkgo biloba extract protects spinal cord neurons from glutamate excitotoxicity and oxidative stress-induced cell death. J Neurochem 2011; 116:1057-65. [PMID: 21182525 PMCID: PMC3059200 DOI: 10.1111/j.1471-4159.2010.07160.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ginkgo biloba extract (EGb761) has been shown to be neuroprotective; however, the mechanism by which EGb761 mediates neuroprotection remains unclear. We hypothesized that the neuroprotective effect of EGb761 is mediated by inhibition of cytosolic phospholipase A(2) (cPLA(2)), an enzyme that is known to play a key role in mediating secondary pathogenesis after acute spinal cord injury (SCI). To determine whether EGb761 neuroprotection involves the cPLA(2) pathway, we first investigated the effect of glutamate and hydrogen peroxide on cPLA(2) activation. Results showed that both insults induced an increase in the expression of phosphorylated cPLA(2) (p-cPLA(2)), a marker of cPLA(2) activation, and neuronal death in vitro. Such effects were significantly reversed by EGb761 administration. Additionally, EGb761 significantly decreased prostaglandin E(2) (PGE(2)) release, a downstream metabolite of cPLA(2). Moreover, inhibition of cPLA(2) activity with arachidonyl trifluromethyl ketone improved neuroprotection against glutamate and hydrogen peroxide-induced neuronal death, and reversed Bcl-2/Bax ratio; notably, EGb761 produced greater effects than arachidonyl trifluromethyl ketone. Finally, we showed that the extracellular signal-regulated kinase 1/2 signaling pathway is involved in EGb761's modulation of cPLA(2) phosphorylation. These results collectively suggest that the protective effect of EGb761 is mediated, at least in part, through inhibition of cPLA(2) activation, and that the extracellular signal-regulated kinase 1/2 signaling pathway may play an important role in mediating the EGb761's effect.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Naikui Liu
- Spinal cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, and Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN 46202, U.S.A
| | - Jingya Huang
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Pei-Hua Lu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiao-Ming Xu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
- Spinal cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, and Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN 46202, U.S.A
| |
Collapse
|
48
|
Abstract
Phospholipases A(2) (PLA(2)s) are essential enzymes in cells. They are not only responsible for maintaining the structural organization of cell membranes, but also play a pivotal role in the regulation of cell functions. Activation of PLA(2) s results in the release of fatty acids and lysophospholipids, products that are lipid mediators and compounds capable of altering membrane microdomains and physical properties. Although not fully understood, recent studies have linked aberrant PLA(2) activity to oxidative signaling pathways involving NADPH oxidase that underlie the pathophysiology of a number of neurodegenerative diseases. In this paper, we review studies describing the involvement of cytosolic PLA(2) in oxidative signaling pathways leading to neuronal impairment and activation of glial cell inflammatory responses. In addition, this review also includes information on the role of cytosolic PLA(2) and exogenous secretory PLA(2) on membrane physical properties, dynamics, and membrane proteins. Unraveling the mechanisms that regulate specific types of PLA(2)s and their effects on membrane dynamics are important prerequisites towards understanding their roles in the pathophysiology of Alzheimer's disease, and in the development of novel therapeutics to retard progression of the disease.
Collapse
Affiliation(s)
- James C-M. Lee
- Biological Engineering Department, University of Missouri, Columbia, MO, USA
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Albert Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Grace Y. Sun
- Biochemistry Department, University of Missouri, Columbia, MO, USA
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|