1
|
Chapman NH, Navas PA, Dorschner MO, Mehaffey M, Wigg KG, Price KM, Naumova OY, Kerr EN, Guger SL, Lovett MW, Grigorenko EL, Berninger V, Barr CL, Wijsman EM, Raskind WH. Targeted analysis of dyslexia-associated regions on chromosomes 6, 12 and 15 in large multigenerational cohorts. PLoS One 2025; 20:e0324006. [PMID: 40424442 PMCID: PMC12112411 DOI: 10.1371/journal.pone.0324006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
Dyslexia is a common learning impairment with a genetic basis that affects word reading and spelling. An increasing list of loci and genes have been implicated, but analyses to-date have investigated only limited genomic variation within each locus with no confirmed pathogenic variants identified. Our study is the first to comprehensively sequence both coding and cis-acting regulatory regions of such genes in a large study sample. In a collection of >2000 participants in families from three independent sites, we performed targeted capture and comprehensive sequencing of all exons and some regulatory elements of five candidate risk genes (DNAAF4, CYP19A1, DCDC2, KIAA0319 and GRIN2B) for which prior evidence for a role in dyslexia exists from more than one sample. We evaluated evidence for association in each of six dyslexia-related quantitative phenotypes (traits) using both individual common single nucleotide polymorphisms and aggregated rare variants. We detected no promoter alterations and few deleterious variants in the coding exons, none of which showed evidence of association with any trait. Single variant and aggregate testing of DNAAF4 failed to detect significant evidence of association with any of the traits. The other four genes provided evidence of association with one or more traits. A common variant downstream of CYP19A1 showed significant evidence of association with multiple traits with or without verbal IQ (VIQ) adjustment. A haplotype that stretches from the downstream region of KIAA0319 to the second intron of DCDC2 was associated with reduced performance on timed real word reading. Finally, rare exonic variants in GRIN2B were associated with performance on spelling, with or without adjustment for VIQ. Our findings from this large-scale sequencing study complement those from genome-wide association studies, argue against the causative involvement of large-effect coding variants in these five candidate genes, support a multigenic etiology, and suggest a role of transcriptional regulation.
Collapse
Affiliation(s)
- Nicola H. Chapman
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Patrick A. Navas
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Michael O. Dorschner
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Michele Mehaffey
- Department of Pediatrics, Division of Pediatric Genetics, Pediatric Genetics, University of Washington, Seattle, Washington, United States of America
| | - Karen G. Wigg
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kaitlyn M. Price
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Oxana Y. Naumova
- Department of Psychology, University of Houston, Houston, Texas, United States of America
| | - Elizabeth N. Kerr
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sharon L. Guger
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maureen W. Lovett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States of America
| | - Virginia Berninger
- Department of Educational Psychology, University of Washington, Seattle, Washington, United States of America
| | - Cathy L. Barr
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Educational Psychology, University of Washington, Seattle, Washington, United States of America
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ellen M. Wijsman
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Wendy H. Raskind
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Mascheretti S, Arrigoni F, Toraldo A, Giubergia A, Andreola C, Villa M, Lampis V, Giorda R, Villa M, Peruzzo D. Alterations in neural activation in the ventral frontoparietal network during complex magnocellular stimuli in developmental dyslexia associated with READ1 deletion. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:16. [PMID: 38926731 PMCID: PMC11210179 DOI: 10.1186/s12993-024-00241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND An intronic deletion within intron 2 of the DCDC2 gene encompassing the entire READ1 (hereafter, READ1d) has been associated in both children with developmental dyslexia (DD) and typical readers (TRs), with interindividual variation in reading performance and motion perception as well as with structural and functional brain alterations. Visual motion perception -- specifically processed by the magnocellular (M) stream -- has been reported to be a solid and reliable endophenotype of DD. Hence, we predicted that READ1d should affect neural activations in brain regions sensitive to M stream demands as reading proficiency changes. METHODS We investigated neural activations during two M-eliciting fMRI visual tasks (full-field sinusoidal gratings controlled for spatial and temporal frequencies and luminance contrast, and sensitivity to motion coherence at 6%, 15% and 40% dot coherence levels) in four subject groups: children with DD with/without READ1d, and TRs with/without READ1d. RESULTS At the Bonferroni-corrected level of significance, reading skills showed a significant effect in the right polar frontal cortex during the full-field sinusoidal gratings-M task. Regardless of the presence/absence of the READ1d, subjects with poor reading proficiency showed hyperactivation in this region of interest (ROI) compared to subjects with better reading scores. Moreover, a significant interaction was found between READ1d and reading performance in the left frontal opercular area 4 during the 15% coherent motion sensitivity task. Among subjects with poor reading performance, neural activation in this ROI during this specific task was higher for subjects without READ1d than for READ1d carriers. The difference vanished as reading skills increased. CONCLUSIONS Our findings showed a READ1d-moderated genetic vulnerability to alterations in neural activation in the ventral attentive and salient networks during the processing of relevant stimuli in subjects with poor reading proficiency.
Collapse
Affiliation(s)
- Sara Mascheretti
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy.
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy.
| | - Filippo Arrigoni
- Radiology and Neuroradiology Department, Children's Hospital V. Buzzi, Milan, Italy
| | - Alessio Toraldo
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy
- Milan Centre for Neuroscience (NeuroMI), Milan, Italy
| | - Alice Giubergia
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | | | - Martina Villa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Yale Child Study Center Language Sciences Consortium, New Haven, CT, USA
| | - Valentina Lampis
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
3
|
Price KM, Wigg KG, Eising E, Feng Y, Blokland K, Wilkinson M, Kerr EN, Guger SL, Fisher SE, Lovett MW, Strug LJ, Barr CL. Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities. Transl Psychiatry 2022; 12:495. [PMID: 36446759 PMCID: PMC9709072 DOI: 10.1038/s41398-022-02250-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and performed a new Hypothesis-Driven (HD)-GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the GenLang Consortium. For the Toronto sample (n = 624), no SNPs reached significance; however, by gene-set analysis, the joint contribution of ASD-related genes passed the threshold (p~1.45 × 10-2, threshold = 2.5 × 10-2). For the GenLang Cohort (n = 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q = 1.02 × 10-2). To make the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits (n = 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both hypotheses (sFDR q < 9.00 × 10-4). This study contributes candidate loci to the genetics of word reading. Data also suggest that, although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations.
Collapse
Affiliation(s)
- Kaitlyn M Price
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Karen G Wigg
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Yu Feng
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kirsten Blokland
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margaret Wilkinson
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth N Kerr
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sharon L Guger
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Maureen W Lovett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Lisa J Strug
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Statistical Sciences and Computer Science, Faculty of Arts and Science and Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Cathy L Barr
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Eising E, Mirza-Schreiber N, de Zeeuw EL, Wang CA, Truong DT, Allegrini AG, Shapland CY, Zhu G, Wigg KG, Gerritse ML, Molz B, Alagöz G, Gialluisi A, Abbondanza F, Rimfeld K, van Donkelaar M, Liao Z, Jansen PR, Andlauer TFM, Bates TC, Bernard M, Blokland K, Bonte M, Børglum AD, Bourgeron T, Brandeis D, Ceroni F, Csépe V, Dale PS, de Jong PF, DeFries JC, Démonet JF, Demontis D, Feng Y, Gordon SD, Guger SL, Hayiou-Thomas ME, Hernández-Cabrera JA, Hottenga JJ, Hulme C, Kere J, Kerr EN, Koomar T, Landerl K, Leonard GT, Lovett MW, Lyytinen H, Martin NG, Martinelli A, Maurer U, Michaelson JJ, Moll K, Monaco AP, Morgan AT, Nöthen MM, Pausova Z, Pennell CE, Pennington BF, Price KM, Rajagopal VM, Ramus F, Richer L, Simpson NH, Smith SD, Snowling MJ, Stein J, Strug LJ, Talcott JB, Tiemeier H, van der Schroeff MP, Verhoef E, Watkins KE, Wilkinson M, Wright MJ, Barr CL, Boomsma DI, Carreiras M, Franken MCJ, Gruen JR, Luciano M, Müller-Myhsok B, Newbury DF, Olson RK, Paracchini S, Paus T, Plomin R, Reilly S, Schulte-Körne G, Tomblin JB, van Bergen E, Whitehouse AJO, Willcutt EG, St Pourcain B, Francks C, Fisher SE. Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. Proc Natl Acad Sci U S A 2022; 119:e2202764119. [PMID: 35998220 PMCID: PMC9436320 DOI: 10.1073/pnas.2202764119] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10-8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.
Collapse
Affiliation(s)
- Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
| | | | - Eveline L. de Zeeuw
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, the Netherlands
| | - Carol A. Wang
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Dongnhu T. Truong
- Department of Pediatrics and Genetics, Yale Medical School, New Haven, CT 06510
| | - Andrea G. Allegrini
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - Chin Yang Shapland
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, United Kingdom
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, United Kingdom
| | - Gu Zhu
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Karen G. Wigg
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Margot L. Gerritse
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
| | - Barbara Molz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
| | - Gökberk Alagöz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
| | - Alessandro Gialluisi
- Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Filippo Abbondanza
- School of Medicine, University of St Andrews, KY16 9TF, St. Andrews, Scotland
| | - Kaili Rimfeld
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EY, United Kingdom
| | - Marjolein van Donkelaar
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
| | - Zhijie Liao
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3,Canada
| | - Philip R. Jansen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, 3000 CB Rotterdam, the Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV the Netherlands
- Department of Human Genetics, VU Medical Center, Amsterdam University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Till F. M. Andlauer
- Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Timothy C. Bates
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Manon Bernard
- Department of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Kirsten Blokland
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, M5G 1X8 ON, Canada
| | - Milene Bonte
- Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Anders D. Børglum
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus, Denmark
- Center for Genomics and Personalized Medicine (CGPM), 8000 Aarhus, Denmark
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 Centre national de la recherche scientifique (CNRS), Université Paris Cité, Paris, 75015, France
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Fabiola Ceroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117 Hungary
- Multilingualism Doctoral School, Faculty of Modern Philology and Social Sciences, University of Pannonia, Veszprém, 8200 Hungary
| | - Philip S. Dale
- Department of Speech & Hearing Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Peter F. de Jong
- Department of Child Development and Education, University of Amsterdam, 1012 WX Amsterdam, the Netherlands
| | - John C. DeFries
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309-0447
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309-0447
| | - Jean-François Démonet
- Leenaards Memory Centre, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Ditte Demontis
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus, Denmark
| | - Yu Feng
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Scott D. Gordon
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sharon L. Guger
- Department of Psychology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | - Juan A. Hernández-Cabrera
- Departamento de Psicología, Clínica Psicobiología y Metodología, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, the Netherlands
| | - Charles Hulme
- Department of Education, University of Oxford, Oxford, Oxfordshire OX2 6PY, United Kingdom
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
- Stem Cells and Metabolism Research Program, University of Helsinki and Folkhälsan Research Center, 00014 Helsinki, Finland
| | - Elizabeth N. Kerr
- Department of Psychology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Neurology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Tanner Koomar
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242
| | - Karin Landerl
- Institute of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gabriel T. Leonard
- Cognitive Neuroscience Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1G1, Canada
| | - Maureen W. Lovett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, M5G 1X8 ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Heikki Lyytinen
- Department of Psychology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Nicholas G. Martin
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Angela Martinelli
- School of Medicine, University of St Andrews, KY16 9TF, St. Andrews, Scotland
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University Hospital Munich, Munich, 80336 Germany
| | | | - Angela T. Morgan
- Speech and Language, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Melbourne, VIC 3052, Australia
- Speech Pathology Department, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Markus M. Nöthen
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany
| | - Zdenka Pausova
- Department of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Craig E. Pennell
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
- Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | | | - Kaitlyn M. Price
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, M5G 1X8 ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Veera M. Rajagopal
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus, Denmark
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Ecole Normale Supérieure, Paris Sciences & Lettres University, École des Hautes Études en Sciences Sociales (EHESS), Centre National de la Recherche Scientifique (CNRS), Paris, 75005 France
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Shelley D. Smith
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Margaret J. Snowling
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- St. John’s College, University of Oxford, Oxford OX1 3JP, United Kingdom
| | - John Stein
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3PT, United Kingdom
| | - Lisa J. Strug
- Department of Statistical Sciences and Computer Science and Division of Biostatistics, University of Toronto, Toronto, ON M5S 3G3, Canada
- Program in Genetics and Genome Biology and the Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Joel B. Talcott
- Institute for Health and Neurodevelopment, Aston University, Birmingham B4 7ET, United Kingdom
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, 3000 CB Rotterdam, the Netherlands
- T. H. Chan School of Public Health, Harvard, Boston, MA 02115
| | - Marc P. van der Schroeff
- Department of Otolaryngology, Head and Neck Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
- Generation R Study Group, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
| | - Kate E. Watkins
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Margaret Wilkinson
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, M5G 1X8 ON, Canada
| | - Margaret J. Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Cathy L. Barr
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, M5G 1X8 ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, the Netherlands
- Netherlands Twin Register, 1081 BT Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Manuel Carreiras
- Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, 20009 Gipuzkoa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
- Lengua Vasca y Comunicación, University of the Basque Country, 48940 Bilbao, Vizcaya, Spain
| | - Marie-Christine J. Franken
- Department of Otolaryngology, Head and Neck Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Jeffrey R. Gruen
- Department of Pediatrics and Genetics, Yale Medical School, New Haven, CT 06510
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Bertram Müller-Myhsok
- Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Health Science, University of Liverpool, Liverpool L69 7ZX, United Kingdom
| | - Dianne F. Newbury
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Richard K. Olson
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309-0447
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, KY16 9TF, St. Andrews, Scotland
| | - Tomáš Paus
- Department of Psychiatry and Neuroscience and Centre Hospitalier Universitaire Sainte Justine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Robert Plomin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - Sheena Reilly
- Speech and Language, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-University Hospital Munich, Munich, 80336 Germany
| | - J. Bruce Tomblin
- Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242
| | - Elsje van Bergen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, the Netherlands
- Netherlands Twin Register, 1081 BT Amsterdam, the Netherlands
- Research Institute LEARN!, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, the Netherlands
| | | | - Erik G. Willcutt
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309-0447
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
| |
Collapse
|
5
|
Li LX, Chu JH, Chen XW, Gao PC, Wang ZY, Liu C, Fan RF. Selenium ameliorates mercuric chloride-induced brain damage through activating BDNF/TrKB/PI3K/AKT and inhibiting NF-κB signaling pathways. J Inorg Biochem 2022; 229:111716. [DOI: 10.1016/j.jinorgbio.2022.111716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 02/07/2023]
|
6
|
The influence of DCDC2 risk genetic variants on reading: Testing main and haplotypic effects. Neuropsychologia 2018; 130:52-58. [PMID: 29803723 DOI: 10.1016/j.neuropsychologia.2018.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/17/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022]
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental heritable disorder. Among DD candidate genes, DCDC2 is one of the most replicated, with rs793862, READ1 and rs793842 likely contribute to phenotypic variability in reading (dis)ability. In this study, we tested the effects of these genetic variants on DD as a categorical trait and on quantitative reading-related measures in a sample of 555 Italian nuclear families with 930 offspring, of which 687 were diagnosed with DD. We conducted both single-marker and haplotype analyses, finding that the READ1-deletion was significantly associated with reading, whereas no significant haplotype associations were found. Our findings add further evidence to support the hypothesis of a DCDC2 contribution to inter-individual variation in distinct indicators of reading (dis)ability in transparent languages (i.e., reading accuracy and speed), suggesting a potential pleiotropic effect.
Collapse
|
7
|
Waye MMY, Poo LK, Ho CSH. Study of Genetic Association With DCDC2 and Developmental Dyslexia in Hong Kong Chinese Children. Clin Pract Epidemiol Ment Health 2017; 13:104-114. [PMID: 29081827 PMCID: PMC5633722 DOI: 10.2174/1745017901713010104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 11/30/2022]
Abstract
Background: Doublecortin domain-containing 2 (DCDC2) is a doublecortin domain-containing gene family member and the doublecortin domain has been demonstrated to bind to tubulin and enhance microtubule polymerization. It has been associated with developmental dyslexia and this protein family member is thought to function in neuronal migration where it may affect the signaling of primary cilia. Objectives: The objective of the study is to find out if there is any association of genetic variants of DCDC2 with developmental dyslexia in Chinese children from Hong Kong. Methods: The dyslexic children were diagnosed as developmental dyslexia (DD) using the Hong Kong Test of Specific Learning Difficulties in Reading and Writing (HKT-SpLD) by the Department of Health, Hong Kong. Saliva specimens were collected and their genotypes of DCDC2 were studied by DNA sequencing or TaqMan Real Time PCR Assays. Results: The most significant marker is rs6940827 which is associated with DD with nominal p-value (0.011). However, this marker did not remain significant after multiple testing corrections and the adjusted p-value from permutation test was 0.1329. Using sliding window haplotype analysis, several haplotypes were found to be nominally associated with DD. The smallest nominal p values was 0.0036 (rs2996452-rs1318700, C-A). However, none of the p values could withstand the multiple testing corrections. Conclusion: Despite early findings that DCDC2 is a strong candidate for developmental dyslexia and that some of the genetic variants have been linked to brain structure and functions, our findings showed that DCDC2 is not strongly associated with dyslexia.
Collapse
Affiliation(s)
- Mary M Y Waye
- The Nethersole School of Nursing, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong
| | - Lim K Poo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Connie S-H Ho
- Department of Psychology, The University of Hong Kong, Hong Kong
| |
Collapse
|
8
|
Carrion-Castillo A, van Bergen E, Vino A, van Zuijen T, de Jong PF, Francks C, Fisher SE. Evaluation of results from genome-wide studies of language and reading in a novel independent dataset. GENES BRAIN AND BEHAVIOR 2017; 15:531-41. [PMID: 27198479 DOI: 10.1111/gbb.12299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
Recent genome-wide association scans (GWAS) for reading and language abilities have pin-pointed promising new candidate loci. However, the potential contributions of these loci remain to be validated. In this study, we tested 17 of the most significantly associated single nucleotide polymorphisms (SNPs) from these GWAS studies (P < 10(-6) in the original studies) in a new independent population dataset from the Netherlands: known as Familial Influences on Literacy Abilities. This dataset comprised 483 children from 307 nuclear families and 505 adults (including parents of participating children), and provided adequate statistical power to detect the effects that were previously reported. The following measures of reading and language performance were collected: word reading fluency, nonword reading fluency, phonological awareness and rapid automatized naming. Two SNPs (rs12636438 and rs7187223) were associated with performance in multivariate and univariate testing, but these did not remain significant after correction for multiple testing. Another SNP (rs482700) was only nominally associated in the multivariate test. For the rest of the SNPs, we did not find supportive evidence of association. The findings may reflect differences between our study and the previous investigations with respect to the language of testing, the exact tests used and the recruitment criteria. Alternatively, most of the prior reported associations may have been false positives. A larger scale GWAS meta-analysis than those previously performed will likely be required to obtain robust insights into the genomic architecture underlying reading and language.
Collapse
Affiliation(s)
- A Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - E van Bergen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - A Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - T van Zuijen
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, the Netherlands
| | - P F de Jong
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, the Netherlands
| | - C Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - S E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Chen Y, Zhao H, Zhang YX, Zuo PX. DCDC2 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children. Neural Regen Res 2017; 12:259-266. [PMID: 28400808 PMCID: PMC5361510 DOI: 10.4103/1673-5374.200809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Developmental dyslexia is a complex reading and writing disorder with strong genetic components. In previous genetic studies about dyslexia, a number of candidate genes have been identified. These include DCDC2, which has repeatedly been associated with developmental dyslexia in various European and American populations. However, data regarding this relationship are varied according to population. The Uyghur people of China represent a Eurasian population with an interesting genetic profile. Thus, this group may provide useful information about the association between DCDC2 gene polymorphisms and dyslexia. In the current study, we examined genetic data from 392 Uyghur children aged 8–12 years old from the Xinjiang Uyghur Autonomous Region of China. Participants included 196 children with dyslexia and 196 grade-, age-, and gender-matched controls. DNA was isolated from oral mucosal cell samples and fourteen single nucleotide polymorphisms (rs6456593, rs1419228, rs34647318, rs9467075, rs793862, rs9295619, rs807701, rs807724, rs2274305, rs7765678, rs4599626, rs6922023, rs3765502, and rs1087266) in DCDC2 were screened via the SNPscan method. We compared SNP frequencies in five models (Codominant, Dominant, Recessive, Heterozygote advantage, and Allele) between the two groups by means of the chi-squared test. A single-locus analysis indicated that, with regard to the allele frequency of these polymorphisms, three SNPs (rs807724, rs2274305, and rs4599626) were associated with dyslexia. rs9467075 and rs2274305 displayed significant associations with developmental dyslexia under the dominant model. rs6456593 and rs6922023 were significantly associated with developmental dyslexia under the dominant model and in the heterozygous genotype. Additionally, we discovered that the T-G-C-T of the four-marker haplotype (rs9295619-rs807701-rs807724-rs2274305) and the T-A of the two-marker haplotype (rs3765502-1087266) were significantly different between cases and controls. Thus, we conclude that DCDC2 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children.
Collapse
Affiliation(s)
- Yun Chen
- Medical College, Shihezi University, Shihezi, Xinjiang Uyghur Autonomous Region, China
| | - Hua Zhao
- Medical College, Shihezi University, Shihezi, Xinjiang Uyghur Autonomous Region, China
| | - Yi-Xin Zhang
- Special Clinic Department, the 12 Hospital of People's Liberation Army, Kashgar, Xinjiang Uyghur Autonomous Region, China
| | - Peng-Xiang Zuo
- Medical College, Shihezi University, Shihezi, Xinjiang Uyghur Autonomous Region, China
| |
Collapse
|
10
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|
11
|
Kong R, Song RR. [Research advances in susceptible genes for developmental dyslexia in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1308-1312. [PMID: 27974128 PMCID: PMC7403085 DOI: 10.7499/j.issn.1008-8830.2016.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Developmental dyslexia in children is one of the neurodevelopmental disorders and is affected by various susceptible genes. In recent years, researchers have found some susceptible genes for dyslexia via chromosome analysis, genome-wide association studies, association analysis, gene function research, neuroimaging, and neurophysiological techniques. This article reviews the research advances in susceptible genes for developmental dyslexia, and with the study on susceptible genes for dyslexia, it lays a foundation for in-depth studies on the "gene-brain-behavior" level and provides scientific clues for exploring etiology and pathogenesis of dyslexia.
Collapse
Affiliation(s)
- Rui Kong
- Department of Maternal and Child Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | |
Collapse
|
12
|
The Roles of Genes in the Neuronal Migration and Neurite Outgrowth Network in Developmental Dyslexia: Single- and Multiple-Risk Genetic Variants. Mol Neurobiol 2015; 53:3967-3975. [PMID: 26184631 DOI: 10.1007/s12035-015-9334-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/01/2015] [Indexed: 01/21/2023]
Abstract
Abnormal regulation of neural migration and neurite growth is thought to be an important feature of developmental dyslexia (DD). We investigated 16 genetic variants, selected by bioinformatics analyses, in six key genes in the neuronal migration and neurite outgrowth network in a Chinese population. We first observed that KIAA0319L rs28366021, KIAA0319 rs4504469, and DOCK4 rs2074130 were significantly associated with DD risk after false discovery rate (FDR) adjustment for multiple comparisons (odds ratio (OR) = 0.672, 95 % confidence interval (CI) = 0.505-0.894, P = 0.006; OR = 1.608, 95 % CI = 1.174-2.203, P = 0.003; OR = 1.681, 95 % CI = 1.203-2.348, P = 0.002). The following classification and regression tree (CART) analysis revealed a prediction value of gene-gene interactions among DOCK4 rs2074130, KIAA0319 rs4504469, DCDC2 rs2274305, and KIAA0319L rs28366021 variants. Compared with the lowest risk carriers of the combination of rs2074130 CC, rs4504469 CC, and rs2274305 GG genotype, individuals carrying the combined genotypes of rs2074130 CC, rs4504469 CT or TT, and rs28366021 GG had a significantly increased risk for DD (OR = 2.492, 95 % CI = 1.447-4.290, P = 0.001); individuals with the combination of rs2074130 CT or TT and rs28366021 GG genotype exhibited the highest risk for DD (OR = 2.770, 95 % CI = 2.265-6.276, P = 0.000). A significant dose effect was observed among these four variants (P for trend = 0.000). In summary, this study supports the importance of single- and multiple-risk variants in this network in DD susceptibility in China.
Collapse
|
13
|
The role of DCDC2 genetic variants and low socioeconomic status in vulnerability to attention problems. Eur Child Adolesc Psychiatry 2015; 24:309-18. [PMID: 25012462 DOI: 10.1007/s00787-014-0580-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
Both genetic and socio-demographic factors influence the risk for behavioral problems in the developmental age. Genetic studies indicate that shared genetic factors partially contribute to behavioral and learning problems, in particular reading disabilities (RD). For the first time, we explore the conjoint role of DCDC2 gene, an identified RD candidate gene, and socioeconomic status (SES) upon behavioral phenotypes in a general population of Italian children. Two of the most replicated DCDC2 markers [i.e., regulatory element associated with dyslexia 1 (READ1), rs793862] were genotyped in 631 children (boys = 314; girls = 317) aged 11-14 years belonging to a community-based sample. Main and interactive effects were tested by MANOVA for each combination of DCDC2 genotypes and socioeconomic status upon emotional and behavioral phenotypes, assessed by Child Behavior Check-List/6-18. The two-way MANOVA (Bonferroni corrected p value = 0.01) revealed a trend toward significance of READ1(4) effect (F = 2.39; p = 0.016), a significant main effect of SES (F = 3.01; p = 0.003) and interactive effect of READ1(4) × SES (F = 2.65; p = 0.007) upon behavioral measures, showing higher attention problems scores among subjects 'READ1(4+) and low SES' compared to all other groups (p values range 0.00003-0.0004). ANOVAs stratified by gender confirmed main and interactive effects among girls, but not boys. Among children exposed to low socioeconomic level, READ1 genetic variant targets the worst outcome in children's attention.
Collapse
|
14
|
Rüsseler J, Gerth I, Heldmann M, Münte T. Audiovisual perception of natural speech is impaired in adult dyslexics: An ERP study. Neuroscience 2015; 287:55-65. [DOI: 10.1016/j.neuroscience.2014.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/30/2023]
|
15
|
Sun Y, Gao Y, Zhou Y, Chen H, Wang G, Xu J, Xia J, Huen MSY, Siok WT, Jiang Y, Tan LH. Association study of developmental dyslexia candidate genes DCDC2 and KIAA0319 in Chinese population. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:627-34. [PMID: 25230923 DOI: 10.1002/ajmg.b.32267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/21/2014] [Indexed: 11/05/2022]
Abstract
Developmental dyslexia (DD) is characterized by difficulties in reading and spelling independent of intelligence, educational backgrounds and neurological injuries. Increasing evidences supported DD as a complex genetic disorder and identified four DD candidate genes namely DYX1C1, DCDC2, KIAA0319 and ROBO1. As such, DCDC2 and KIAA0319 are located in DYX2, one of the most studied DD susceptibility loci. However, association of these two genes with DD was inconclusive across different populations. Given the linguistic and genetic differences between Chinese and other populations, it is worthwhile to investigate association of DCDC2 and KIAA0319 with Chinese dyslexic children. Here, we selected 60 tag SNPs covering DCDC2 and KIAA0319 followed by high density genotyping in a large unrelated Chinese cohort with 502 dyslexic cases and 522 healthy controls. Several SNPs (Pmin = 0.0192) of DCDC2 and KIAA0319 as well as a four-maker haplotype (Padjusted = 0.0289, Odds Ratio (OR) = 1.3400) of KIAA0319 showed nominal association with DD. However, none of these results survived Bonferroni correction for multiple comparisons. Thus, the association of DCDC2 and KIAA0319 with DD in Chinese population should be further validated and their contribution to DD etiology and pathology should be interpreted with caution.
Collapse
Affiliation(s)
- Yimin Sun
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China; National Engineering Research Center for Beijing Biochip Technology, Beijing, China; CapitalBio Corporation, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Che A, Girgenti MJ, LoTurco J. The dyslexia-associated gene DCDC2 is required for spike-timing precision in mouse neocortex. Biol Psychiatry 2014; 76:387-96. [PMID: 24094509 PMCID: PMC4025976 DOI: 10.1016/j.biopsych.2013.08.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/06/2013] [Accepted: 08/22/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Variants in dyslexia-associated genes, including DCDC2, have been linked to altered neocortical activation, suggesting that dyslexia associated genes might play as yet unspecified roles in neuronal physiology. METHODS Whole-cell patch clamp recordings were used to compare the electrophysiological properties of regular spiking pyramidal neurons of neocortex in Dcdc2 knockout (KO) and wild-type mice. Ribonucleic acid sequencing and reverse transcriptase polymerase chain reaction were performed to identify and characterize changes in gene expression in Dcdc2 KOs. RESULTS Neurons in KOs showed increased excitability and decreased temporal precision in action potential firing. The RNA sequencing screen revealed that the N-methyl-D-aspartate receptor (NMDAR) subunit Grin2B was elevated in Dcdc2 KOs, and an electrophysiological assessment confirmed a functional increase in spontaneous NMDAR-mediated activity. Remarkably, the decreased action potential temporal precision could be restored in mutants by treatment with either the NMDAR antagonist (2R)-amino-5-phosphonovaleric acid or the NMDAR 2B subunit-specific antagonist Ro 25-6981. CONCLUSIONS These results link the function of the dyslexia-associated gene Dcdc2 to spike timing through activity of NMDAR.
Collapse
Affiliation(s)
- Alicia Che
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Matthew J Girgenti
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Joseph LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
17
|
Marino C, Scifo P, Della Rosa PA, Mascheretti S, Facoetti A, Lorusso ML, Giorda R, Consonni M, Falini A, Molteni M, Gruen JR, Perani D. The DCDC2/intron 2 deletion and white matter disorganization: focus on developmental dyslexia. Cortex 2014; 57:227-43. [PMID: 24926531 DOI: 10.1016/j.cortex.2014.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/20/2014] [Accepted: 04/25/2014] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The DCDC2 gene is involved in neuronal migration. Heterotopias have been found within the white matter of DCDC2-knockdown rats. A deletion in DCDC2/intron 2 (DCDC2d), which encompasses a regulatory region named 'regulatory element associated with dyslexia 1' (READ1), increases the risk for dyslexia. We hypothesized that DCDC2d can be associated to alterations of the white matter structure in general and in dyslexic brains. METHODS Based on a full-factorial analysis of covariance (ANCOVA) model, we investigated voxel-based diffusion tensor imaging (VB-DTI) data of four groups of subjects: dyslexia with/without DCDC2d, and normal readers with/without DCDC2d. We also tested DCDC2d effects upon correlation patterns between fractional anisotropy (FA) and reading scores. RESULTS We found that FA was reduced in the left arcuate fasciculus and splenium of the corpus callosum in subjects with versus without DCDC2d, irrespective of dyslexia. Subjects with dyslexia and DCDC2d showed reduced FA, mainly in the left hemisphere and in the corpus callosum; their counterpart without DCDC2d showed similar FA alterations. Noteworthy, a conjunction analysis in impaired readers revealed common regions with lower FA mainly in the left hemisphere. When we compared subjects with dyslexia with versus without DCDC2d, we found lower FA in the inferior longitudinal fasciculus and genu of the corpus callosum, bilaterally. Normal readers with versus without DCDC2d had FA increases and decreases in both the right and left hemisphere. DISCUSSION The major contribution of our study was to provide evidence relating genes, brain and behaviour. Overall, our findings support the hypothesis that DCDC2d is associated with altered FA. In normal readers, DCDC2-related anatomical patterns may mark some developmental cognitive vulnerability to learning disabilities. In subjects with dyslexia, DCDC2d accounted for both common - mainly located in the left hemisphere - and unique - a more severe and extended pattern - alterations of white matter fibre tracts.
Collapse
Affiliation(s)
- Cecilia Marino
- Department of Child Neuropsychiatry, Scientific Institute Eugenio Medea, Bosisio Parini, Italy; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Paola Scifo
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy; Department of Nuclear Medicine San Raffaele Hospital and Division of Neuroscience, Scientific Institute San Raffaele, Milan, Italy
| | - Pasquale A Della Rosa
- Institute of Molecular Bioimaging and Physiology, National Research Council, Milan, Italy
| | - Sara Mascheretti
- Department of Child Neuropsychiatry, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Andrea Facoetti
- Department of Child Neuropsychiatry, Scientific Institute Eugenio Medea, Bosisio Parini, Italy; Department of General Psychology and Center for Cognitive Science, University of Padova, Padova, Italy
| | - Maria L Lorusso
- Department of Child Neuropsychiatry, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Monica Consonni
- Department of Nuclear Medicine San Raffaele Hospital and Division of Neuroscience, Scientific Institute San Raffaele, Milan, Italy
| | - Andrea Falini
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy
| | - Massimo Molteni
- Department of Child Neuropsychiatry, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Jeffrey R Gruen
- Department of Pediatrics & Genetics, Yale Child Health Research Center, Yale School of Medicine, New Haven, USA
| | - Daniela Perani
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy; Department of Nuclear Medicine San Raffaele Hospital and Division of Neuroscience, Scientific Institute San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
18
|
Characterization of the DYX2 locus on chromosome 6p22 with reading disability, language impairment, and IQ. Hum Genet 2014; 133:869-81. [PMID: 24509779 PMCID: PMC4053598 DOI: 10.1007/s00439-014-1427-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/28/2014] [Indexed: 01/05/2023]
Abstract
Reading disability (RD) and language impairment (LI) are common neurodevelopmental disorders with moderately strong genetic components and lifelong implications. RD and LI are marked by unexpected difficulty acquiring and processing written and verbal language, respectively, despite adequate opportunity and instruction. RD and LI—and their associated deficits—are complex, multifactorial, and often comorbid. Genetic studies have repeatedly implicated the DYX2 locus, specifically the genes DCDC2 and KIAA0319, in RD, with recent studies suggesting they also influence LI, verbal language, and cognition. Here, we characterize the relationship of the DYX2 locus with RD, LI, and IQ. To accomplish this, we developed a marker panel densely covering the 1.4 Mb DYX2 locus and assessed association with reading, language, and IQ measures in subjects from the Avon Longitudinal Study of Parents and Children. We then replicated associations in three independent, disorder-selected cohorts. As expected, there were associations with known RD risk genes KIAA0319 and DCDC2. In addition, we implicated markers in or near other DYX2 genes, including TDP2, ACOT13, C6orf62, FAM65B, and CMAHP. However, the LD structure of the locus suggests that associations within TDP2, ACOT13, and C6orf62 are capturing a previously reported risk variant in KIAA0319. Our results further substantiate the candidacy of KIAA0319 and DCDC2 as major effector genes in DYX2, while proposing FAM65B and CMAHP as new DYX2 candidate genes. Association of DYX2 with multiple neurobehavioral traits suggests risk variants have functional consequences affecting multiple neurological processes. Future studies should dissect these functional, possibly interactive relationships of DYX2 candidate genes.
Collapse
|
19
|
Eicher JD, Gruen JR. Imaging-genetics in dyslexia: connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Mol Genet Metab 2013; 110:201-12. [PMID: 23916419 PMCID: PMC3800223 DOI: 10.1016/j.ymgme.2013.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022]
Abstract
Dyslexia is a common pediatric disorder that affects 5-17% of schoolchildren in the United States. It is marked by unexpected difficulties in fluent reading despite adequate intelligence, opportunity, and instruction. Classically, neuropsychologists have studied dyslexia using a variety of neurocognitive batteries to gain insight into the specific deficits and impairments in affected children. Since dyslexia is a complex genetic trait with high heritability, analyses conditioned on performance on these neurocognitive batteries have been used to try to identify associated genes. This has led to some successes in identifying contributing genes, although much of the heritability remains unexplained. Additionally, the lack of relevant human brain tissue for analysis and the challenges of modeling a uniquely human trait in animals are barriers to advancing our knowledge of the underlying pathophysiology. In vivo imaging technologies, however, present new opportunities to examine dyslexia and reading skills in a clearly relevant context in human subjects. Recent investigations have started to integrate these imaging data with genetic data in attempts to gain a more complete and complex understanding of reading processes. In addition to bridging the gap from genetic risk variant to a discernible neuroimaging phenotype and ultimately to the clinical impairments in reading performance, the use of neuroimaging phenotypes will reveal novel risk genes and variants. In this article, we briefly discuss the genetic and imaging investigations and take an in-depth look at the recent imaging-genetics investigations of dyslexia.
Collapse
Affiliation(s)
- John D. Eicher
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Jeffrey R. Gruen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
- Departments of Pediatrics and Investigative Medicine, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
20
|
Carrion-Castillo A, Franke B, Fisher SE. Molecular genetics of dyslexia: an overview. DYSLEXIA (CHICHESTER, ENGLAND) 2013; 19:214-240. [PMID: 24133036 DOI: 10.1002/dys.1464] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 05/28/2023]
Abstract
Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs.
Collapse
Affiliation(s)
- Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | | | | |
Collapse
|
21
|
Luciano M, Evans DM, Hansell NK, Medland SE, Montgomery GW, Martin NG, Wright MJ, Bates TC. A genome-wide association study for reading and language abilities in two population cohorts. GENES BRAIN AND BEHAVIOR 2013; 12:645-52. [PMID: 23738518 PMCID: PMC3908370 DOI: 10.1111/gbb.12053] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/04/2013] [Accepted: 05/24/2013] [Indexed: 01/21/2023]
Abstract
Candidate genes have been identified for both reading and language, but most of the heritable variance in these traits remains unexplained. Here, we report a genome-wide association meta-analysis of two large cohorts: population samples of Australian twins and siblings aged 12–25 years (n = 1177 from 538 families), and a younger cohort of children of the UK Avon Longitudinal Study of Parents and their Children (aged 8 and 9 years; maximum n = 5472). Suggestive association was indicated for reading measures and non-word repetition (NWR), with the greatest support found for single nucleotide polymorphisms (SNPs) in the pseudogene, ABCC13 (P = 7.34 × 10−8), and the gene, DAZAP1 (P = 1.32 × 10−6). Gene-based analyses showed significant association (P < 2.8 × 10−6) for reading and spelling with genes CD2L1, CDC2L2 and RCAN3 in two loci on chromosome 1. Some support was found for the same SNPs having effects on both reading skill and NWR, which is compatible with behavior genetic evidence for influences of reading acquisition on phonological-task performance. The results implicate novel candidates for study in additional cohorts for reading and language abilities.
Collapse
Affiliation(s)
- M Luciano
- Centre for Cognitive Aging and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Analysis of genetic variants of dyslexia candidate genes KIAA0319 and DCDC2 in Indian population. J Hum Genet 2013; 58:531-8. [PMID: 23677054 DOI: 10.1038/jhg.2013.46] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 11/08/2022]
Abstract
Developmental dyslexia (DD) is a heritable, complex genetic disorder associated with impairment in reading and writing skills despite having normal intellectual ability and appropriate educational opportunities. Chromosome 6p23-21.3 at DYX2 locus has showed the most consistent evidence of linkage for DD and two susceptible genes KIAA0319 and DCDC2 for DD at DYX2 locus showed significant association. Specific candidate gene-association studies have identified variants, risk haplotypes and microsatellites of KIAA0319 and DCDC2 correlated with wide range of reading-related traits. In this study, we used a case-control approach for analyzing single-nucleotide polymorphisms (SNPs) in KIAA0319 and DCDC2. Our study demonstrated the association of DD with SNP rs4504469 of KIAA0319 and not with any SNPs of DCDC2.
Collapse
|