1
|
Lin L, Yuan Y, Huang Z, Wang Y. YAP Signaling in Glia: Pivotal Roles in Neurological Development, Regeneration and Diseases. Neurosci Bull 2025; 41:501-519. [PMID: 39503968 PMCID: PMC11876503 DOI: 10.1007/s12264-024-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 03/04/2025] Open
Abstract
Yes-associated protein (YAP), the key transcriptional co-factor and downstream effector of the Hippo pathway, has emerged as one of the primary regulators of neural as well as glial cells. It has been detected in various glial cell types, including Schwann cells and olfactory ensheathing cells in the peripheral nervous system, as well as radial glial cells, ependymal cells, Bergmann glia, retinal Müller cells, astrocytes, oligodendrocytes, and microglia in the central nervous system. With the development of neuroscience, understanding the functions of YAP in the physiological or pathological processes of glia is advancing. In this review, we aim to summarize the roles and underlying mechanisms of YAP in glia and glia-related neurological diseases in an integrated perspective.
Collapse
Affiliation(s)
- Lin Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinfeng Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Lee CLM, Brabander CJ, Nomura Y, Kanda Y, Yoshida S. Embryonic exposure to acetamiprid insecticide induces CD68-positive microglia and Purkinje cell arrangement abnormalities in the cerebellum of neonatal rats. Toxicol Appl Pharmacol 2025; 495:117215. [PMID: 39719252 DOI: 10.1016/j.taap.2024.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Concerns have been raised regarding acetamiprid (ACE), a neonicotinoid insecticide, due to its potential neurodevelopmental toxicity. ACE, which is structurally similar to nicotine, acts as an agonist of nicotinic acetylcholine receptors (nAChRs) and resists degradation by acetylcholinesterase. Furthermore, ACE has been reported to disrupt neuronal transmission and induce developmental neurotoxicity and ataxia in animal models. However, the prenatal ACE exposure and its pathological changes, including impacts on motor control, remains unclear. In this study, we investigated the effects of ACE exposure, focusing on the development of cerebellar neurons and glia, which are linked to motor impairment. ACE at doses of 20, 40-, and 60 mg/kg body weight was administered to Pregnant Wistar rats via feed on gestational day (G) 15. The developing cerebellum of the pups was examined on postnatal days (P) 7, 14, and 18, corresponding to the critical periods of cerebellar maturation in rodents. Our data revealed that ACE exposure at 40 and 60 mg/kg induced abnormal neuronal alignment on P14, and neuronal cell loss on P18. Additionally, ACE altered microglial behavior, with an increase in the number of CD68-positive microglia, suggesting that the exposure results in an increase in phagocytic microglia in response to neuronal abnormalities, ultimately leading to neuronal cell loss. Pups exposed to 60 mg/kg ACE exhibited hindlimb clasping during the hindlimb suspension test, indicating motor impairment. These findings suggest that ACE exposure causes neuronal cell loss of developing Purkinje cells and promotes a phase shift to the activate mode of microglia. This study further highlights the crucial role of neuron-glia interactions in ACE-induced motor impairment, thus contributing to our understanding of the potential risks associated with prenatal ACE exposure.
Collapse
Affiliation(s)
- Christine Li Mei Lee
- Department of Applied Chemistry and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Claire J Brabander
- Department of Psychology, Queens College, CUNY, NY 11367, USA; Graduate Center, CUNY, New York, NY 10023, USA
| | - Yoko Nomura
- Department of Psychology, Queens College, CUNY, NY 11367, USA; Graduate Center, CUNY, New York, NY 10023, USA
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Sachiko Yoshida
- Department of Applied Chemistry and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; Center for Diversity and Inclusion, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
3
|
Elsherif R, Mm Abdel-Hafez A, Hussein OA, Sabry D, Abdelzaher LA, Bayoumy AA. The potential ameliorative effect of mesenchymal stem cells-derived exosomes on cerebellar histopathology and their modifying role on PI3k-mTOR signaling in rat model of autism spectrum disorder. J Mol Histol 2025; 56:65. [PMID: 39760823 DOI: 10.1007/s10735-024-10335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Autism spectrum disorder (ASD) is a group of severe neurodevelopmental disorders. This study aimed to elucidate the potential ameliorating effect of postnatal administration of MSCs-derived Exo in a rat model of ASD. Male pups were divided into control (Cont), (VPA); pups of pregnant rats injected with VPA subcutaneously (S.C.) at embryonic day (ED) 13, and (VPA + Exo); pups were intravenously (I.V.) injected with MSCs-derived Exo either at postnatal day (P) 21 (adolescent VPA + Exo) or P70 (adult VPA + Exo). They were evaluated for physiological, histopathological and immunohistochemical changes of cerebellar structure, and genetic expression of PI3k and mTOR. The VPA adult group showed increased locomotor activity and impaired social activity, and anxiety. The cerebellar histological structure was disrupted in VPA groups. VPA + Exo groups showed preservation of the normal histological structure of the cerebellum. Immunohistochemical studies revealed enhanced expression of caspase-3, GFAP, Nestin, and VEGF in VPA groups beside modifying PI3K and mTOR genetic expression. MSCs-derived Exo ameliorated most of the rat cerebellar histopathological alterations and behavioral changes. Their mitigating effect could be established through their antiapoptotic, anti-inflammatory and anti-neurogenesis effect besides modifying PI3k-mTOR signaling.
Collapse
Affiliation(s)
- Raghda Elsherif
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Amel Mm Abdel-Hafez
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Histology, Sphinx University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Badr University, Cairo, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Cairo, Egypt
| | - Ayat Ah Bayoumy
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Kandil B, Bayraktaroglu AG. Induction of Heat Shock Proteins 27, 60, 70, and 90 in the Cerebellum of Rats After Hyperthermia During Postnatal Development. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:944-952. [PMID: 39189886 DOI: 10.1093/mam/ozae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 08/04/2024] [Indexed: 08/28/2024]
Abstract
Heat shock proteins (HSPs) are induced in response to stressful stimuli and play an important role in cell repair and protection. This study, using immunohistochemistry, aimed to determine whether HSPs are induced in the cerebellum of rats subjected to hyperthermia during postnatal development (PND). The results showed that unlike HSP27 and HSP70, HSP60 and HSP90 were constitutively expressed in the cerebellum of rats. However, hyperthermia induced HSP27 in the white matter (WM) and HSP70 in the Bergmann glial cells, the internal granule layer (IGL), and the WM. In the WM, HSP27 induction was only observed on days PND20, PND25, and PND30, and HSP27 expression was higher on day PND30 compared with days PND20 and PND25 (p < 0.001). In the Bergmann glial cells, HSP70 induction was only observed on days PND5, PND10, and PND20, and HSP70 expression was greater on days PND5 and PND10 compared with day PND20 (p < 0.001). In the IGL and the WM, HSP70 expression was higher on days PND20, PND25, and PND30 compared with days PND5 and PND10 (p < 0.001). These findings indicate that unlike HSP60 and HSP90, HSP27 and HSP70 have different expression patterns in the cerebellum of rats after hyperthermia during PND.
Collapse
Affiliation(s)
- Banu Kandil
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Siirt University, Siirt 56100, Turkey
| | - Alev Gürol Bayraktaroglu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey
| |
Collapse
|
5
|
Verpeut JL, Oostland M. The significance of cerebellar contributions in early-life through aging. Front Comput Neurosci 2024; 18:1449364. [PMID: 39258107 PMCID: PMC11384999 DOI: 10.3389/fncom.2024.1449364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Marlies Oostland
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Pose-Méndez S, Rehbock M, Wolf-Asseburg A, Köster RW. In Vivo Monitoring of Fabp7 Expression in Transgenic Zebrafish. Cells 2024; 13:1138. [PMID: 38994990 PMCID: PMC11240397 DOI: 10.3390/cells13131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
In zebrafish, like in mammals, radial glial cells (RGCs) can act as neural progenitors during development and regeneration in adults. However, the heterogeneity of glia subpopulations entails the need for different specific markers of zebrafish glia. Currently, fluorescent protein expression mediated by a regulatory element from the glial fibrillary acidic protein (gfap) gene is used as a prominent glia reporter. We now expand this tool by demonstrating that a regulatory element from the mouse Fatty acid binding protein 7 (Fabp7) gene drives reliable expression in fabp7-expressing zebrafish glial cells. By using three different Fabp7 regulatory element-mediated fluorescent protein reporter strains, we reveal in double transgenic zebrafish that progenitor cells expressing fluorescent proteins driven by the Fabp7 regulatory element give rise to radial glia, oligodendrocyte progenitors, and some neuronal precursors. Furthermore, Bergmann glia represent the almost only glial population of the zebrafish cerebellum (besides a few oligodendrocytes), and the radial glia also remain in the mature cerebellum. Fabp7 regulatory element-mediated reporter protein expression in Bergmann glia progenitors suggests their origin from the ventral cerebellar proliferation zone, the ventricular zone, but not from the dorsally positioned upper rhombic lip. These new Fabp7 reporters will be valuable for functional studies during development and regeneration.
Collapse
Affiliation(s)
- Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Zoological Institut, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.R.); (A.W.-A.)
| | | | | | - Reinhard W. Köster
- Cellular and Molecular Neurobiology, Zoological Institut, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.R.); (A.W.-A.)
| |
Collapse
|
7
|
Atamian A, Birtele M, Hosseini N, Nguyen T, Seth A, Del Dosso A, Paul S, Tedeschi N, Taylor R, Coba MP, Samarasinghe R, Lois C, Quadrato G. Human cerebellar organoids with functional Purkinje cells. Cell Stem Cell 2024; 31:39-51.e6. [PMID: 38181749 PMCID: PMC11417151 DOI: 10.1016/j.stem.2023.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 11/30/2023] [Indexed: 01/07/2024]
Abstract
Research on human cerebellar development and disease has been hampered by the need for a human cell-based system that recapitulates the human cerebellum's cellular diversity and functional features. Here, we report a human organoid model (human cerebellar organoids [hCerOs]) capable of developing the complex cellular diversity of the fetal cerebellum, including a human-specific rhombic lip progenitor population that have never been generated in vitro prior to this study. 2-month-old hCerOs form distinct cytoarchitectural features, including laminar organized layering, and create functional connections between inhibitory and excitatory neurons that display coordinated network activity. Long-term culture of hCerOs allows healthy survival and maturation of Purkinje cells that display molecular and electrophysiological hallmarks of their in vivo counterparts, addressing a long-standing challenge in the field. This study therefore provides a physiologically relevant, all-human model system to elucidate the cell-type-specific mechanisms governing cerebellar development and disease.
Collapse
Affiliation(s)
- Alexander Atamian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Negar Hosseini
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tuan Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anoothi Seth
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ashley Del Dosso
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sandeep Paul
- Spatial Genomics, 145 Vista Avenue Suite 111, Pasadena, CA 91107, USA
| | - Neil Tedeschi
- Spatial Genomics, 145 Vista Avenue Suite 111, Pasadena, CA 91107, USA
| | - Ryan Taylor
- Spatial Genomics, 145 Vista Avenue Suite 111, Pasadena, CA 91107, USA
| | - Marcelo P Coba
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Ranmal Samarasinghe
- Department of Clinical Neurophysiology and Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
8
|
Yuan WQ, Huang WP, Jiang YC, Xu H, Duan CS, Chen NH, Liu YJ, Fu XM. The function of astrocytes and their role in neurological diseases. Eur J Neurosci 2023; 58:3932-3961. [PMID: 37831013 DOI: 10.1111/ejn.16160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aβ and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.
Collapse
Affiliation(s)
- Wen-Qin Yuan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei-Peng Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Minzu University of China, Beijing, China
| | - Yang-Chao Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hao Xu
- College of Economics and Management, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chong-Shen Duan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying-Jiao Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao-Mei Fu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
9
|
Jun S, Kim M, Park H, Hwang E, Yamamoto Y, Tanaka-Yamamoto K. Organization of Purkinje cell development by neuronal MEGF11 in cerebellar granule cells. Cell Rep 2023; 42:113137. [PMID: 37708022 DOI: 10.1016/j.celrep.2023.113137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
As cerebellar granule cells (GCs) coordinate the formation of regular cerebellar networks during postnatal development, molecules in GCs are expected to be involved. Here, we test the effects of the knockdown (KD) of multiple epidermal growth factor-like domains protein 11 (MEGF11), which is a homolog of proteins mediating astrocytic phagocytosis but is substantially increased at the later developmental stages of GCs on cerebellar development. MEGF11-KD in GCs of developing mice results in abnormal cerebellar structures, including extensively ectopic Purkinje cell (PC) somas, and in impaired motor functions. MEGF11-KD also causes abnormally asynchronous synaptic release from GC axons, parallel fibers, before the appearance of abnormal cerebellar structures. Interestingly, blockade of this abnormal synaptic release restores most of the cerebellar structures. Thus, apart from phagocytic functions of its related homologs in astrocytes, MEGF11 in GCs promotes proper PC development and cerebellar network formation by regulating immature synaptic transmission.
Collapse
Affiliation(s)
- Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eunmi Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
10
|
Cottam NC, Bamfo T, Harrington MA, Charvet CJ, Hekmatyar K, Tulin N, Sun J. Cerebellar structural, astrocytic, and neuronal abnormalities in the SMNΔ7 mouse model of spinal muscular atrophy. Brain Pathol 2023; 33:e13162. [PMID: 37218083 PMCID: PMC10467044 DOI: 10.1111/bpa.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Spinalmuscular atrophy (SMA) is a neuromuscular disease that affects as many as 1 in 6000 individuals at birth, making it the leading genetic cause of infant mortality. A growing number of studies indicate that SMA is a multi-system disease. The cerebellum has received little attention even though it plays an important role in motor function and widespread pathology has been reported in the cerebella of SMA patients. In this study, we assessed SMA pathology in the cerebellum using structural and diffusion magnetic resonance imaging, immunohistochemistry, and electrophysiology with the SMNΔ7 mouse model. We found a significant disproportionate loss in cerebellar volume, decrease in afferent cerebellar tracts, selective lobule-specific degeneration of Purkinje cells, abnormal lobule foliation and astrocyte integrity, and a decrease in spontaneous firing of cerebellar output neurons in the SMA mice compared to controls. Our data suggest that defects in cerebellar structure and function due to decreased survival motor neuron (SMN) levels impair the functional cerebellar output affecting motor control, and that cerebellar pathology should be addressed to achieve comprehensive treatment and therapy for SMA patients.
Collapse
Affiliation(s)
- Nicholas C. Cottam
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | - Tiffany Bamfo
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | | | - Christine J. Charvet
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
- Department of Anatomy, Physiology and PharmacologyAuburn UniversityAuburnAlabamaUSA
- Department of PsychologyDelaware State UniversityDoverDEUnited States
| | - Khan Hekmatyar
- Center for Biomedical and Brain ImagingUniversity of DelawareNewarkDelawareUSA
- Bioimaging Research Center for Biomedical and Brain ImagingUniversity of GeorgiaAthensGeorgiaUSA
| | - Nikita Tulin
- Department of NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Jianli Sun
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
| |
Collapse
|
11
|
Kato M, De Schutter E. Models of Purkinje cell dendritic tree selection during early cerebellar development. PLoS Comput Biol 2023; 19:e1011320. [PMID: 37486917 PMCID: PMC10399850 DOI: 10.1371/journal.pcbi.1011320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/03/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
We investigate the relationship between primary dendrite selection of Purkinje cells and migration of their presynaptic partner granule cells during early cerebellar development. During postnatal development, each Purkinje cell grows more than three dendritic trees, from which a primary tree is selected for development, whereas the others completely retract. Experimental studies suggest that this selection process is coordinated by physical and synaptic interactions with granule cells, which undergo a massive migration at the same time. However, technical limitations hinder continuous experimental observation of multiple cell populations. To explore possible mechanisms underlying this selection process, we constructed a computational model using a new computational framework, NeuroDevSim. The study presents the first computational model that simultaneously simulates Purkinje cell growth and the dynamics of granule cell migrations during the first two postnatal weeks, allowing exploration of the role of physical and synaptic interactions upon dendritic selection. The model suggests that interaction with parallel fibers is important to establish the distinct planar morphology of Purkinje cell dendrites. Specific rules to select which dendritic trees to keep or retract result in larger winner trees with more synaptic contacts than using random selection. A rule based on afferent synaptic activity was less effective than rules based on dendritic size or numbers of synapses.
Collapse
Affiliation(s)
- Mizuki Kato
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa, Japan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa, Japan
| |
Collapse
|
12
|
Dystrophin Short Product, Dp71, Interacts with AQP4 and Kir4.1 Channels in the Mouse Cerebellar Glial Cells in Contrast to Dp427 at Inhibitory Postsynapses in the Purkinje Neurons. Mol Neurobiol 2023; 60:3664-3677. [PMID: 36918517 DOI: 10.1007/s12035-023-03296-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Dystrophin is the causative gene for Duchenne and Becker muscular dystrophy (DMD/BMD), and it produces full-length and short dystrophin, Dp427 and Dp71, respectively, in the brain. The existence of the different dystrophin molecular complexes has been known for a quarter century, so it is necessary to derive precise expression profiles of the molecular complexes in the brain to elucidate the mechanism of cognitive symptoms in DMD/BMD patients. In order to investigate the Dp71 expression profile in cerebellum, we employed Dp71-specific tag-insertion mice, which allowed for the specific detection of endogenous Dp71 in the immunohistochemical analysis and found its expressions in the glial cells, Bergmann glial (BG) cells, and astrocytes, whereas Dp427 was exclusively expressed in the inhibitory postsynapses within cerebellar Purkinje cells (PCs). Interestingly, we found different cell-type dependent dystrophin molecular complexes; i.e., glia-associated Dp71 was co-expressed with dystroglycan (DG) and dystrobrevinα, whereas synapse-associated Dp427 was co-expressed with DG and dystrobrevinβ. Furthermore, we investigated the molecular relationship of Dp71 to the AQP4 water channel and the Kir4.1 potassium channel, and found biochemical associations of Dp71 with AQP4 and Kir4.1 in both the cerebellum and cerebrum. Immunohistochemical and cytochemical investigations revealed partial co-localizations of Dp71 with AQP4 and Kir4.1 in the glial cells, indicating Dp71 interactions with the channels in the BG cells and astrocytes. Taken together, different cell-types, glial cells and Purkinje neurons, in the cerebellum express different dystrophin molecular complexes, which may contribute to pathological and physiological processes through the regulation of the water/ion channel and inhibitory postsynapses.
Collapse
|
13
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
14
|
Lee B, Beuhler L, Lee HY. The Primary Ciliary Deficits in Cerebellar Bergmann Glia of the Mouse Model of Fragile X Syndrome. CEREBELLUM (LONDON, ENGLAND) 2022; 21:801-813. [PMID: 35438410 PMCID: PMC10857775 DOI: 10.1007/s12311-022-01382-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
Primary cilia are non-motile cilia that function as antennae for cells to sense signals. Deficits of primary cilia cause ciliopathies, leading to the pathogenesis of various developmental disorders; however, the contribution of primary cilia to neurodevelopmental disorders is largely unknown. Fragile X syndrome (FXS) is a genetically inherited disorder and is the most common known cause of autism spectrum disorders. FXS is caused by the silencing of the fragile X mental retardation 1 (FMR1) gene, which encodes for the fragile X mental retardation protein (FMRP). Here, we discovered a reduction in the number of primary cilia and the Sonic hedgehog (Shh) signaling in cerebellar Bergmann glia of Fmr1 KO mice. We further found reduced granule neuron precursor (GNP) proliferation and thickness of the external germinal layer (EGL) in Fmr1 KO mice, implicating that primary ciliary deficits in Bergmann glia may contribute to cerebellar developmental phenotypes in FXS, as Shh signaling through primary cilia in Bergmann glia is known to mediate proper GNP proliferation in the EGL. Taken together, our study demonstrates that FMRP loss leads to primary ciliary deficits in cerebellar Bergmann glia which may contribute to cerebellar deficits in FXS.
Collapse
Affiliation(s)
- Bumwhee Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Laura Beuhler
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
15
|
Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells 2022; 11:cells11121902. [PMID: 35741031 PMCID: PMC9220858 DOI: 10.3390/cells11121902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Although different regions of the brain are dedicated to specific functions, the intra- and inter-regional heterogeneity of astrocytes and microglia in these regions has not yet been fully understood. Recently, an advancement in various technologies, such as single-cell RNA sequencing, has allowed for the discovery of astrocytes and microglia with distinct molecular fingerprints and varying functions in the brain. In addition, the regional heterogeneity of astrocytes and microglia exhibits different functions in several situations, such as aging and neurodegenerative diseases. Therefore, investigating the region-specific astrocytes and microglia is important in understanding the overall function of the brain. In this review, we summarize up-to-date research on various intra- and inter-regional heterogeneities of astrocytes and microglia, and provide information on how they can be applied to aging and neurodegenerative diseases.
Collapse
|
16
|
Sharma K, Singhapakdi K, Maertens P. Echoencephalography of encephalopathy due to congenital lymphocytic choriomeningitis virus. J Neuroimaging 2022; 32:412-419. [PMID: 35297514 DOI: 10.1111/jon.12989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Kamal Sharma
- Department of Pediatrics, University of South Alabama, Mobile, Alabama, USA
| | - Kanya Singhapakdi
- Department of Pediatrics, University of South Alabama, Mobile, Alabama, USA
| | - Paul Maertens
- Department of Neurology, Child Neurology Division, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
17
|
Duran‐Trio L, Fernandes‐Pires G, Grosse J, Soro‐Arnaiz I, Roux‐Petronelli C, Binz P, De Bock K, Cudalbu C, Sandi C, Braissant O. Creatine transporter-deficient rat model shows motor dysfunction, cerebellar alterations, and muscle creatine deficiency without muscle atrophy. J Inherit Metab Dis 2022; 45:278-291. [PMID: 34936099 PMCID: PMC9302977 DOI: 10.1002/jimd.12470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022]
Abstract
Creatine (Cr) is a nitrogenous organic acid and plays roles such as fast phosphate energy buffer to replenish ATP, osmolyte, antioxidant, neuromodulator, and as a compound with anabolic and ergogenic properties in muscle. Cr is taken from the diet or endogenously synthetized by the enzymes arginine:glycine amidinotransferase and guanidinoacetate methyltransferase, and specifically taken up by the transporter SLC6A8. Loss-of-function mutations in the genes encoding for the enzymes or the transporter cause creatine deficiency syndromes (CDS). CDS are characterized by brain Cr deficiency, intellectual disability with severe speech delay, behavioral troubles, epilepsy, and motor dysfunction. Among CDS, the X-linked Cr transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different animal models of CTD show reduced brain Cr levels, cognitive deficiencies, and together they cover other traits similar to those of patients. However, motor function was poorly explored in CTD models, and some controversies in the phenotype exist in comparison with CTD patients. Our recently described Slc6a8Y389C knock-in rat model of CTD showed mild impaired motor function, morphological alterations in cerebellum, reduced muscular mass, Cr deficiency, and increased guanidinoacetate content in muscle, although no consistent signs of muscle atrophy. Our results indicate that such motor dysfunction co-occurred with both nervous and muscle dysfunctions, suggesting that muscle strength and performance as well as neuronal connectivity might be affected by this Cr deficiency in muscle and brain.
Collapse
Affiliation(s)
- Lara Duran‐Trio
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Gabriella Fernandes‐Pires
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Jocelyn Grosse
- Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ines Soro‐Arnaiz
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
| | - Clothilde Roux‐Petronelli
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Pierre‐Alain Binz
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Katrien De Bock
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Carmen Sandi
- Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Olivier Braissant
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| |
Collapse
|
18
|
Chen X, Chen T, Dong C, Chen H, Dong X, Yang L, Hu L, Wang H, Wu B, Yao Y, Xiong Y, Xiong M, Lin Y, Zhou W. Deletion of CHD8 in cerebellar granule neuron progenitors leads to severe cerebellar hypoplasia, ataxia and psychiatric behavior in mice. J Genet Genomics 2022; 49:859-869. [DOI: 10.1016/j.jgg.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
|
19
|
Tellios V, Maksoud MJE, Lu WY. The expression and function of glutamate aspartate transporters in Bergmann glia are decreased in neuronal nitric oxide synthase-knockout mice during postnatal development. Glia 2022; 70:858-874. [PMID: 35006609 PMCID: PMC9304205 DOI: 10.1002/glia.24143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/02/2022]
Abstract
Bergmann glia (BG) predominantly use glutamate/aspartate transporters (GLAST) for glutamate uptake in the cerebellum. Recently, nitric oxide (NO) treatment has been shown to upregulate GLAST function and increase glutamate uptake in vitro. We previously discovered that neuronal nitric oxide synthase knockout (nNOS−/−) mice displayed structural and functional neuronal abnormalities in the cerebellum during development, in addition to previously reported motor deficits. Although these developmental deficits have been identified in the nNOS−/− cerebellum, it is unknown whether BG morphology and GLAST expression are also affected in the absence of nNOS in vivo. This study is the first to characterize BG morphology and GLAST expression during development in nNOS−/− mice using immunohistochemistry and western blotting across postnatal development. Results showed that BG in nNOS−/− mice exhibited abnormal morphology and decreased GLAST expression compared with wildtype (WT) mice across postnatal development. Treating ex vivo WT cerebellar slices with the NOS inhibitor L‐NAME decreased GLAST expression while treating nNOS−/− slices with the slow‐release NO‐donor NOC‐18 increased GLAST expression when compared with their respective controls. In addition, treating primary BG isolated from WT mice with the selective nNOS inhibitor 7N decreased the membrane expression of GLAST and influx of Ca2+/Na+, while treating nNOS−/− BG with SNAP increased the membrane expression of GLAST and Ca2+/Na+ influx. Moreover, the effects of SNAP on GLAST expression and Ca2+/Na+ influx in nNOS−/− BG were significantly reduced by a PKG inhibitor. Together, these results reveal a novel role for nNOS/NO signaling in BG development, regulated by a PKG‐mediated mechanism.
Collapse
Affiliation(s)
- Vasiliki Tellios
- Graduate Program of Neuroscience, The University of Western Ontario, London, ON, Canada.,Molecular Medicine Group, Robarts Research Institute, London, ON, Canada
| | - Matthew J E Maksoud
- Graduate Program of Neuroscience, The University of Western Ontario, London, ON, Canada.,Molecular Medicine Group, Robarts Research Institute, London, ON, Canada
| | - Wei-Yang Lu
- Graduate Program of Neuroscience, The University of Western Ontario, London, ON, Canada.,Molecular Medicine Group, Robarts Research Institute, London, ON, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
20
|
Structure, Function, and Genetics of the Cerebellum in Autism. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2022; 7:e220008. [PMID: 36425354 PMCID: PMC9683352 DOI: 10.20900/jpbs.20220008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autism spectrum disorders are common neurodevelopmental disorders that are defined by core behavioral symptoms but have diverse genetic and environmental risk factors. Despite its etiological heterogeneity, several unifying theories of autism have been proposed, including a central role for cerebellar dysfunction. The cerebellum follows a protracted course of development that culminates in an exquisitely crafted brain structure containing over half of the neurons in the entire brain densely packed into a highly organized structure. Through its complex network of connections with cortical and subcortical brain regions, the cerebellum acts as a sensorimotor regulator and affects changes in executive and limbic processing. In this review, we summarize the structural, functional, and genetic contributions of the cerebellum to autism.
Collapse
|
21
|
Buzoianu-Anguiano V, Torres-Llacsa M, Doncel-Pérez E. Role of Aldynoglia Cells in Neuroinflammatory and Neuroimmune Responses after Spinal Cord Injury. Cells 2021; 10:2783. [PMID: 34685763 PMCID: PMC8534338 DOI: 10.3390/cells10102783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Aldynoglia are growth-promoting cells with a morphology similar to radial glia and share properties and markers with astrocytes and Schwann cells. They are distributed in several locations throughout the adult central nervous system, where the cells of the aldynoglia interact and respond to the signals of the immune cells. After spinal cord injury (SCI), the functions of resident aldynoglia, identified as ependymocytes, tanycytes, and ependymal stem cells (EpSCs) of the spinal cord are crucial for the regeneration of spinal neural tissue. These glial cells facilitate axonal regrowth and remyelination of injured axons. Here, we review the influence of M1 or M2 macrophage/microglia subpopulations on the fate of EpSCs during neuroinflammation and immune responses in the acute, subacute, and chronic phases after SCI.
Collapse
Affiliation(s)
| | - Mabel Torres-Llacsa
- Servicio de Radiología, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain;
| | - Ernesto Doncel-Pérez
- Grupo de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain;
| |
Collapse
|
22
|
Yin S, Liao Q, Wang Y, Shi Q, Xia P, Yi M, Huang J. Ccdc134 deficiency impairs cerebellar development and motor coordination. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12763. [PMID: 34382738 DOI: 10.1111/gbb.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
Coiled-coil domain containing 134 (CCDC134) has been shown to serve as an immune cytokine to exert antitumor effects and to act as a novel regulator of hADA2a to affect PCAF acetyltransferase activity. While Ccdc134 loss causes abnormal brain development in mice, the significance of CCDC134 in neuronal development in vivo is controversial. Here, we report that CCDC134 is highly expressed in Purkinje cells (PCs) at all developmental stages and regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Ccdc134 in mouse neural stem cells (NSCs) caused defects in cerebellar morphogenesis, including a decrease in the number of PCs and impairment of PC dendritic growth, as well as abnormal granule cell development. Moreover, loss of Ccdc134 caused progressive motor dysfunction with deficits in motor coordination and motor learning. Finally, Ccdc134 deficiency inhibited Wnt signaling but increased Ataxin1 levels. Our findings provide evidence that CCDC134 plays an important role in cerebellar development, possibly through regulating Wnt signaling and Ataxin1 expression levels, and in controlling cerebellar function for motor coordination and motor learning, ultimately making it a potential contributor to cerebellar pathogenesis.
Collapse
Affiliation(s)
- Sha Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Yida Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianwen Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Hor CHH, Lo JCW, Cham ALS, Leong WY, Goh ELK. Multifaceted Functions of Rab23 on Primary Cilium-Mediated and Hedgehog Signaling-Mediated Cerebellar Granule Cell Proliferation. J Neurosci 2021; 41:6850-6863. [PMID: 34210780 PMCID: PMC8360682 DOI: 10.1523/jneurosci.3005-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sonic hedgehog (Shh) signaling from the primary cilium drives cerebellar granule cell precursor (GCP) proliferation. Mutations of hedgehog (Hh) pathway repressors commonly cause medulloblastoma, the most prevalent and malignant childhood brain tumor that arises from aberrant GCP proliferation. We demonstrate that Nestin Cre-driven conditional knock-out (CKO) of a Shh pathway repressor-Rab23 in the mouse brain of both genders caused mis-patterning of cerebellar folia and elevated GCP proliferation during early development, but with no prevalent occurrence of medulloblastoma at adult stage. Strikingly, Rab23-depleted GCPs exhibited upregulated basal level of Shh pathway activities despite showing an abnormal ciliogenesis of primary cilia. In line with the compromised ciliation, Rab23-depleted GCPs were desensitized against Hh pathway activity stimulations by Shh ligand and Smoothened (Smo) agonist-SAG, and exhibited attenuated stimulation of Smo-localization on the primary cilium in response to SAG. These results implicate multidimensional actions of Rab23 on Hh signaling cascade. Rab23 represses the basal level of Shh signaling, while facilitating primary cilium-dependent extrinsic Shh signaling activation. Collectively, our findings unravel instrumental roles of Rab23 in GCP proliferation and ciliogenesis. Furthermore, Rab23's potentiation of Shh signaling pathway through the primary cilium and Smo suggests a potential new therapeutic strategy for Smo/primary cilium-driven medulloblastoma.SIGNIFICANCE STATEMENT Primary cilium and Sonic hedgehog (Shh) signaling are known to regulate granule cell precursor (GCP) proliferation. Aberrant overactivation of Shh signaling pathway ectopically increases GCP proliferation and causes malignant childhood tumor called medulloblastoma. However, the genetic and molecular regulatory cascade of GCP tumorigenesis remains incompletely understood. Our finding uncovers Rab23 as a novel regulator of hedgehog (Hh) signaling pathway activity and cell proliferation in GCP. Intriguingly, we demonstrated that Rab23 confers dual functions in regulating Shh signaling; it potentiates primary cilium and Shh/Smoothened (Smo)-dependent signaling activation, while antagonizes basal level Hh activity. Our data present a previously underappreciated aspect of Rab23 in mediating extrinsic Shh signaling upstream of Smo. This study sheds new light on the mechanistic insights underpinning Shh signaling-mediated GCP proliferation and tumorigenesis.
Collapse
Affiliation(s)
- C H H Hor
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
| | - J C W Lo
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - A L S Cham
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - W Y Leong
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
| | - E L K Goh
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
- Department of Research, National Neuroscience Institute, Singapore, 308433
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232
- KK Research Center, KK Women's and Children's Hospital, Singapore, 229899
| |
Collapse
|
24
|
Chen S, Zhang K, Zhang B, Jiang M, Zhang X, Guo Y, Yu Y, Qin T, Li H, Chen Q, Cai Z, Luo S, Huang Y, Hu J, Mo W. Temporarily Epigenetic Repression in Bergmann Glia Regulates the Migration of Granule Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003164. [PMID: 34026436 PMCID: PMC8132163 DOI: 10.1002/advs.202003164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Forming tight interaction with both Purkinje and granule cells (GCs), Bergmann glia (BG) are essential for cerebellar morphogenesis and neuronal homeostasis. However, how BG act in this process is unclear without comprehensive transcriptome landscape of BG. Here, high temporal-resolution investigation of transcriptomes with FACS-sorted BG revealed the dynamic expression of genes within given functions and pathways enabled BG to assist neural migration and construct neuron-glia network. It is found that the peak time of GCs migration (P7-10) strikingly coincides with the downregulation of extracellular matrix (ECM) related genes, and the disruption of which by Setdb1 ablation at P7-10 in BG leads to significant migration defect of GCs emphasizing the criticality of Nfix-Setdb1 mediated H3K9me3 repressive complex for the precise regulation of GCs migration in vivo. Thus, BG's transcriptomic landscapes offer an insight into the mechanism by which BG are in depth integrated in cerebellar neural network.
Collapse
Affiliation(s)
- Shaoxuan Chen
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
- The Department of NeuroscienceSchool of MedicineXiamen UniversityXiamen361102China
| | - Kunkun Zhang
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
- The Department of NeuroscienceSchool of MedicineXiamen UniversityXiamen361102China
| | - Boxin Zhang
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Mengyun Jiang
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Xue Zhang
- Xiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen361102China
| | - Yi Guo
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Yingying Yu
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
- National Institute for Data Science in Health and MedicineXiamen UniversityXiamen361102China
| | - Tianyu Qin
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
- National Institute for Data Science in Health and MedicineXiamen UniversityXiamen361102China
| | - Hongda Li
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Qiang Chen
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Zhiyu Cai
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Site Luo
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Yi Huang
- Department of Clinical LaboratoryFujian Provincial HospitalFuzhou350001China
- Provincial Clinical CollegeFujian Medical UniversityFuzhou350001China
| | - Jin Hu
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Wei Mo
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
- The Department of NeuroscienceSchool of MedicineXiamen UniversityXiamen361102China
- National Institute for Data Science in Health and MedicineXiamen UniversityXiamen361102China
| |
Collapse
|
25
|
Atiba FA, Fatokun AA, Imosemi IO, Malomo AO. Kola nut from Cola nitida vent. Schott administered to pregnant rats induces histological alterations in pups' cerebellum. PLoS One 2021; 16:e0247573. [PMID: 33684143 PMCID: PMC7939374 DOI: 10.1371/journal.pone.0247573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 02/09/2021] [Indexed: 11/20/2022] Open
Abstract
Kola nut (from Cola nitida) is popular in Nigeria and West Africa and is commonly consumed by pregnant women during the first trimester to alleviate morning sickness and dizziness. There is, however, a dearth of information on its effects on the developing brain. This study, therefore, investigated the potential effects of kola nut on the structure of the developing neonatal and juvenile cerebellum in the rat. Pregnant Wistar rats were administered water (as control) or crude (aqueous) kola nut extract at 400, 600, and 800 mg/kg body weight orally, from pregnancy to day 21 after birth. On postnatal days 1, 7, 14, 21 and 28, the pups were weighed, anaesthetised, sacrificed and perfused with neutral buffered formalin. Their brains were dissected out, weighed and the cerebellum preserved in 10% buffered formalin. Paraffin sections of the cerebellum were stained with haematoxylin and eosin for cerebellar cytoarchitecture, cresyl violet stain for Purkinje cell count, Glial Fibrillary Acidic Protein (GFAP) immunohistochemistry (IHC) for estimation of gliosis, and B-cell lymphoma 2 (Bcl-2) IHC for apoptosis induction. The kola nut-treated rats exhibited initial reduction in body and brain weights, persistent external granular layer, increased molecular layer thickness, and loss of Bergmann glia. Their Purkinje cells showed reduction in density, loss of dendrites and multiple layering, and their white matter showed neurodegeneration (spongiosis) and GFAP and Bcl-2 over-expression, with evidence of reactive astrogliosis. This study, therefore, demonstrates that kola nut, administered repeatedly at certain doses to pregnant dams, could disrupt normal postnatal cerebellar development in their pups. The findings suggest potential deleterious effects of excessive kola nut consumption on human brain and thus warrant further studies to understand the wider implications for human brain development.
Collapse
Affiliation(s)
- Foluso A. Atiba
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Amos A. Fatokun
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Innocent O. Imosemi
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adefolarin O. Malomo
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
26
|
Ross-Munro E, Kwa F, Kreiner J, Khore M, Miller SL, Tolcos M, Fleiss B, Walker DW. Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury. Front Neurol 2020; 11:568814. [PMID: 33193008 PMCID: PMC7642484 DOI: 10.3389/fneur.2020.568814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Midkine (MK) is a small secreted heparin-binding protein highly expressed during embryonic/fetal development which, through interactions with multiple cell surface receptors promotes growth through effects on cell proliferation, migration, and differentiation. MK is upregulated in the adult central nervous system (CNS) after multiple types of experimental injury and has neuroprotective and neuroregenerative properties. The potential for MK as a therapy for developmental brain injury is largely unknown. This review discusses what is known of MK's expression and actions in the developing brain, areas for future research, and the potential for using MK as a therapeutic agent to ameliorate the effects of brain damage caused by insults such as birth-related hypoxia and inflammation.
Collapse
Affiliation(s)
- Emily Ross-Munro
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Faith Kwa
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jenny Kreiner
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Madhavi Khore
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Mary Tolcos
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Bobbi Fleiss
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,Neurodiderot, Inserm U1141, Universita de Paris, Paris, France
| | - David W Walker
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| |
Collapse
|
27
|
The Joubert Syndrome Gene arl13b is Critical for Early Cerebellar Development in Zebrafish. Neurosci Bull 2020; 36:1023-1034. [PMID: 32812127 PMCID: PMC7475164 DOI: 10.1007/s12264-020-00554-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Joubert syndrome is characterized by unique malformation of the cerebellar vermis. More than thirty Joubert syndrome genes have been identified, including ARL13B. However, its role in cerebellar development remains unexplored. We found that knockdown or knockout of arl13b impaired balance and locomotion in zebrafish larvae. Granule cells were selectively reduced in the corpus cerebelli, a structure homologous to the mammalian vermis. Purkinje cell progenitors were also selectively disturbed dorsomedially. The expression of atoh1 and ptf1, proneural genes of granule and Purkinje cells, respectively, were selectively down-regulated along the dorsal midline of the cerebellum. Moreover, wnt1, which is transiently expressed early in cerebellar development, was selectively reduced. Intriguingly, activating Wnt signaling partially rescued the granule cell defects in arl13b mutants. These findings suggested that Arl13b is necessary for the early development of cerebellar granule and Purkinje cells. The arl13b-deficient zebrafish can serve as a model organism for studying Joubert syndrome.
Collapse
|
28
|
Xiao R, Zhong H, Li X, Ma Y, Zhang R, Wang L, Zang Z, Fan X. Abnormal Cerebellar Development Is Involved in Dystonia-Like Behaviors and Motor Dysfunction of Autistic BTBR Mice. Front Cell Dev Biol 2020; 8:231. [PMID: 32318573 PMCID: PMC7154340 DOI: 10.3389/fcell.2020.00231] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022] Open
Abstract
Motor control and learning impairments are common complications in individuals with autism spectrum disorder (ASD). Abnormal cerebellar development during critical phases may disrupt these motor functions and lead to autistic motor dysfunction. However, the underlying mechanisms behind these impairments are not clear. Here, we utilized BTBR T+ Itprtf/J (BTBR) mice, an animal model of autism, to investigate the involvement of abnormal cerebellar development in motor performance. We found BTBR mice exhibited severe dystonia-like behavior and motor coordination or motor learning impairments. The onset of these abnormal movements coincided with the increased proliferation of granule neurons and enhanced foliation, and Purkinje cells displayed morphological hypotrophy with increased dendritic spine formation but suppressed maturation. The migration of granule neurons seemed unaffected. Transcriptional analyses confirmed the differential expression of genes involved in abnormal neurogenesis and revealed TRPC as a critical regulator in proliferation and synaptic formation. Taken together, these findings indicate that abnormal cerebellar development is closely related to dystonia-like behavior and motor dysfunction of BTBR mice and that TRPC may be a novel risk gene for ASD that may participate in the pathological process of autistic movement disorders.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Hongyu Zhong
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Yuanyuan Ma
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China.,Department of Basic Nursing, School of Nursing, Army Medical University, Chongqing, China
| | - Ruiyu Zhang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
29
|
Gong Y, He X, Li Q, He J, Bian B, Li Y, Ge L, Zeng Y, Xu H, Yin ZQ. SCF/SCFR signaling plays an important role in the early morphogenesis and neurogenesis of human embryonic neural retina. Development 2019; 146:dev.174409. [PMID: 31548215 DOI: 10.1242/dev.174409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
The stem cell factor receptor (SCFR) has been demonstrated to be expressed in the neural retina of mice, rat and human for decades. Previous reports indicated that the SCFR correlates with glia differentiation of late retinal progenitor cells (RPCs), retinal vasculogenesis and homeostasis of the blood-retinal barrier. However, the role of SCF/SCFR signaling in the growth and development of the neural retina (NR), especially in the early embryonic stage, remains poorly understood. Here, we show that SCF/SCFR signaling orchestrates invagination of the human embryonic stem cell (hESC)-derived NR via regulation of cell cycle progression, cytoskeleton dynamic and apical constriction of RPCs in the ciliary marginal zone (CMZ). Furthermore, activation of SCF/SCFR signaling promotes neurogenesis in the central-most NR via acceleration of the migration of immature ganglion cells and repressing apoptosis. Our study reveals an unreported role for SCF/SCFR signaling in controlling ciliary marginal cellular behaviors during early morphogenesis and neurogenesis of the human embryonic NR, providing a new potential therapeutic target for human congenital eye diseases such as anophthalmia, microphthalmia and congenital high myopia.
Collapse
Affiliation(s)
- Yu Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Xiangyu He
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Qiyou Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Juncai He
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Baishijiao Bian
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Yijian Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Linlin Ge
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Yuxiao Zeng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Haiwei Xu
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Zheng Qin Yin
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| |
Collapse
|
30
|
Fjelldal MF, Hadera MG, Kongstorp M, Austdal LPE, Šulović A, Andersen JM, Paulsen RE. Opioid receptor-mediated changes in the NMDA receptor in developing rat and chicken. Int J Dev Neurosci 2019; 78:19-27. [PMID: 31351113 DOI: 10.1016/j.ijdevneu.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022] Open
Abstract
The use of opioids during pregnancy has been associated with neurodevelopmental toxicity in exposed children, leading to cognitive and behavioural deficits later in life. The N-methyl-D-aspartate receptor (NMDAR) subunit GluN2B plays critical roles in cerebellar development, and methadone has been shown to possess NMDAR antagonist effect. Consequently, we wanted to explore if prenatal opioid exposure affected GluN2B subunit expression and NMDAR function in rat and chicken cerebellum. Pregnant rats were exposed to methadone (10 mg/kg/day) or buprenorphine (1 mg/kg/day) for the whole period of gestation, using an osmotic minipump. To further examine potential effects of prenatal opioid exposure in a limited time window, chicken embryos were exposed to a 20 mg/kg dose of methadone or morphine on embryonic days 13 and 14. Western blot analysis of cerebella isolated from 14 days old rat pups exposed to buprenorphine showed significantly lower level of the GluN2B subunit, while the opioid exposed chicken embryo cerebellar GluN2B expression remained unaffected at embryonic day 17. However, we observed increased NMDA/glycine-induced calcium influx in cerebellar granule neurone cultures from opioid exposed chicken embryos. We conclude that prenatal opioid exposure leads to opioid receptor-dependent reduction in the postnatal expression of GluN2B in rat cerebella, and increase in NMDA-induced calcium influx in chicken embryo cerebella.
Collapse
Affiliation(s)
- Marthe Fredheim Fjelldal
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Mussie Ghezu Hadera
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Mette Kongstorp
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Norway
| | - Lars Peter Engeset Austdal
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Ana Šulović
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.,Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| |
Collapse
|
31
|
Insolia V, Priori EC, Gasperini C, Coppa F, Cocchia M, Iervasi E, Ferrari B, Besio R, Maruelli S, Bernocchi G, Forlino A, Bottone MG. Prolidase enzyme is required for extracellular matrix integrity and impacts on postnatal cerebellar cortex development. J Comp Neurol 2019; 528:61-80. [PMID: 31246278 DOI: 10.1002/cne.24735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
The extracellular matrix is essential for brain development, lamination, and synaptogenesis. In particular, the basement membrane below the pial meninx (pBM) is required for correct cortical development. The last step in the catabolism of the most abundant protein in pBM, collagen Type IV, requires prolidase, an exopeptidase cleaving the imidodipeptides containing pro or hyp at the C-terminal end. Mutations impairing prolidase activity lead in humans to the rare disease prolidase deficiency characterized by severe skin ulcers and mental impairment. Thus, the dark-like (dal) mouse, in which the prolidase is knocked-out, was used to investigate whether the deficiency of prolidase affects the neuronal maturation during development of a brain cortex area. Focusing on the cerebellar cortex, thinner collagen fibers and disorganized pBM were found. Aberrant cortical granule cell proliferation and migration occurred, associated to defects in brain lamination, and in particular in maturation of Purkinje neurons and formation of synaptic contacts. This study deeply elucidates a link between prolidase activity and neuronal maturation shedding new light on the molecular basis of functional aspects in the prolidase deficiency.
Collapse
Affiliation(s)
- Violetta Insolia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Erica C Priori
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Caterina Gasperini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federica Coppa
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Cocchia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Erika Iervasi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Beatrice Ferrari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Silvia Maruelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | | | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Maria G Bottone
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
32
|
Di Pietro C, La Sala G, Matteoni R, Marazziti D, Tocchini-Valentini GP. Genetic ablation of Gpr37l1 delays tumor occurrence in Ptch1 +/- mouse models of medulloblastoma. Exp Neurol 2018; 312:33-42. [PMID: 30452905 DOI: 10.1016/j.expneurol.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
The G-protein coupled receptor 37-like 1 (Gpr37l1) is specifically expressed in most astrocytic glial cells, including cerebellar Bergmann astrocytes and interacts with patched 1 (Ptch1), a co-receptor of the sonic hedgehog (Shh)-smoothened (Smo) signaling complex. Gpr37l1 null mutant mice exhibit precocious post-natal cerebellar development, with altered Shh-Smo mitogenic cascade and premature down-regulation of granule cell precursor (GCP) proliferation. Gpr37l1 expression is downregulated in medulloblastoma (MB) and upregulated in glioma and glioblastoma tumors. Shh-associated MBs originate postnatally, from dysregulated hyperproliferation of GCPs in developing cerebellum's external granular layer (EGL), as shown in heterozygous Ptch1+/- knock-out mouse strains that model human MB occurrence and progression. This study investigates cerebellar MB phenotypes in newly produced Gpr37l1, Ptch1 double mutant mice. Natural history analysis shows that Gpr37l1 genetic ablation, in Ptch1+/- model animals, results in marked deferment of post-natal tumor occurrence and decreased incidence of more aggressive tumor types. It is also associated with the delayed and diminished presence of more severe types of hyperplastic lesions in Ptch1+/- mice. Consistently, during early post-natal development Gpr37l1-/-;Ptch1+/- pups exhibit reduction in cerebellar GCP proliferation and EGL thickness and a precocious, sustained expression of wingless-type MMTV integration site member 3 (Wnt3), a specific inhibitor of Shh-induced neuronal mitogenesis, in comparison with Ptch1+/- heterozygous single mutants. These findings highlight the specific involvement of Gpr37l1 in modulating postnatal cerebellar Shh-Ptch1-Smo mitogenic signaling in both normal and pathological conditions. The novel Gpr37l1-/-;Ptch1+/- mouse models may thus be instrumental in the detailed characterization of the initial phases of Shh-associated MB insurgence and development.
Collapse
Affiliation(s)
- Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| | - Rafaele Matteoni
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy.
| | - Glauco P Tocchini-Valentini
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Rome, Italy
| |
Collapse
|
33
|
Hydroxyurea Exposure and Development of the Cerebellar External Granular Layer: Effects on Granule Cell Precursors, Bergmann Glial and Microglial Cells. Neurotox Res 2018; 35:387-400. [PMID: 30276718 DOI: 10.1007/s12640-018-9964-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022]
Abstract
The current paper presents a histological analysis of the cell death in the cerebellar external granular layer (EGL) following the treatment with a single dose (2 mg/g) of hydroxyurea (HU). The rats were examined at postnatal days (P) 5, 10, and 15, and sacrificed at appropriate times ranging from 6 to 48 h after treatment administration. Studies were done in each cortical lobe (anterior, central, posterior, and inferior). The quantification of several parameters, such as density of 5-bromo-2'-deoxyuridine, TUNEL, vimentin, and tomato lectin-stained cells, revealed that HU compromises the viability of EGL cells. Our results indicate that P10 is a time of high vulnerability to injury. We also show here that the anterior and central lobes are the cortical regions most susceptible to the action of the HU. Additionally, our data also indicate that from 6 to 24 h after HU-exposure is a time-window of high sensibility to this agent. On the other hand, our ultrastructural analysis confirmed that HU administration produces the activation of apoptotic cellular events in the EGL, resulting in a substantial number of dying cells. Different stages of apoptosis can be observed in all cortical lobes at all investigated postnatal ages and survival times. Moreover, we observed that dying neuroblasts were covered by laminar processes of Bergmann glia, and that these unipolar astrocytes presented cytological features of phagocytes engulfing apoptotic bodies and cell debris. The electron microscopy study also revealed the participation of ameboid microglial cells in the phagocytosis of apoptotic cells in the regions of the EGL with extensive cell death.
Collapse
|
34
|
Yu Y, Wang Y, Wang Y, Dong J, Min H, Chen J. Maternal marginal iodine deficiency delays cerebellar Bergmann glial cell development in rat offspring: Involvement of Notch signaling pathway. Neurotoxicology 2018; 68:159-166. [PMID: 30121210 DOI: 10.1016/j.neuro.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
During early pregnancy, iodine deficiency (ID) is linked to adverse effects on child motor and psychomotor function. Maternal marginal ID has become a common public health problem. It is unclear whether marginal ID influences the development of the cerebellum or its underlying mechanisms. Thus, the purpose of this study was to determine the effects of marginal ID on the development of cerebellar Bergmann glial cells (BGs) and investigate the activation of the Notch signaling pathway, which is crucial for the development and morphology of BGs. We treated Wistar rats with an ID diet (iodine content 60 ± 1.5 ng/g) supplemented with deionized water containing different concentrations of potassium iodide (KI) (183, 117, and 0 μg/L for the control, marginal ID, and severe ID groups, respectively) during pregnancy and lactation. We explored the morphology of the BGs by Golgi-Cox staining and immunofluorescence and investigated the Notch signaling pathway using western blot. Our results showed that the marginal ID and severe ID groups had decreased cerebellar BG fiber lengths (P < 0.05 and 0.01, respectively) and numbers (P < 0.01 for both) on postnatal day (PN) 7, PN14, and PN21 compared to the control group. Moreover, the data showed that severe ID significantly reduced Dll1, Notch1, RBP-Jκ, and BLBP protein levels at all three time points. Marginal ID slightly reduced the expression of Notch1 on PN7 (P < 0.05) and PN21 (P < 0.01), RBP-Jκ on PN14 (P < 0.01) and PN21 (P < 0.05), and BLBP on PN7 (P < 0.05). There was no significant difference in Dll1 protein levels between the marginal ID and control groups at any time point. Our study suggests that marginal ID leads to mild damage to BG morphogenesis in the cerebellum. The abnormal regulation of the Notch signaling pathway may be involved in the damage to BGs.
Collapse
Affiliation(s)
- Ye Yu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Hui Min
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
35
|
Schilling K. Moving into shape: cell migration during the development and histogenesis of the cerebellum. Histochem Cell Biol 2018; 150:13-36. [DOI: 10.1007/s00418-018-1677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
|
36
|
Beckinghausen J, Sillitoe RV. Insights into cerebellar development and connectivity. Neurosci Lett 2018; 688:2-13. [PMID: 29746896 DOI: 10.1016/j.neulet.2018.05.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
The cerebellum has a well-established role in controlling motor functions such coordination, balance, posture, and skilled learning. There is mounting evidence that it might also play a critical role in non-motor functions such as cognition and emotion. It is therefore not surprising that cerebellar defects are associated with a wide array of diseases including ataxia, dystonia, tremor, schizophrenia, dyslexia, and autism spectrum disorder. What is intriguing is that a seemingly uniform circuit that is often described as being "simple" should carry out all of these behaviors. Analyses of how cerebellar circuits develop have revealed that such descriptions massively underestimate the complexity of the cerebellum. The cerebellum is in fact highly patterned and organized around a series of parasagittal stripes and transverse zones. This topographic architecture partitions all cerebellar circuits into functional modules that are thought to enhance processing power during cerebellar dependent behaviors. What are arguably the most remarkable features of cerebellar topography are the developmental processes that produce them. This review is concerned with the genetic and cellular mechanisms that orchestrate cerebellar patterning. We place a major focus on how Purkinje cells control multiple aspects of cerebellar circuit assembly. Using this model, we discuss evidence for how "zebra-like" patterns in Purkinje cells sculpt the cerebellum, how specific genetic cues mediate the process, and how activity refines the patterns into an adult map that is capable of executing various functions. We also discuss how defective Purkinje cell patterning might impact the pathogenesis of neurological conditions.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
GFAP-Positive Progenitor Cell Production is Concentrated in Specific Encephalic Regions in Young Adult Mice. Neurosci Bull 2018; 34:769-778. [PMID: 29663175 DOI: 10.1007/s12264-018-0228-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
Previous genetic fate-mapping studies have indicated that embryonic glial fibrillary acidic protein-positive (GFAP+) cells are multifunctional progenitor/neural stem cells that can produce astrocytes as well as neurons and oligodendrocytes throughout the adult mouse central nervous system (CNS). However, emerging evidence from recent studies indicates that GFAP+ cells adopt different cell fates and generate different cell types in different regions. Moreover, the fate of GFAP+ cells in the young adult mouse CNS is not well understood. In the present study, hGFAP-Cre/R26R transgenic mice were used to investigate the lineage of embryonic GFAP+ cells in the young adult mouse CNS. At postnatal day 21, we found that GFAP+ cells mainly generated NeuN+ neurons in the cerebral cortex (both ventral and dorsal), hippocampus, and cerebellum. Strangely, these cells were negative for the Purkinje cell marker calbindin in the cerebellum and the neuronal marker NeuN in the thalamus. Thus, contrary to previous studies, our genetic fate-mapping revealed that the cell fate of embryonic GFAP+ cells at the young adult stage is significantly different from that at the adult stage.
Collapse
|
38
|
Driver AM, Shumrick C, Stottmann RW. Ttc21b Is Required in Bergmann Glia for Proper Granule Cell Radial Migration. J Dev Biol 2017; 5:E18. [PMID: 29615573 PMCID: PMC5831799 DOI: 10.3390/jdb5040018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022] Open
Abstract
Proper cerebellar development is dependent on tightly regulated proliferation, migration, and differentiation events. Disruptions in any of these leads to a range of cerebellar phenotypes from ataxia to childhood tumors. Animal models have shown that proper regulation of sonic hedgehog (Shh) signaling is crucial for normal cerebellar architecture, and increased signaling leads to cerebellar tumor formation. Primary cilia are known to be required for the proper regulation of multiple developmental signaling pathways, including Shh. Tetratricopeptide Repeat Domain 21B (Ttc21b) is required for proper primary cilia form and function, and is primarily thought to restrict Shh signaling. Here we investigated a role for Ttc21b in cerebellar development. Surprisingly, Ttc21b ablation in Bergmann glia resulted in the accumulation of ectopic granule cells in the lower/posterior lobes of the cerebellum and a reduction in Shh signaling. Ttc21b ablation in just Purkinje cells resulted in a similar phenotype seen in fewer cells, but across the entire extent of the cerebellum. These results suggest that Ttc21b expression is required for Bergmann glia structure and signaling in the developing cerebellum, and in some contexts, augments rather than attenuates Shh signaling.
Collapse
Affiliation(s)
- Ashley M Driver
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Christopher Shumrick
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Rolf W Stottmann
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
39
|
Sakamoto I, Ueyama T, Hayashibe M, Nakamura T, Mohri H, Kiyonari H, Shigyo M, Tohda C, Saito N. Roles of Cdc42 and Rac in Bergmann glia during cerebellar corticogenesis. Exp Neurol 2017; 302:57-67. [PMID: 29253508 DOI: 10.1016/j.expneurol.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/18/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
Bergmann glia (BG) are important in the inward type of radial migration of cerebellar granule neurons (CGNs). However, details regarding the functions of Cdc42 and Rac in BG for radial migration of CGN are unknown. To examine the roles of Cdc42 and Rac in BG during cerebellar corticogenesis, mice with a single deletion of Cdc42 or Rac1 and those with double deletions of Cdc42 and Rac1 under control of the glial fibrillary acidic protein (GFAP) promoter: GFAP-Cre;Cdc42flox/flox (Cdc42-KO), GFAP-Cre;Rac1flox/flox (Rac1-KO), and GFAP-Cre; Cdc42flox/flox;Rac1flox/flox (Cdc42/Rac1-DKO) mice, were generated. Both Cdc42-KO and Rac1-KO mice, but more obviously Cdc42-KO mice, had disturbed alignment of BG in the Purkinje cell layer (PCL). We found that Cdc42-KO, but not Rac1-KO, induced impaired radial migration of CGNs in the late phase of radial migration, leading to retention of CGNs in the lower half of the molecular layer (ML). Cdc42-KO, but not Rac1-KO, mice also showed aberrantly aligned Purkinje cells (PCs). These phenotypes were exacerbated in Cdc42/Rac1-DKO mice. Alignment of BG radial fibers in the ML and BG endfeet at the pial surface of the cerebellum evaluated by GFAP staining was disturbed and weak in Cdc42/Rac1-DKO mice, respectively. Our data indicate that Cdc42 and Rac, but predominantly Cdc42, in BG play important roles during the late phase of radial migration of CGNs. We also report here that Cdc42 is involved in gliophilic migration of CGNs, in contrast to Rac, which is more closely connected to regulating neurophilic migration.
Collapse
Affiliation(s)
- Isao Sakamoto
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| | - Masakazu Hayashibe
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takashi Nakamura
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Michiko Shigyo
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
40
|
Zhu Y, Shen J, Sun T, Jiang H, Xu K, Samuthrat T, Xie Y, Weng Y, Li Y, Xie Q, Zhan R. Loss of Shp2 within radial glia is associated with cerebral cortical dysplasia, glial defects of cerebellum and impaired sensory‑motor development in newborn mice. Mol Med Rep 2017; 17:3170-3177. [PMID: 29257282 DOI: 10.3892/mmr.2017.8236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
Radial glia are key neural progenitors involved in the development of the central nervous system. Tyrosine-protein phosphatase non‑receptor type 11 (Shp2) is a widely expressed intracellular enzyme with multiple cellular functions. Previous studies have revealed the critical role of Shp2 in a variety of neural cell types; however, further investigation into the function of Shp2 within radial glia is required. In the present study, a conditional knockout mouse was generated using a human glial fibrillary acidic protein (hGFAP)‑Cre driver, in which the Shp2 genes were deleted within radial glia. Loss of Shp2 within radial glia was associated with developmental retardation, postnatal lethality, reduced brain size and thinner cerebral cortices in newborn mice. Deletion of Shp2 also led to an increase in gliogenesis, a reduction in neural genesis and extracellular signal‑regulated kinase signaling within the cerebral cortex. Furthermore, glial cell defects within the cerebellum of Shp2 mutants were observed, with abnormal granular cell retention and glial cell alignment in the external granular layer. In addition, Shp2 mutants exhibited impaired sensory‑motor development. The results of the present study suggested that Shp2 may have an important role within radial glia, and regulate cerebral cortical and cerebellar development in newborn mice.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Tianfu Sun
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Hao Jiang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Kangli Xu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Thiti Samuthrat
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yicheng Xie
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research and Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuxiang Weng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yongda Li
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Qiangmin Xie
- Zhejiang Respiratory Drugs Research Laboratory of China Food and Drug Administration, Laboratory Animal Center of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
41
|
Federighi P, Ramat S, Rosini F, Pretegiani E, Federico A, Rufa A. Characteristic Eye Movements in Ataxia-Telangiectasia-Like Disorder: An Explanatory Hypothesis. Front Neurol 2017; 8:596. [PMID: 29170652 PMCID: PMC5684103 DOI: 10.3389/fneur.2017.00596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023] Open
Abstract
Objective To investigate cerebellar dysfunctions and quantitatively characterize specific oculomotor changes in ataxia-telangiectasia-like disorder (ATLD), a rare autosomal recessive disease caused by mutations in the MRE11 gene. Additionally, to further elucidate the pathophysiology of cerebellar damage in the ataxia-telangiectasia (AT) spectrum disorders. Methods Saccade dynamics, metrics, and visual fixation deficits were investigated in two Italian adult siblings with genetically confirmed ATLD. Visually guided saccades were compared with those of 40 healthy subjects. Steady fixation was tested in primary and eccentric positions. Quantitative characterization of saccade parameters, saccadic intrusions (SI), and nystagmus was performed. Results Patients showed abnormally hypermetric and fast horizontal saccades to the left and greater inaccuracy than healthy subjects in all saccadic eye movements. Eye movement abnormalities included slow eye movements that preceded the initial saccade. Horizontal and vertical spontaneous jerk nystagmus, gaze-evoked, and rebound nystagmus were evident. Fixation was interrupted by large square-wave jerk SI and macrosaccadic oscillations. Conclusion Slow eye movements accompanying saccades, SI, and cerebellar nystagmus are frequently seen in AT patients, additionally our ATLD patients showed the presence of fast and hypermetric saccades suggesting damage of granule cell-parallel fiber-Purkinje cell synapses of the cerebellar vermis. A dual pathogenetic mechanism involving neurodevelopmental and neurodegenerative changes is hypothesized to explain the peculiar phenotype of this disease.
Collapse
Affiliation(s)
- Pamela Federighi
- Eye Tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Stefano Ramat
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Francesca Rosini
- Eye Tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Elena Pretegiani
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Antonio Federico
- UOC Neurology and Neurometabolic Diseases, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Eye Tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
42
|
Xiao R, Yu D, Li X, Huang J, Jing S, Bao X, Yang T, Fan X. Propofol Exposure in Early Life Induced Developmental Impairments in the Mouse Cerebellum. Front Cell Neurosci 2017; 11:373. [PMID: 29249940 PMCID: PMC5715384 DOI: 10.3389/fncel.2017.00373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/09/2017] [Indexed: 01/07/2023] Open
Abstract
Propofol is a widely used anesthetic in the clinic while several studies have demonstrated that propofol exposure may cause neurotoxicity in the developing brain. However, the effects of early propofol exposure on cerebellar development are not well understood. Propofol (30 or 60 mg/kg) was administered to mice on postnatal day (P)7; Purkinje cell dendritogenesis and Bergmann glial cell development were evaluated on P8, and granule neuron migration was analyzed on P10. The results indicated that exposure to propofol on P7 resulted in a significant reduction in calbindin-labeled Purkinje cells and their dendrite length. Furthermore, propofol induced impairments in Bergmann glia development, which might be involved in the delay of granule neuron migration from the external granular layer (EGL) to the internal granular layer (IGL) during P8 to P10 at the 60 mg/kg dosage, but not at the 30 mg/kg dosage. Several reports have suggested that the Notch signaling pathway plays instructive roles in the morphogenesis of Bergmann glia. Here, it was revealed that propofol treatment decreased Jagged1 and Notch1 protein levels in the cerebellum on P8. Taken together, exposure to propofol during the neonatal period impairs Bergmann glia development and may therefore lead to cerebellum development defects. Our results may aid in the understanding of the neurotoxic effects of propofol when administrated to infants.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Developmental Neuropsychology, Third Military Medical University, Chongqing, China
| | - Dan Yu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Developmental Neuropsychology, Third Military Medical University, Chongqing, China
| | - Xin Li
- Department of Developmental Neuropsychology, Third Military Medical University, Chongqing, China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sheng Jing
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tiande Yang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Toutounchian JJ, McCarty JH. Selective expression of eGFP in mouse perivascular astrocytes by modification of the Mlc1 gene using T2A-based ribosome skipping. Genesis 2017; 55. [PMID: 28929580 DOI: 10.1002/dvg.23071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 11/12/2022]
Abstract
Perivascular astrocyte end feet closely juxtapose cerebral blood vessels to regulate important developmental and physiological processes including endothelial cell proliferation and sprouting as well as the formation of the blood-brain barrier (BBB). The mechanisms underlying these events remain largely unknown due to a lack of experimental models for identifying perivascular astrocytes and distinguishing these cell types from other astroglial populations. Megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1) is a transmembrane protein that is expressed in perivascular astrocyte end feet where it controls BBB development and homeostasis. On the basis of this knowledge, we used T2A peptide-skipping strategies to engineer a knock-in mouse model in which the endogenous Mlc1 gene drives expression of enhanced green fluorescent protein (eGFP), without impacting expression of Mlc1 protein. Analysis of fetal, neonatal and adult Mlc1-eGFP knock-in mice revealed a dynamic spatiotemporal expression pattern of eGFP in glial cells, including nestin-expressing neuroepithelial cells during development and glial fibrillary acidic protein (GFAP)-expressing perivascular astrocytes in the postnatal brain. EGFP was not expressed in neurons, microglia, oligodendroglia, or cerebral vascular cells. Analysis of angiogenesis in the neonatal retina also revealed enriched Mlc1-driven eGFP expression in perivascular astrocytes that contact sprouting blood vessels and regulate blood-retinal barrier permeability. A cortical injury model revealed that Mlc1-eGFP expression is progressively induced in reactive astrocytes that form a glial scar. Hence, Mlc1-eGFP knock-in mice are a new and powerful tool to identify perivascular astrocytes in the brain and retina and characterize how these cell types regulate cerebral blood vessel functions in health and disease.
Collapse
Affiliation(s)
- Jordan J Toutounchian
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Joseph H McCarty
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| |
Collapse
|
44
|
Galas L, Bénard M, Lebon A, Komuro Y, Schapman D, Vaudry H, Vaudry D, Komuro H. Postnatal Migration of Cerebellar Interneurons. Brain Sci 2017; 7:brainsci7060062. [PMID: 28587295 PMCID: PMC5483635 DOI: 10.3390/brainsci7060062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022] Open
Abstract
Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders.
Collapse
Affiliation(s)
- Ludovic Galas
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Magalie Bénard
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Alexis Lebon
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Yutaro Komuro
- Department of Neurophysiology, Donders Centre for Neuroscience, Radboud University, Nijmegen 6525 AJ, The Netherlands.
| | - Damien Schapman
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Hubert Vaudry
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - David Vaudry
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Hitoshi Komuro
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
45
|
Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct 2016; 222:2251-2270. [PMID: 27878595 DOI: 10.1007/s00429-016-1340-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.
Collapse
|
46
|
Klein H, Rabe GK, Karacay B, Bonthius DJ. T-Cells Underlie Some but Not All of the Cerebellar Pathology in a Neonatal Rat Model of Congenital Lymphocytic Choriomeningitis Virus Infection. J Neuropathol Exp Neurol 2016; 75:1031-1047. [PMID: 27667772 DOI: 10.1093/jnen/nlw079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) infection during pregnancy injures the human fetal brain. Neonatal rats inoculated with LCMV are an excellent model of congenital LCMV infection because they develop cerebellar injuries similar to those in humans. To evaluate the role of T-lymphocytes in LCMV-induced cerebellar pathology, congenitally athymic rats, deficient in T-lymphocytes were compared with euthymic rats. Peak viral titers and cellular targets of infection were similar, but viral clearance from astrocytes was impaired in the athymic rats. Cytokines and chemokines rose to higher levels and for a greater duration in the euthymic rats than in their athymic counterparts. The euthymic rats developed an intense lymphocytic infiltration, accompanied by destructive lesions of the cerebellum and a neuronal migration defect because of T-cell-mediated alteration of Bergmann glia. These pathologic changes were absent in the athymic rats but were restored by adoptive transfer of lymphocytes. Athymic rats were not free of pathologic effects, however, as the virus induced cerebellar hypoplasia. Thus, T-lymphocytes play key roles in LCMV clearance, cytokine/chemokine responses, and pathogenesis of destructive lesions and neuronal migration disturbances but not all pathology is T-lymphocyte-dependent. Cerebellar hypoplasia from LCMV occurs even in the absence of T-lymphocytes and is likely due to the viral infection itself.
Collapse
Affiliation(s)
- Hannah Klein
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| | - Glenda K Rabe
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| | - Bahri Karacay
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| | - Daniel J Bonthius
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| |
Collapse
|
47
|
Martí J, Molina V, Santa-Cruz MC, Hervás JP. Developmental Injury to the Cerebellar Cortex Following Hydroxyurea Treatment in Early Postnatal Life: An Immunohistochemical and Electron Microscopic Study. Neurotox Res 2016; 31:187-203. [PMID: 27601242 DOI: 10.1007/s12640-016-9666-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
Postnatal development of the cerebellar cortex was studied in rats administered with a single dose (2 mg/g) of the cytotoxic agent hydroxyurea (HU) on postnatal day (P) 9 and collected at appropriate times ranging from 6 h to 45 days. Quantification of several parameters such as the density of pyknotic, mitotic, BrdU-positive, and vimentin-stained cells revealed that HU compromises the survival of the external granular layer (EGL) cells. Moreover, vimentin immunocytochemistry revealed overexpression and thicker immunoreactive glial processes in HU-treated rats. On the other hand, we also show that HU leads to the activation of apoptotic cellular events, resulting in a substantial number of dying EGL cells, as revealed by TUNEL staining and at the electron microscope level. Additionally, we quantified several features of the cerebellar cortex of rats exposed to HU in early postnatal life and collected in adulthood. Data analysis indicated that the analyzed parameters were less pronounced in rats administered with this agent. Moreover, we observed several alterations in the cerebellar cortex cytoarchitecture of rats injected with HU. Anomalies included ectopic placement of Purkinje cells and abnormities in the dendritic arbor of these macroneurons. Ectopic granule cells were also found in the molecular layer. These findings provide a clue for investigating the mechanisms of HU-induced toxicity during the development of the central nervous system. Our results also suggest that it is essential to avoid underestimating the adverse effects of this hydroxylated analog of urea when administered during early postnatal life.
Collapse
Affiliation(s)
- Joaquín Martí
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Vanesa Molina
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - M C Santa-Cruz
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - José P Hervás
- Unidad de Citología e Histología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
48
|
Hu X, Yuan Y, Wang D, Su Z. Heterogeneous astrocytes: Active players in CNS. Brain Res Bull 2016; 125:1-18. [PMID: 27021168 DOI: 10.1016/j.brainresbull.2016.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes, the predominant cell type that are broadly distributed in the brain and spinal cord, play key roles in maintaining homeostasis of the central nerve system (CNS) in physiological and pathological conditions. Increasing evidence indicates that astrocytes are a complex colony with heterogeneity on morphology, gene expression, function and many other aspects depending on their spatio-temporal distribution and activation level. In pathological conditions, astrocytes differentially respond to all kinds of insults, including injury and disease, and participate in the neuropathological process. Based on current studies, we here give an overview of the roles of heterogeneous astrocytes in CNS, especially in neuropathologies, which focuses on biological and functional diversity of astrocytes. We propose that a precise understanding of the heterogeneous astrocytes is critical to unlocking the secrets about pathogenesis and treatment of the mazy CNS.
Collapse
Affiliation(s)
- Xin Hu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yimin Yuan
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Zhida Su
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China.
| |
Collapse
|
49
|
Dooves S, Bugiani M, Postma NL, Polder E, Land N, Horan ST, van Deijk ALF, van de Kreeke A, Jacobs G, Vuong C, Klooster J, Kamermans M, Wortel J, Loos M, Wisse LE, Scheper GC, Abbink TEM, Heine VM, van der Knaap MS. Astrocytes are central in the pathomechanisms of vanishing white matter. J Clin Invest 2016; 126:1512-24. [PMID: 26974157 DOI: 10.1172/jci83908] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/28/2016] [Indexed: 11/17/2022] Open
Abstract
Vanishing white matter (VWM) is a fatal leukodystrophy that is caused by mutations in genes encoding subunits of eukaryotic translation initiation factor 2B (eIF2B). Disease onset and severity are codetermined by genotype. White matter astrocytes and oligodendrocytes are almost exclusively affected; however, the mechanisms of VWM development remain unclear. Here, we used VWM mouse models, patients' tissue, and cell cultures to investigate whether astrocytes or oligodendrocytes are the primary affected cell type. We generated 2 mouse models with mutations (Eif2b5Arg191His/Arg191His and Eif2b4Arg484Trp/Arg484Trp) that cause severe VWM in humans and then crossed these strains to develop mice with various mutation combinations. Phenotypic severity was highly variable and dependent on genotype, reproducing the clinical spectrum of human VWM. In all mutant strains, impaired maturation of white matter astrocytes preceded onset and paralleled disease severity and progression. Bergmann glia and retinal Müller cells, nonforebrain astrocytes that have not been associated with VWM, were also affected, and involvement of these cells was confirmed in VWM patients. In coculture, VWM astrocytes secreted factors that inhibited oligodendrocyte maturation, whereas WT astrocytes allowed normal maturation of VWM oligodendrocytes. These studies demonstrate that astrocytes are central in VWM pathomechanisms and constitute potential therapeutic targets. Importantly, astrocytes should also be considered in the pathophysiology of other white matter disorders.
Collapse
|
50
|
Chrobak AA, Soltys Z. Bergmann Glia, Long-Term Depression, and Autism Spectrum Disorder. Mol Neurobiol 2016; 54:1156-1166. [PMID: 26809583 PMCID: PMC5310553 DOI: 10.1007/s12035-016-9719-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
Bergmann glia (BG), a specific type of radial astrocytes in the cerebellum, play a variety of vital functions in the development of this structure. However, the possible role of BG in the development of abnormalities observed in individuals with autism spectrum disorder (ASD) seems to be underestimated. One of the most consistent findings observed in ASD patients is loss of Purkinje cells (PCs). Such a defect may be caused by dysregulation of glutamate homeostasis, which is maintained mainly by BG. Moreover, these glial cells are involved in long-term depression (LTD), a form of plasticity which can additionally subserve neuroprotective functions. The aim of presented review is to summarize the current knowledge about interactions which occur between PC and BG, with special emphasis on those which are relevant to the survival and proper functioning of cerebellar neurons.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Gronostajowa St. 9, Cracow, 30-387, Poland. .,Faculty of Medicine, Jagiellonian University Medical College, Kopernika St. 21A, Cracow, 31-501, Poland.
| | - Zbigniew Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Gronostajowa St. 9, Cracow, 30-387, Poland
| |
Collapse
|