1
|
Wang S, Wang J, Niu Z, Zhang K, Yang T, Hou S, Lin N. Causal relationship between mitochondrial-associated proteins and cerebral aneurysms: a Mendelian randomization study. Front Neurol 2024; 15:1405086. [PMID: 39087007 PMCID: PMC11290338 DOI: 10.3389/fneur.2024.1405086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Background Cerebral aneurysm is a high-risk cerebrovascular disease with a poor prognosis, potentially linked to multiple factors. This study aims to explore the association between mitochondrial-associated proteins and the risk of cerebral aneurysms using Mendelian randomization (MR) methods. Methods We used GWAS summary statistics from the IEU Open GWAS project for mitochondrial-associated proteins and from the Finnish database for cerebral aneurysms (uIA, aSAH). The association between mitochondrial-associated exposures and cerebral aneurysms was evaluated using MR-Egger, weighted mode, IVW, simple mode and weighted median methods. Reverse MR assessed reverse causal relationship, while sensitivity analyses examined heterogeneity and pleiotropy in the instrumental variables. Significant causal relationship with cerebral aneurysms were confirmed using FDR correction. Results Through MR analysis, we identified six mitochondrial proteins associated with an increased risk of aSAH: AIF1 (OR: 1.394, 95% CI: 1.109-1.752, p = 0.0044), CCDC90B (OR: 1.318, 95% CI: 1.132-1.535, p = 0.0004), TIM14 (OR: 1.272, 95% CI: 1.041-1.553, p = 0.0186), NAGS (OR: 1.219, 95% CI: 1.008-1.475, p = 0.041), tRNA PusA (OR: 1.311, 95% CI: 1.096-1.569, p = 0.003), and MRM3 (OR: 1.097, 95% CI: 1.016-1.185, p = 0.0175). Among these, CCDC90B, tRNA PusA, and AIF1 demonstrated a significant causal relationship with an increased risk of aSAH (FDR q < 0.1). Three mitochondrial proteins were associated with an increased risk of uIA: CCDC90B (OR: 1.309, 95% CI: 1.05-1.632, p = 0.0165), tRNA PusA (OR: 1.306, 95% CI: 1.007-1.694, p = 0.0438), and MRM3 (OR: 1.13, 95% CI: 1.012-1.263, p = 0.0303). In the reverse MR study, only one mitochondrial protein, TIM14 (OR: 1.087, 95% CI: 1.004-1.177, p = 0.04), showed a causal relationship with aSAH. Sensitivity analysis did not reveal heterogeneity or pleiotropy. The results suggest that CCDC90B, tRNA PusA, and MRM3 may be common risk factors for cerebral aneurysms (ruptured and unruptured), while AIF1 and NAGS are specifically associated with an increased risk of aSAH, unrelated to uIA. TIM14 may interact with aSAH. Conclusion Our findings confirm a causal relationship between mitochondrial-associated proteins and cerebral aneurysms, offering new insights for future research into the pathogenesis and treatment of this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, China
| |
Collapse
|
2
|
Zhang F, Ye Z, Ran Y, Liu C, Zhang M, Xu X, Song F, Yao L. Ruthenium red alleviates post-resuscitation myocardial dysfunction by upregulating mitophagy through inhibition of USP33 in a cardiac arrest rat model. Eur J Pharmacol 2024; 974:176633. [PMID: 38703975 DOI: 10.1016/j.ejphar.2024.176633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Cardiac arrest (CA) remains a leading cause of death, with suboptimal survival rates despite efforts involving cardiopulmonary resuscitation and advanced life-support technology. Post-resuscitation myocardial dysfunction (PRMD) is an important determinant of patient outcomes. Myocardial ischemia/reperfusion injury underlies this dysfunction. Previous reports have shown that ruthenium red (RR) has a protective effect against cardiac ischemia-reperfusion injury; however, its precise mechanism of action in PRMD remains unclear. This study investigated the effects of RR on PRMD and analyzed its underlying mechanisms. Ventricular fibrillation was induced in rats, which were then subjected to cardiopulmonary resuscitation to establish an experimental CA model. At the onset of return of spontaneous circulation, RR (2.5 mg/kg) was administered intraperitoneally. Our study showed that RR improved myocardial function and reduced the production of oxidative stress markers such as malondialdehyde (MDA), glutathione peroxidase (GSSG), and reactive oxygen species (ROS) production. RR also helped maintain mitochondrial structure and increased ATP and GTP levels. Additionally, RR effectively attenuated myocardial apoptosis. Furthermore, we observed downregulation of proteins closely related to mitophagy, including ubiquitin-specific protease 33 (USP33) and P62, whereas LC3B (microtubule-associated protein light chain 3B) was upregulated. The upregulation of mitophagy may play a critical role in reducing myocardial injury. These results demonstrate that RR may attenuate PRMD by promoting mitophagy through the inhibition of USP33. These effects are likely mediated through diverse mechanisms, including antioxidant activity, apoptosis suppression, and preservation of mitochondrial integrity and energy metabolism. Consequently, RR has emerged as a promising therapeutic approach for addressing post-resuscitation myocardial dysfunction.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhou Ye
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yingqi Ran
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Cong Liu
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Mingtao Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Xiangchang Xu
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Fengqing Song
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Lan Yao
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
3
|
Zhao Y, Li X, Xu G, Nan J. Multilevel investigation of the ecotoxicological effects of sewage sludge biochar on the earthworm Eisenia fetida. CHEMOSPHERE 2024; 360:142455. [PMID: 38810797 DOI: 10.1016/j.chemosphere.2024.142455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The ecological risks of sewage sludge biochar (SSB) after land use is still not truly reflected. Herein, the ecological risks of SSB prepared at different temperature were investigated using the earthworm E. fetida as a model organism from the perspectives of organismal, tissue, cellular, and molecular level. The findings revealed that the ecological risk associated with low-temperature SSB (SSB300) was more pronounced compared to medium- and high-temperature SSB (SSB500 and SSB700), and the ecological risk intensified with increasing SSB addition rates, as revealed by an increase in the integrated biomarker response v2 (IBRv2) value by 2.59-25.41 compared to those of SSB500 and SSB700. Among them, 10% SSB300 application caused significant oxidative stress and neurotoxicity in earthworms compared to CK (p < 0.001). The weight growth rate and cocoon production rate of earthworms were observed to decrease by 25.06% and 69.29%, respectively, while the mortality rate exhibited a significant increase of 33.34% following a 10% SSB300 application, as compared to the CK. Moreover, 10% SSB300 application also resulted in extensive stratum corneum injury and significant longitudinal muscle damage in earthworms, while also inducing severe collapse of intestinal epithelial cells and disruption of intestinal integrity. In addition, 10% SSB300 caused abnormal expression of earthworm detoxification and cocoon production genes (p < 0.001). These results may improve our understanding of the ecotoxicity of biochar, especially in the long term application, and contribute to providing the guidelines for applying biochar as a soil amendment.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
Zhang H, Xu L, He Y, Zhang Z, Zhang J, Yu Q, Liu Y, Wang X, Zhang A, Wang K, Fang Y, Chen S. Tat-NR2B9c attenuates oxidative stress via inhibition of PSD95-NR2B-nNOS complex after subarachnoid hemorrhage in rats. Neuropharmacology 2024; 251:109905. [PMID: 38521229 DOI: 10.1016/j.neuropharm.2024.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Oxidative stress plays important roles in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Tat-NR2B9c has shown efficacy as a neuroprotective agent in several studies. Here, we identified the neuroprotective role of Tat-NR2B9c after SAH and its related mechanisms. The results showed that Tat-NR2B9c treatment attenuated oxidative stress, therefore alleviated neuronal apoptosis and neurological deficits after SAH. Tat-NR2B9c treatment could alleviate mitochondrial vacuolization induced by SAH. Compared to SAH + vehicle group, Tat-NR2B9c resulted in the decrease of Acetylated superoxide dismutase2 (Ac-SOD2), Bcl-2-associated X protein (Bax) and cleaved-caspase3 (CC3) protein expression, and the up-regulation of Sirtunin 3 (Sirt3) and Bcl-2 protein level. Moreover, Tat-NR2B9c attenuated excitotoxicity by inhibiting the interaction of PSD95-NR2B-nNOS. Our results demonstrated that Tat-NR2B9c inhibited oxidative stress via inhibition of PSD95-NR2B-nNOS complex formation after SAH. Tat-NR2B9c may serve as a potential treatment for SAH induced brain injury.
Collapse
Affiliation(s)
- Haocheng Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Longbiao Xu
- Department of Neurosurgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yezhao He
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zeyu Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jiahao Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Qian Yu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yibo Liu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Anke Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Kaikai Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Hao S, Yuan S, Liu Z, Hou B, Feng S, Zhang D. Neuroprotective effects of takinib on an experimental traumatic brain injury rat model via inhibition of transforming growth factor beta-activated kinase 1. Heliyon 2024; 10:e29484. [PMID: 38644820 PMCID: PMC11033159 DOI: 10.1016/j.heliyon.2024.e29484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Transforming growth factor β-activated kinase 1 (TAK1) plays a significant role in controlling several signaling pathways involved with regulating inflammation and apoptosis. As such, it represents an important potential target for developing treatments for traumatic brain injury (TBI). Takinib, a small molecule and selective TAK1 inhibitor, has potent anti-inflammatory activity and has shown promising activity in preclinical studies using rat models to evaluate the potential neuroprotective impact on TBI. The current study used a modified Feeney's weight-drop model to cause TBI in mature Sprague-Dawley male rats. At 30 min post-induction of TBI in the rats, they received an intracerebroventricular (ICV) injection of Takinib followed by assessment of their histopathology and behavior. The results of this study demonstrated how Takinib suppressed TBI progression in the rats by decreasing TAK1, p-TAK1, and nuclear p65 levels while upregulating IκB-α expression. Takinib was also shown to significantly inhibit the production of two pro-inflammatory factors, namely tumor necrosis factor-α and interleukin-1β. Furthermore, Takinib greatly upregulated the expression of tight junction proteins zonula occludens-1 and claudin-5, reducing cerebral edema. Additionally, Takinib effectively suppressed apoptosis via downregulation of cleaved caspase 3 and Bax and reduction of TUNEL-positive stained cell count. As a result, an enhancement of neuronal function and survival was observed post-TBI. These findings highlight the medicinal value of Takinib in the management of TBI and offer an experimental justification for further investigation of TAK1 as a potential pharmacological target.
Collapse
Affiliation(s)
- Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Shuai Yuan
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Zhiqiang Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Baohua Hou
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Sijie Feng
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Dingding Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, PR China
| |
Collapse
|
6
|
Gao L, Peng L, Wang J, Zhang JH, Xia Y. Mitochondrial stress: a key role of neuroinflammation in stroke. J Neuroinflammation 2024; 21:44. [PMID: 38321473 PMCID: PMC10845693 DOI: 10.1186/s12974-024-03033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
Stroke is a clinical syndrome characterized by an acute, focal neurological deficit, primarily caused by the occlusion or rupture of cerebral blood vessels. In stroke, neuroinflammation emerges as a pivotal event contributing to neuronal cell death. The occurrence and progression of neuroinflammation entail intricate processes, prominently featuring mitochondrial dysfunction and adaptive responses. Mitochondria, a double membrane-bound organelle are recognized as the "energy workshop" of the body. Brain is particularly vulnerable to mitochondrial disturbances due to its high energy demands from mitochondria-related energy production. The interplay between mitochondria and neuroinflammation plays a significant role in the pathogenesis of stroke. The biological and pathological consequences resulting from mitochondrial stress have substantial implications for cerebral function. Mitochondrial stress serves as an adaptive mechanism aimed at mitigating the stress induced by the import of misfolded proteins, which occurs in response to stroke. This adaptive response involves a reduction in misfolded protein accumulation and overall protein synthesis. The influence of mitochondrial stress on the pathological state of stroke is underscored by its capacity to interact with neuroinflammation. The impact of mitochondrial stress on neuroinflammation varies according to its severity. Moderate mitochondrial stress can bolster cellular adaptive defenses, enabling cells to better withstand detrimental stressors. In contrast, sustained and excessive mitochondrial stress detrimentally affects cellular and tissue integrity. The relationship between neuroinflammation and mitochondrial stress depends on the degree of mitochondrial stress present. Understanding its role in stroke pathogenesis is instrumental in excavating the novel treatment of stroke. This review aims to provide the evaluation of the cross-talk between mitochondrial stress and neuroinflammation within the context of stroke. We aim to reveal how mitochondrial stress affects neuroinflammation environment in stroke.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Li Peng
- Department of Ophthalmology, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China
| | - Jian Wang
- Department of Neurosurgery, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA.
| | - Ying Xia
- Department of Neurosurgery, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China.
| |
Collapse
|
7
|
Zhang J, Zhang Z, Wang X, Liu Y, Yu Q, Wang K, Fang Y, Lenahan C, Chen M, Chen S. Connection between oxidative stress and subcellular organelle in subarachnoid hemorrhage: Novel mechanisms and therapeutic implications. CNS Neurosci Ther 2023; 29:3672-3683. [PMID: 37408392 PMCID: PMC10651993 DOI: 10.1111/cns.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) is one of the most devastating forms of stroke, with limited treatment modalities and poor patient outcomes. Previous studies have proposed multiple prognostic factors; however, relative research on treatment has not yet yielded favorable clinical outcomes. Moreover, recent studies have suggested that early brain injury (EBI) occurring within 72 h after SAH may contribute to its poor clinical outcomes. Oxidative stress is recognized as one of the main mechanisms of EBI, which causes damage to various subcellular organelles, including the mitochondria, nucleus, endoplasmic reticulum (ER), and lysosomes. This could lead to significant impairment of numerous cellular functions, such as energy supply, protein synthesis, and autophagy, which may directly contribute to the development of EBI and poor long-term prognostic outcomes. In this review, the mechanisms underlying the connection between oxidative stress and subcellular organelles after SAH are discussed, and promising therapeutic options based on these mechanisms are summarized.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
- Department of Neurosurgery, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Qian Yu
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Cameron Lenahan
- Center for Neuroscience ResearchLoma Linda University School of MedicineLoma LindaCaliforniaUSA
| | - Maohua Chen
- Department of Neurosurgery, Wenzhou Central HospitalAffiliated Dingli Clinical Institute of Wenzhou Medical UniversityWenzhouChina
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
8
|
Zhang L, Lin Y, Bai W, Sun L, Tian M. Human umbilical cord mesenchymal stem cell-derived exosome suppresses programmed cell death in traumatic brain injury via PINK1/Parkin-mediated mitophagy. CNS Neurosci Ther 2023; 29:2236-2258. [PMID: 36890626 PMCID: PMC10352888 DOI: 10.1111/cns.14159] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
AIMS Recently, human umbilical cord mesenchymal stem cell (HucMSC)-derived exosome is a new focus of research in neurological diseases. The present study was aimed to investigate the protective effects of HucMSC-derived exosome in both in vivo and in vitro TBI models. METHODS We established both mouse and neuron TBI models in our study. After treatment with HucMSC-derived exosome, the neuroprotection of exosome was investigated by the neurologic severity score (NSS), grip test score, neurological score, brain water content, and cortical lesion volume. Moreover, we determined the biochemical and morphological changes associated with apoptosis, pyroptosis, and ferroptosis after TBI. RESULTS We revealed that treatment of exosome could improve neurological function, decrease cerebral edema, and attenuate brain lesion after TBI. Furthermore, administration of exosome suppressed TBI-induced cell death, apoptosis, pyroptosis, and ferroptosis. In addition, exosome-activated phosphatase and tensin homolog-induced putative kinase protein 1/Parkinson protein 2 E3 ubiquitin-protein ligase (PINK1/Parkin) pathway-mediated mitophagy after TBI. However, the neuroprotection of exosome was attenuated when mitophagy was inhibited, and PINK1 was knockdown. Importantly, exosome treatment also decreased neuron cell death, suppressed apoptosis, pyroptosis, and ferroptosis and activated the PINK1/Parkin pathway-mediated mitophagy after TBI in vitro. CONCLUSION Our results provided the first evidence that exosome treatment played a key role in neuroprotection after TBI through the PINK1/Parkin pathway-mediated mitophagy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of MedicineNanjing UniversityNanjingChina
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, School of MedicineNanjing UniversityNanjingChina
| | - Wanshan Bai
- Department of Neurosurgery, Jinling Hospital, School of MedicineNanjing UniversityNanjingChina
| | - Lean Sun
- Department of Neurosurgery, Jinling Hospital, School of MedicineNanjing UniversityNanjingChina
| | - Mi Tian
- Department of AnesthesiologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
| |
Collapse
|
9
|
Hao S, Chen X, Zhang D, Song W, Zhou Y, Yuan Z, Liu Z, Yue X, Yuan S. GSK3β inhibitor TDZD8 ameliorates brain damage through both ROS scavenging and inhibition of apoptosis in hyperglycaemic subarachnoid haemorrhage rats. Clin Exp Pharmacol Physiol 2022; 49:1352-1360. [PMID: 36106766 DOI: 10.1111/1440-1681.13723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 01/31/2023]
Abstract
Hyperglycaemia is known to be associated with unfavourable outcomes in subarachnoid haemorrhage (SAH), but the pathogenic mechanism is unclear, and there is also a lack of effective therapeutic drugs in clinical practice. Phosphorylation of GSK3β at serine 9 can inhibit its activity to further worsen SAH. The aim of the present study was to evaluate the protective effect and the potential mechanism of the GSK3β inhibitor TDZD8 on brain injury in a hyperglycaemic SAH rat model. Hyperglycaemia was induced by intraperitoneal injection of streptozocin for 3 days. The SAH model was established by injecting fresh autologous femoral artery blood into the prechiasmatic cistern. p-GSK3β (Ser9) expression was induced by intraperitoneal injection of TDZD8 (30 min post-SAH). The expression levels of GSK3β, p-GSK3β, SOD1/2, caspase 3, Bax and Bcl-2 were detected by western blot analysis. Terminal deoxynucleotidyl transferase dUTP nick end-labelling (TUNEL) staining was used to detect neuronal apoptosis of basal temporal lobe. Neurological scores were calculated to determine behavioural recovery. Neuronal survival was detected by Nissl staining. Hyperglycaemia significantly decreased p-GSK3β expression, further exacerbated neurobehavioural deficits and increased oxidative stress and neuronal apoptosis in the brain after SAH compared to normal glycaemic SAH rats and hyperglycaemic rats. In addition, hyperglycaemic SAH rats had obvious oxidative stress and apoptosis. However, TDZD8 effectively decreased cleaved caspase 3 expression and TUNEL-positive cells and increased the Bcl2/Bax ratio, expression of SOD1/2 and activity of superoxide dismutase (SOD) enzyme compared with hyperglycaemic SAH rats. The GSK3β inhibitor TDZD8 has therapeutic potential for hyperglycaemic SAH. The neuroprotective effect of TDZD8 appears to be mediated through its antioxidative and antiapoptotic activity.
Collapse
Affiliation(s)
- Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| | - Xingying Chen
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| | - Dingding Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Wenting Song
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Zhiqing Yuan
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| | - Zhiqiang Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| | - Xiaojing Yue
- Department of Laboratory Medicine, Jiaozuo Women's and Children's Hospital, Jiaozuo, People's Republic of China
| | - Shuai Yuan
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| |
Collapse
|
10
|
Zhang Z, Zhang A, Liu Y, Hu X, Fang Y, Wang X, Luo Y, Lenahan C, Chen S. New Mechanisms and Targets of Subarachnoid Hemorrhage: A Focus on Mitochondria. Curr Neuropharmacol 2022; 20:1278-1296. [PMID: 34720082 PMCID: PMC9881073 DOI: 10.2174/1570159x19666211101103646] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for 5-10% of all strokes and is a subtype of hemorrhagic stroke that places a heavy burden on health care. Despite great progress in surgical clipping and endovascular treatment for ruptured aneurysms, cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) threaten the long-term outcomes of patients with SAH. Moreover, there are limited drugs available to reduce the risk of DCI and adverse outcomes in SAH patients. New insight suggests that early brain injury (EBI), which occurs within 72 h after the onset of SAH, may lay the foundation for further DCI development and poor outcomes. The mechanisms of EBI mainly include excitotoxicity, oxidative stress, neuroinflammation, blood-brain barrier (BBB) destruction, and cellular death. Mitochondria are a double-membrane organelle, and they play an important role in energy production, cell growth, differentiation, apoptosis, and survival. Mitochondrial dysfunction, which can lead to mitochondrial membrane potential (Δψm) collapse, overproduction of reactive oxygen species (ROS), release of apoptogenic proteins, disorders of mitochondrial dynamics, and activation of mitochondria-related inflammation, is considered a novel mechanism of EBI related to DCI as well as post-SAH outcomes. In addition, mitophagy is activated after SAH. In this review, we discuss the latest perspectives on the role of mitochondria in EBI and DCI after SAH. We emphasize the potential of mitochondria as therapeutic targets and summarize the promising therapeutic strategies targeting mitochondria for SAH.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital, Taizhou, Zhejiang Province, China;
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,Address correspondence to this author at the Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Tel: +86-571-87784815; Fax: +86-571-87784755; E-mail:
| |
Collapse
|
11
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
12
|
Gama Justi FV, Araújo Matos G, de Sá Roriz Caminha J, Rodrigues Roque C, Muniz Carvalho E, Soares Campelo MW, Belayev L, Gonzaga de França Lopes L, Barreto Oriá R. The Role of Ruthenium Compounds in Neurologic Diseases: A Minireview. J Pharmacol Exp Ther 2022; 380:47-53. [PMID: 34728560 DOI: 10.1124/jpet.121.000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Ruthenium compounds, nitric oxide donors in biologic systems, have emerged as a promising therapeutic alternative to conventional drugs in anticancer chemotherapy and as a potential neuroprotective agent with fewer cytotoxic effects. This minireview summarizes promising studies with ruthenium complexes and their roles in cancer, neuroinflammation, neurovascular, and neurodegenerative diseases. The up-to-date evidence supports that ruthenium-based compounds have beneficial effects against gliomas and other types of brain cancers, reduce motor symptoms in models of cerebral ischemia-reperfusion, and may act in the control of nociceptive and inflammatory events, such as those seen in early Alzheimer's disease. More studies are needed to fill many current knowledge gaps about the intricate and complex biologic effects and therapeutic-related mechanisms of ruthenium, stimulating further research. SIGNIFICANCE STATEMENT: This minireview summarizes studies addressing the role of ruthenium compounds on neurological illnesses, focusing on brain cancer and neurovascular and neurodegenerative diseases. No such review is available in the literature.
Collapse
Affiliation(s)
- Fátima Virgínia Gama Justi
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Gabriella Araújo Matos
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Juan de Sá Roriz Caminha
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Cássia Rodrigues Roque
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Edinilton Muniz Carvalho
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Márcio Wilker Soares Campelo
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Ludmila Belayev
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Luiz Gonzaga de França Lopes
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| | - Reinaldo Barreto Oriá
- Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)
| |
Collapse
|
13
|
Lin F, Li R, Tu WJ, Chen Y, Wang K, Chen X, Zhao J. An Update on Antioxidative Stress Therapy Research for Early Brain Injury After Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:772036. [PMID: 34938172 PMCID: PMC8686680 DOI: 10.3389/fnagi.2021.772036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
The main reasons for disability and death in aneurysmal subarachnoid hemorrhage (aSAH) may be early brain injury (EBI) and delayed cerebral ischemia (DCI). Despite studies reporting and progressing when DCI is well-treated clinically, the prognosis is not well-improved. According to the present situation, we regard EBI as the main target of future studies, and one of the key phenotype-oxidative stresses may be called for attention in EBI after laboratory subarachnoid hemorrhage (SAH). We summarized the research progress and updated the literature that has been published about the relationship between experimental and clinical SAH-induced EBI and oxidative stress (OS) in PubMed from January 2016 to June 2021. Many signaling pathways are related to the mechanism of OS in EBI after SAH. Several antioxidative stress drugs were studied and showed a protective response against EBI after SAH. The systematical study of antioxidative stress in EBI after laboratory and clinical SAH may supply us with new therapies about SAH.
Collapse
Affiliation(s)
- Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- The General Office of Stroke Prevention Project Committee, National Health Commission of the People’s Republic of China, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Luo MY, Su JH, Gong SX, Liang N, Huang WQ, Chen W, Wang AP, Tian Y. Ferroptosis: New Dawn for Overcoming the Cardio-Cerebrovascular Diseases. Front Cell Dev Biol 2021; 9:733908. [PMID: 34858973 PMCID: PMC8632439 DOI: 10.3389/fcell.2021.733908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
The dynamic balance of cardiomyocytes and neurons is essential to maintain the normal physiological functions of heart and brain. If excessive cells die in tissues, serious Cardio-Cerebrovascular Diseases would occur, namely, hypertension, myocardial infarction, and ischemic stroke. The regulation of cell death plays a role in promoting or alleviating Cardio-Cerebrovascular Diseases. Ferroptosis is an iron-dependent new type of cell death that has been proved to occur in a variety of diseases. In our review, we focus on the critical role of ferroptosis and its regulatory mechanisms involved in Cardio-Cerebrovascular Diseases, and discuss the important function of ferroptosis-related inhibitors in order to propose potential implications for the prevention and treatment of Cardio-Cerebrovascular Diseases.
Collapse
Affiliation(s)
- Meng-Yi Luo
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Jian-Hui Su
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, University of South China, Hengyang, China
| | - Na Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Chen
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|
15
|
Sun JY, Zhao SJ, Wang HB, Hou YJ, Mi QJ, Yang MF, Yuan H, Ni QB, Sun BL, Zhang ZY. Ifenprodil Improves Long-Term Neurologic Deficits Through Antagonizing Glutamate-Induced Excitotoxicity After Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2021; 12:1067-1080. [PMID: 33713028 DOI: 10.1007/s12975-021-00906-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 11/24/2022]
Abstract
Excessive glutamate leading to excitotoxicity worsens brain damage after SAH and contributes to long-term neurological deficits. The drug ifenprodil is a non-competitive antagonist of GluN1-GluN2B N-methyl-d-aspartate (NMDA) receptor, which mediates excitotoxic damage in vitro and in vivo. Here, we show that cerebrospinal fluid (CSF) glutamate level within 48 h was significantly elevated in aSAH patients who later developed poor outcome. In rat SAH model, ifenprodil can improve long-term sensorimotor and spatial learning deficits. Ifenprodil attenuates experimental SAH-induced neuronal death of basal cortex and hippocampal CA1 area, cellular and mitochondrial Ca2+ overload of basal cortex, blood-brain barrier (BBB) damage, and cerebral edema of early brain injury. Using in vitro models, ifenprodil declines the high-concentration glutamate-mediated intracellular Ca2+ increase and cell apoptosis in primary cortical neurons, reduces the high-concentration glutamate-elevated endothelial permeability in human brain microvascular endothelial cell (HBMEC). Altogether, our results suggest ifenprodil improves long-term neurologic deficits through antagonizing glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- Jing-Yi Sun
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China.,Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Shi-Jun Zhao
- Department of Neurology, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Hong-Bin Wang
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Ya-Jun Hou
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Qiong-Jie Mi
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Ming-Feng Yang
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Hui Yuan
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China
| | - Qing-Bin Ni
- Postdoctoral Workstation, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Bao-Liang Sun
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China.
| | - Zong-Yong Zhang
- Department of Neurology, Second Affiliated Hospital; Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Yingsheng East Road No.2, Taian, 271016, China.
| |
Collapse
|
16
|
Pottosin I, Olivas-Aguirre M, Dobrovinskaya O, Zepeda-Jazo I, Shabala S. Modulation of Ion Transport Across Plant Membranes by Polyamines: Understanding Specific Modes of Action Under Stress. FRONTIERS IN PLANT SCIENCE 2021; 11:616077. [PMID: 33574826 PMCID: PMC7870501 DOI: 10.3389/fpls.2020.616077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
This work critically discusses the direct and indirect effects of natural polyamines and their catabolites such as reactive oxygen species and γ-aminobutyric acid on the activity of key plant ion-transporting proteins such as plasma membrane H+ and Ca2+ ATPases and K+-selective and cation channels in the plasma membrane and tonoplast, in the context of their involvement in stress responses. Docking analysis predicts a distinct binding for putrescine and longer polyamines within the pore of the vacuolar TPC1/SV channel, one of the key determinants of the cell ionic homeostasis and signaling under stress conditions, and an additional site for spermine, which overlaps with the cytosolic regulatory Ca2+-binding site. Several unresolved problems are summarized, including the correct estimates of the subcellular levels of polyamines and their catabolites, their unexplored effects on nucleotide-gated and glutamate receptor channels of cell membranes and Ca2+-permeable and K+-selective channels in the membranes of plant mitochondria and chloroplasts, and pleiotropic mechanisms of polyamines' action on H+ and Ca2+ pumps.
Collapse
Affiliation(s)
- Igor Pottosin
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Biomedical Center, University of Colima, Colima, Mexico
| | | | | | - Isaac Zepeda-Jazo
- Food Genomics Department, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
17
|
Jiang X, Yang Y, Liu P, Li M. Transcriptomics and metabolomics reveal Ca 2+ overload and osmotic imbalance-induced neurotoxicity in earthworms (Eisenia fetida) under tri-n-butyl phosphate exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142169. [PMID: 33113685 DOI: 10.1016/j.scitotenv.2020.142169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Tri-n-butyl phosphate (TNBP) is mass-produced and widely utilized in many products, which has increasingly drawn concern about its potential environmental risks. However, little is known about the toxic mechanism on soil-dwelling organisms caused by TNBP. In this study, earthworms (Eisenia fetida) were exposed to environmentally relevant or higher concentrations of TNBP (0, 0.1, 1, and 10 mg/kg) in artificial soil for 14 days. Our results showed that TNBP accumulated in earthworm nervous tissue (cerebral ganglions). In addition, the content of glutamate in cerebral ganglions decreased compared to the control (p < 0.05). The concentration of Ca2+ in earthworm cerebral ganglions increased. However, both Na+/K+-ATPase and Ca2+-ATPase activities were significantly reduced compared to the control (p < 0.05), which led to neurotoxicity in earthworm nervous tissue. Furthermore, the transcriptome and metabolomics revealed the toxic mechanism in earthworm nervous tissue caused by TNBP. Results indicated that the main neurotoxicity mechanisms induced by TNBP were an osmotic imbalance and Ca2+ overload in cerebral ganglions. Our findings fill a gap in the literature on neurotoxicity mechanisms of earthworm response to TNBP exposure and contribute to a better understanding of the adverse effects of TNBP on soil-dwelling organisms in terrestrial ecological systems.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Yan C, Yan H, Mao J, Liu Y, Xu L, Zhao H, Shen J, Cao Y, Gao Y, Li K, Jin W. Neuroprotective Effect of Oridonin on Traumatic Brain Injury via Inhibiting NLRP3 Inflammasome in Experimental Mice. Front Neurosci 2020; 14:557170. [PMID: 33281541 PMCID: PMC7691250 DOI: 10.3389/fnins.2020.557170] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/14/2020] [Indexed: 01/06/2023] Open
Abstract
NLRP3 inflammasome has been considered as an important contributor to inflammation and neuronal death after traumatic brain injury (TBI). Oridonin (Ori), the major active ingredient of Chinese herbal medicine Rabdosia rubescens, has been proved to be a covalent NLRP3 inhibitor with strong anti-inflammation activity. The purpose of this study was to investigate the effect of Ori on inflammation and brain injury induced by TBI. Adult male C57BL/6 mice were subjected to closed-head injury using Hall's weight-dropping method. Ori was injected directly intraperitoneally at a dose of 10 mg/kg within 30 min after TBI and injected once daily until the experiments ended. Our results showed that NLRP3 inflammasome was activated within 24 h post-TBI. The expression of NLRP3 inflammasome components (NLRP3, ASC, and caspase-1) was significantly decreased after treatment with Ori. Besides, the secretion of IL-1β and IL-18, downstream inflammatory factors of activated caspase-1, was reduced by Ori treatment. Importantly, Ori administration further protected the blood-brain barrier, alleviated brain edema, reduced cortical lesion volume, decreased cell death, and attenuated neurological deficits after TBI. Our findings indicate that NLRP3 inflammasome participated in the secondary injury after TBI and the application of Ori may provide neuroprotection via inhibiting NLRP3 inflammasome in animal models, suggesting that Ori might be a promising candidate for patients with TBI.
Collapse
Affiliation(s)
- Chaolong Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Huiying Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiannan Mao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yutong Liu
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Li Xu
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Hongting Zhao
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Jiaqi Shen
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yan Cao
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yongyue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wei Jin
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
19
|
Naringenin reduces early brain injury in subarachnoid hemorrhage (SAH) mice: The role of the AMPK/SIRT3 signaling pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
20
|
Shi X, Zhen L, Ding H, Chen J, Zhang S, Fu Y. Role of ATP-sensitive potassium channels and inflammatory response of basilar artery smooth muscle cells in subarachnoid hemorrhage of rabbit and immune-modulation by shikonin. Food Chem Toxicol 2019; 134:110804. [PMID: 31505234 DOI: 10.1016/j.fct.2019.110804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/17/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the role of inflammatory response, oxidative damage and changes of ATP-sensitive potassium channels (sKATP) in basilar artery (BA) smooth muscle cells (SMCS) of rabbits in subarachnoid hemorrhage (SAH) model. METHODS Time course studies on inflammatory response by real-time PCR, oxidative process and function of isolated basilar artery after SAH in New Zealand White rabbits were performed. Basilar artery smooth muscle cells (BASMCs) in each group were obtained and whole-cell patch-clamp technique was applied to record cell membrane capacitance and KATP currents. The morphologies of basal arteries were analyzed. Protective effect of shikonin were also determine by same parameters. RESULTS Inflammatory cytokines levels were highest at 24h compare to 72h after SAH whereas the oxidative damage and cell death marker were at highest peak at 72h. Oxidative damage peak coincided with significant alterations in cell membrane capacitance, KATP currents and morphological changes in basilar arteries. Shikokin pretreatment attenuated early inflammatory response at 24h and associated oxidative damage at 72h. Finally, shikonin attenuated morphological changes in basilar arteries and dysfunction. CONCLUSION Currents of ATP-sensitive potassium channels in basilar smooth muscle cells decreased after SAH by putative oxidative modification from immediate inflammatory response and can be protected by shikonin pretreatment.
Collapse
Affiliation(s)
- Xianqing Shi
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China.
| | - Lirong Zhen
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Hao Ding
- Intensive Care Unit, Guizhou Provincial Orthopedics Hospital, Guiyang, Guizhou Province, 550007, China
| | - Jing Chen
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Songsong Zhang
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Yongjian Fu
- Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| |
Collapse
|
21
|
Gu L, Larson Casey JL, Andrabi SA, Lee JH, Meza-Perez S, Randall TD, Carter AB. Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis. Redox Biol 2019; 26:101307. [PMID: 31473487 PMCID: PMC6831865 DOI: 10.1016/j.redox.2019.101307] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with an increased mortality. Metabolic reprogramming has a critical role in multiple chronic diseases. Lung macrophages expressing the mitochondrial calcium uniporter (MCU) have a critical role in fibrotic repair, but the contribution of MCU in macrophage metabolism is not known. Here, we show that MCU regulates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and metabolic reprogramming to fatty acid oxidation (FAO) in macrophages. MCU regulated PGC-1α expression by increasing the phosphorylation of ATF-2 by the p38 MAPK in a redox-dependent manner. The expression and activation of PGC-1α via the p38 MAPK was regulated by MCU-mediated mitochondrial calcium uptake, which is linked to increased mitochondrial ROS (mtROS) production. Mice harboring a conditional expression of dominant-negative MCU in macrophages had a marked reduction in mtROS and FAO and were protected from pulmonary fibrosis. Moreover, IPF lung macrophages had evidence of increased MCU and mitochondrial calcium, increased phosphorylation of ATF2 and p38, as well as increased expression of PGC-1α. These observations suggest that macrophage MCU-mediated metabolic reprogramming contributes to fibrotic repair after lung injury.
Collapse
Affiliation(s)
- Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jennifer L Larson Casey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shaida A Andrabi
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jun Hee Lee
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham VAMC, Birmingham, AL, 35294, USA.
| |
Collapse
|
22
|
Zhang L, Wang H, Zhou X, Mao L, Ding K, Hu Z. Role of mitochondrial calcium uniporter-mediated Ca 2+ and iron accumulation in traumatic brain injury. J Cell Mol Med 2019; 23:2995-3009. [PMID: 30756474 PMCID: PMC6433723 DOI: 10.1111/jcmm.14206] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies have suggested that the cellular Ca2+ and iron homeostasis, which can be regulated by mitochondrial calcium uniporter (MCU), is associated with oxidative stress, apoptosis and many neurological diseases. However, little is known about the role of MCU‐mediated Ca2+ and iron accumulation in traumatic brain injury (TBI). Under physiological conditions, MCU can be inhibited by ruthenium red (RR) and activated by spermine (Sper). In the present study, we used RR and Sper to reveal the role of MCU in mouse and neuron TBI models. Our results suggested that the Ca2+ and iron concentrations were obviously increased after TBI. In addition, TBI models showed a significant generation of reactive oxygen species (ROS), decrease in adenosine triphosphate (ATP), deformation of mitochondria, up‐regulation of deoxyribonucleic acid (DNA) damage and increase in apoptosis. Blockage of MCU by RR prevented Ca2+ and iron accumulation, abated the level of oxidative stress, improved the energy supply, stabilized mitochondria, reduced DNA damage and decreased apoptosis both in vivo and in vitro. Interestingly, Sper did not increase cellular Ca2+ and iron concentrations, but suppressed the Ca2+ and iron accumulation to benefit the mice in vivo. However, Sper had no significant impact on TBI in vitro. Taken together, our data demonstrated for the first time that blockage of MCU‐mediated Ca2+ and iron accumulation was essential for TBI. These findings indicated that MCU could be a novel therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ke Ding
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
23
|
Zhou YD, Cai L. Calpeptin Reduces Neurobehavioral Deficits and Neuronal Apoptosis Following Subarachnoid Hemorrhage in Rats. J Stroke Cerebrovasc Dis 2018; 28:125-132. [PMID: 30337208 DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/20/2018] [Accepted: 09/14/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Inhibition of calpain activity provides neuroprotection in multiple central nervous system injury, but the role and mechanism of calpain in subarachnoid hemorrhage (SAH) remain unclear. This study was undertaken to determine the effects of inhibition of calpain on neurological deficit and neuronal apoptosis following experimental SAH. METHODS The endovascular perforation model of SAH was produced in male Sprague-Dawley rats. Rats were administered calpeptin 50 μg, intracerebroventricular injection, 30 minutes before induction of SAH. After 72 hours, the method of Evans blue dye extravasation and wet/dry method were used for determination of blood-brain barrier permeability and brain edema, Western blot analysis and immunohistological staining were used to evaluate neuronal apoptosis. RESULTS The intracellular Ca2+ level and calpain activity was significantly elevated in basal cortex after SAH. Calpain inhibitor calpeptin reduces brain water content and Evans blue dye extravasation, improves neurobehavioral deficits after SAH. Importantly, calpeptin treatment significantly reduces activation of caspase-3, caspase-9, caspase-12 and poly ADP ribose polymerase and the number of apoptotic neurons in basal cortex after SAH. CONCLUSION The present study suggested that calpeptin is neuroprotective in early brain injury after SAH through antiapoptotic effect.
Collapse
Affiliation(s)
- You-Dong Zhou
- Department of Neurosurgery, Xiangyang Central Hospital Affiliated to Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Li Cai
- Department of Neurosurgery, Xiangyang Central Hospital Affiliated to Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
24
|
Li H, Zhao H, Hao S, Shang L, Wu J, Song C, Meyron-Holtz EG, Qiao T, Li K. Iron regulatory protein deficiency compromises mitochondrial function in murine embryonic fibroblasts. Sci Rep 2018; 8:5118. [PMID: 29572489 PMCID: PMC5865113 DOI: 10.1038/s41598-018-23175-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/07/2018] [Indexed: 01/25/2023] Open
Abstract
Iron is essential for growth and proliferation of mammalian cells. The maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs) through binding to the cognate iron-responsive elements in target mRNAs and thereby regulating the expression of target genes. Irp1 or Irp2-null mutation is known to reduce the cellular iron level by decreasing transferrin receptor 1 and increasing ferritin. Here, we report that Irp1 or Irp2-null mutation also causes downregulation of frataxin and IscU, two of the core components in the iron-sulfur cluster biogenesis machinery. Interestingly, while the activities of some of iron-sulfur cluster-containing enzymes including mitochondrial aconitase and cytosolic xanthine oxidase were not affected by the mutations, the activities of respiratory chain complexes were drastically diminished resulting in mitochondrial dysfunction. Overexpression of human ISCU and frataxin in Irp1 or Irp2-null cells was able to rescue the defects in iron-sulfur cluster biogenesis and mitochondrial quality. Our results strongly suggest that iron regulatory proteins regulate the part of iron sulfur cluster biogenesis tailored specifically for mitochondrial electron transport chain complexes.
Collapse
Affiliation(s)
- Huihui Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
| | - Shuangying Hao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
- Medical School of Henan Polytechnic University, Jiaozuo, 454000, P. R. China
| | - Longcheng Shang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
| | - Jing Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
| | - Chuanhui Song
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China
| | - Esther G Meyron-Holtz
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion, Technion City, Haifa, 32000, Israel
| | - Tong Qiao
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, 210008, P. R. China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
25
|
Liu Z, Sheng J, Peng G, Yang J, Chen W, Li K. TGF-β1 Regulation of P-JNK and L-Type Calcium Channel Cav1.2 in Cortical Neurons. J Mol Neurosci 2018; 64:374-384. [PMID: 29423686 DOI: 10.1007/s12031-018-1033-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/25/2018] [Indexed: 02/05/2023]
Abstract
Central nervous system (CNS) diseases can cause a series of neuronal lesions, which may be improved by the anti-apoptotic neuroprotection of transforming growth factor-beta 1 (TGF-β1). In neurons, L-type Ca2+ channels (LTCC) are mainly composed of Cav1.2 subunits. Given the implication of TGF-β1 in numerous CNS diseases, we examined the neuroprotective effects of TGF-β1 on the Cav1.2 channel in the CNS. To simulate acute mechanical traumatic brain injury (TBI), we used a needle to create parallel scratches across plates, which were cultured for 9 h. Meanwhile, Fluo4-AM-loaded laser scanning confocal microscopy with a dual wavelength of 488 nm/530 nm was employed to determine intracellular calcium concentrations ([Ca2+]i). We found that MAPK inhibitors impede TGF-β1-induced cell viability and that TGF-β1 recovered from the trauma-induced cell viability in neurons. Cav1.2 production was significantly decreased in the TGF-β1-treated (10 ng/mL) neurons. At this TGF-β1 concentration, Cav1.2 was significantly down-regulated in a time-dependent manner after 12 h. Moreover, TGF-β1 partially recovered the protein levels of Cav1.2 that were reduced by TBI. TGF-β1 significantly inhibited the fluorescence intensity of [Ca2+]i increased by KCl and delayed the time of the peak [Ca2+]i. The observed effects of TGF-β1 on Cav1.2 were regulated by MAPK inhibitors. The observed effects of TGF-β1 on P-JNK were also impeded by pre-incubation with the LTCC inhibitor (10 μM) nimodipine in trauma-injured neurons. Altogether, TGF-β1 regulated LTCCs through a mechanism dependent on MEK, JNK1/2 and p38 MAPK signal pathways in cortical neurons. Thus, we suggest the involvement of this mechanism in cell viability.
Collapse
Affiliation(s)
- Zhenning Liu
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
| | - Guoyi Peng
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong, 515041, China
| | - Jinhua Yang
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong, 515041, China
| | - Weiqiang Chen
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong, 515041, China.
| | - Kangsheng Li
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
| |
Collapse
|
26
|
Zhang Z, Liu J, Fan C, Mao L, Xie R, Wang S, Yang M, Yuan H, Yang X, Sun J, Wang J, Kong J, Huang S, Sun B. The GluN1/GluN2B NMDA receptor and metabotropic glutamate receptor 1 negative allosteric modulator has enhanced neuroprotection in a rat subarachnoid hemorrhage model. Exp Neurol 2018; 301:13-25. [DOI: 10.1016/j.expneurol.2017.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
|
27
|
Yan H, Zhang D, Wei Y, Ni H, Liang W, Zhang H, Hao S, Jin W, Li K, Hang CH. Inhibition of myeloid differentiation primary response protein 88 provides neuroprotection in early brain injury following experimental subarachnoid hemorrhage. Sci Rep 2017; 7:15797. [PMID: 29150630 PMCID: PMC5693947 DOI: 10.1038/s41598-017-16124-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulating of evidence suggests that activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) exacerbates early brain injury (EBI) following subarachnoid hemorrhage (SAH) by provoking pro-inflammatory and pro-apoptotic signaling. Myeloid differentiation primary response protein 88 (MyD88) is an endogenous adaptor protein in the toll-like receptors (TLRs) and interleukin (IL) -1β family signaling pathways and acts as a bottle neck in the NF-κB and MAPK pathways. Here, we used ST2825, a selective inhibitor of MyD88, to clarify whether inhibiting MyD88 could provide neuroprotection in EBI following SAH. Our results showed that the expression of MyD88 was markedly increased at 24 h post SAH. Intracerebroventricular injection of ST2825 significantly reduced the expression of MyD88 at 24 h post SAH. Involvement of MAPKs and NF-κB signaling pathways was revealed that ST2825 inhibited SAH-induced phosphorylation of TAK1, p38 and JNK, the nuclear translocation of NF-κB p65, and degradation of IκBα. Further, ST2825 administration diminished the SAH-induced inflammatory response and apoptosis. As a result, SAH-induced EBI was alleviated and neurological deficits caused by SAH were reversed. Our findings suggest that MyD88 inhibition confers marked neuroprotection against EBI following SAH. Therefore, MyD88 might be a promising new molecular target for the treatment of SAH.
Collapse
Affiliation(s)
- Huiying Yan
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Dingding Zhang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Yongxiang Wei
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Hongbin Ni
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Weibang Liang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Huasheng Zhang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Shuangying Hao
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Wei Jin
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China.
| | - Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China.
| |
Collapse
|
28
|
Zhang X, Wu Q, Zhang Q, Lu Y, Liu J, Li W, Lv S, Zhou M, Zhang X, Hang C. Resveratrol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage via Inhibition of NLRP3 Inflammasome Activation. Front Neurosci 2017; 11:611. [PMID: 29163015 PMCID: PMC5675880 DOI: 10.3389/fnins.2017.00611] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022] Open
Abstract
Previous studies have demonstrated resveratrol (RSV) has beneficial effects in early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the beneficial effects of RSV and the underlying mechanisms have not been clearly identified. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation plays a crucial role in the EBI pathogenesis. The aim of this study was to investigate the role of RSV on the NLRP3 inflammasome signaling pathway and EBI in rats after SAH. A prechiasmatic cistern injection model was established in rats, and the primary cultured cortical neurons were stimulated with oxyhemoglobin (oxyHb) to induce SAH in vitro. It showed that the NLRP3 inflammasome components, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, mature interleukin-1β (IL-1β), and interleukin-18 (IL-18) were upregulated after SAH, and the enhanced NLRP3 after SAH was mainly located in microglia. Treatment with 60 or 90 mg/kg RSV after SAH dramatically inhibited the expression of NLRP3, but there was no significant difference in the expression of NLRP3 between the SAH + 60 mg/kg RSV and SAH + 90 mg/kg RSV groups. In addition, treatment with 30 mg/kg RSV did not significantly reduced the expression of NLRP3. We next evaluated the neuroprotective effects of RSV against SAH. We determined that SAH-induced NLRP3 inflammasome activation was significantly inhibited in the SAH + 60 mg/kg RSV group. Meanwhile, 60 mg/kg RSV administration could markedly inhibit microglia activation and neutrophils infiltration after SAH. Concomitant with the decreased cerebral inflammation, RSV evidently reduced cortical apoptosis, brain edema, and neurobehavioral impairment after SAH. In vitro experiments, RSV treatment also clearly protected primary cortical neurons against oxyHb insults, including reduced the proportion of neuronal apoptosis, alleviated neuronal degeneration, and improved cell viabilities. These in vitro data further confirm that RSV has an efficient neuroprotection against SAH. Taken together, these in vivo and in vitro findings suggested RSV could protect against EBI after SAH, at least partially via inhibiting NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qingrong Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jingpeng Liu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Shengyin Lv
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, China
| | - Chunhua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
29
|
Hong Z, Chen KH, DasGupta A, Potus F, Dunham-Snary K, Bonnet S, Tian L, Fu J, Breuils-Bonnet S, Provencher S, Wu D, Mewburn J, Ormiston ML, Archer SL. MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype. Am J Respir Crit Care Med 2017; 195:515-529. [PMID: 27648837 DOI: 10.1164/rccm.201604-0814oc] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by excessive pulmonary artery smooth muscle cell (PASMC) proliferation, migration, and apoptosis resistance. This cancer-like phenotype is promoted by increased cytosolic calcium ([Ca2+]cyto), aerobic glycolysis, and mitochondrial fission. OBJECTIVES To determine how changes in mitochondrial calcium uniporter (MCU) complex (MCUC) function influence mitochondrial dynamics and contribute to PAH's cancer-like phenotype. METHODS PASMCs were isolated from patients with PAH and healthy control subjects and assessed for expression of MCUC subunits. Manipulation of the pore-forming subunit, MCU, in PASMCs was achieved through small interfering RNA knockdown or MCU plasmid-mediated up-regulation, as well as through modulation of the upstream microRNAs (miRs) miR-138 and miR-25. In vivo, nebulized anti-miRs were administered to rats with monocrotaline-induced PAH. MEASUREMENTS AND MAIN RESULTS Impaired MCUC function, resulting from down-regulation of MCU and up-regulation of an inhibitory subunit, mitochondrial calcium uptake protein 1, is central to PAH's pathogenesis. MCUC dysfunction decreases intramitochondrial calcium ([Ca2+]mito), inhibiting pyruvate dehydrogenase activity and glucose oxidation, while increasing [Ca2+]cyto, promoting proliferation, migration, and fission. In PAH PASMCs, increasing MCU decreases cell migration, proliferation, and apoptosis resistance by lowering [Ca2+]cyto, raising [Ca2+]mito, and inhibiting fission. In normal PASMCs, MCUC inhibition recapitulates the PAH phenotype. In PAH, elevated miRs (notably miR-138) down-regulate MCU directly and also by decreasing MCU's transcriptional regulator cAMP response element-binding protein 1. Nebulized anti-miRs against miR-25 and miR-138 restore MCU expression, reduce cell proliferation, and regress established PAH in the monocrotaline model. CONCLUSIONS These results highlight miR-mediated MCUC dysfunction as a unifying mechanism in PAH that can be therapeutically targeted.
Collapse
Affiliation(s)
- Zhigang Hong
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Kuang-Hueih Chen
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Asish DasGupta
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Francois Potus
- 2 Pulmonary Hypertension Research Group of the University Cardiology and Pulmonary Institute of the Quebec Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | - Sebastien Bonnet
- 2 Pulmonary Hypertension Research Group of the University Cardiology and Pulmonary Institute of the Quebec Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Lian Tian
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Jennifer Fu
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Sandra Breuils-Bonnet
- 2 Pulmonary Hypertension Research Group of the University Cardiology and Pulmonary Institute of the Quebec Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Steeve Provencher
- 2 Pulmonary Hypertension Research Group of the University Cardiology and Pulmonary Institute of the Quebec Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Danchen Wu
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Jeffrey Mewburn
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Mark L Ormiston
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Stephen L Archer
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| |
Collapse
|
30
|
Gu L, Larson-Casey JL, Carter AB. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization. FASEB J 2017; 31:3072-3083. [PMID: 28351840 DOI: 10.1096/fj.201601371r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 11/11/2022]
Abstract
Fibrosis in multiple organs, including the liver, kidney, and lung, often occurs secondary to environmental exposure. Asbestos exposure is one important environmental cause of lung fibrosis. The mechanisms that mediate fibrosis is not fully understood, although mitochondrial oxidative stress in alveolar macrophages is critical for fibrosis development. Mitochondrial Ca2+ levels can be associated with production of reactive oxygen species. Here, we show that patients with asbestosis have higher levels of mitochondrial Ca2+ compared with normal patients. The mitochondrial calcium uniporter (MCU) is a highly selective ion channel that transports Ca2+ into the mitochondrial matrix to modulate metabolism. Asbestos exposure increased mitochondrial Ca2+ influx in alveolar macrophages from wild-type, but not MCU+/-, mice. MCU expression polarized macrophages to a profibrotic phenotype after exposure to asbestos, and the profibrotic polarization was regulated by MCU-mediated ATP production. Profibrotic polarization was abrogated when MCU was absent or its activity was blocked. Of more importance, mice that were deficient in MCU were protected from pulmonary fibrosis. Regulation of mitochondrial Ca2+ suggests that MCU may play a pivotal role in the development of fibrosis and could potentially be a therapeutic target for pulmonary fibrosis.-Gu, L., Larson-Casey, J. L., Carter, A. B. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization.
Collapse
Affiliation(s)
- Linlin Gu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; .,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
31
|
Tetramethylpyrazine Protects against Early Brain Injury after Experimental Subarachnoid Hemorrhage by Affecting Mitochondrial-Dependent Caspase-3 Apoptotic Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3514914. [PMID: 28337226 PMCID: PMC5350396 DOI: 10.1155/2017/3514914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/27/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
This study was to test the hypothesis that tetramethylpyrazine (TMP) protected against early brain injury after subarachnoid hemorrhage (SAH) by affecting the mitochondrial-dependent caspase-3 apoptotic pathway. TMP was administrated after the rats' prechiasmatic SAH mode. Animal neurobehavioral functions were assessed and the mitochondrial morphology, mitochondrial and cytoplasmic calcium, and mitochondrial membrane potential changes (Δψm) of the brain tissues were measured. The expressions of cytoplasmic cytochrome c (cyt c), second mitochondria-derived activator of caspases (Smac), and cleaved caspase-3 B-cell lymphoma 2 (bcl-2) in cells were determined and cellular apoptosis was detected. The treatment of TMP resulted in less apoptotic cells and milder mitochondrial injury and potentially performed better in the neurobehavioral outcome compared to those with saline. Also, TMP ameliorated calcium overload in mitochondria and cytoplasm and alleviated the decrease of Δψm. In addition, TMP inhibited the expression of cytoplasmic cyt c, Smac, and cleaved caspase-3, yet it upregulated the expression of bcl-2. These findings suggest that TMP exerts an antiapoptosis property in the SAH rat model and this is probably mediated by the caspase-3 apoptotic pathway triggered by mitochondrial calcium overload. The finding offers a new therapeutic candidate for early brain injury after SAH.
Collapse
|
32
|
Wang Q, Ji J, Hao S, Zhang M, Li K, Qiao T. Iron Together with Lipid Downregulates Protein Levels of Ceruloplasmin in Macrophages Associated with Rapid Foam Cell Formation. J Atheroscler Thromb 2016; 23:1201-1211. [PMID: 27040361 PMCID: PMC5098920 DOI: 10.5551/jat.32292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 01/26/2016] [Indexed: 01/31/2023] Open
Abstract
AIM Iron accumulation in foam cells was previously shown to be involved in atherogenesis. However, the mechanism for iron accumulation was not clarified. Ceruloplasmin (Cp) is an important factor in cellular iron efflux and was found to be downregulated in atherosclerotic plaques in our previous study. The current study is to investigate the role of Cp in atherosclerosis. METHODS We used RAW264.7 cells, a well-accepted cell model of atherosclerosis, which were treated with lipopolysaccharides (LPS), ferric ammonium citrate (FAC) or deferoxamine, and oxidized low density lipoprotein (ox-LDL) to detect the regulation of Cp and its influence in iron efflux and lipid accumulation using biochemical and histological assays. RESULTS Our results showed that the Cp protein level increased after 200-μM FAC treatment in LPS-activated RAW264.7 cells. Ox-LDL treatment (50 μg/ml) moderately reduced both mRNA and protein levels and ferroxidase activity of Cp (p<0.05). No significant difference was observed in the expression of ferritin and ferroportin, two important iron-related proteins for iron storage and efflux, respectively, after ox-LDL treatment. However, co-treatment with ox-LDL and FAC drastically reduced the expression of Cp. Accordingly, the ferroxidase activities simultaneously decreased, whereas the protein levels of Ft and Fpn1 significantly increased, indicating further iron accumulation. Moreover, co-treatment with FAC and ox-LDL enhanced the accumulation of cholesterol compared with ox-LDL-only treatment to trigger apoptosis. CONCLUSION Our findings suggest that physiological interaction of iron and lipid obstructs iron efflux and accelerates the lipid accumulation in macrophages during foam cell formation, which implicates the role of iron in the pathology of atherosclerosis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Jiajie Ji
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Shuangying Hao
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Meng Zhang
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Tong Qiao
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, P.R. China
| |
Collapse
|
33
|
Liu H, Zhao L, Yue L, Wang B, Li X, Guo H, Ma Y, Yao C, Gao L, Deng J, Li L, Feng D, Qu Y. Pterostilbene Attenuates Early Brain Injury Following Subarachnoid Hemorrhage via Inhibition of the NLRP3 Inflammasome and Nox2-Related Oxidative Stress. Mol Neurobiol 2016; 54:5928-5940. [DOI: 10.1007/s12035-016-0108-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/06/2016] [Indexed: 01/15/2023]
|
34
|
Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca2+ Dyshomeostasis Antagonism, and Indirect Antioxidation Effects. Mol Neurobiol 2016; 54:5034-5050. [DOI: 10.1007/s12035-016-0020-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023]
|
35
|
Zhang D, Zhang H, Hao S, Yan H, Zhang Z, Hu Y, Zhuang Z, Li W, Zhou M, Li K, Hang C. Akt Specific Activator SC79 Protects against Early Brain Injury following Subarachnoid Hemorrhage. ACS Chem Neurosci 2016; 7:710-8. [PMID: 26983552 DOI: 10.1021/acschemneuro.5b00306] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A growing body of evidence demonstrates that Akt may serve as a therapeutic target for treatment of early brain injury following subarachnoid hemorrhage (SAH). The purpose of the current study was to evaluate the neuroprotective effect of Akt specific activator SC79 in an experimental rat model of SAH. SAH was induced by injecting 300 μL of blood into the prechiasmatic cistern. Intracerebroventricular (ICV) injection of SC79 (30 min post-SAH) induced the p-Akt (Ser473) expression in a dose-dependent manner. A single ICV dose treatment of SC79 (100 μg/rat) significantly increased the expression of Bcl-2 and p-GSK-3β (Ser9), decreased the protein levels of Bax, cytoplasm cytochrome c, and cleaved caspase-3, indicating the antiapoptotic effect of SC79. As a result, the number of apoptotic cells was reduced 24 h post SAH. Moreover, SC79 treatment alleviated SAH-induced oxidative stress, restored mitochondrial morphology, and improved neurological deficits. Strikingly, treatment of SC79 provided a beneficial outcome against neurologic deficit with a therapeutic window of at least 4 h post SAH by ICV injection and 30 min post SAH by intraperitoneal injection. Collectively, SC79 exerts its neuroprotective effect likely through the dual activities of antioxidation and antiapoptosis. These data provide a basic platform to consider SC79 as a novel therapeutic agent for treatment of SAH.
Collapse
Affiliation(s)
- Dingding Zhang
- Department
of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, P. R. China
| | - Huasheng Zhang
- Department
of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, P. R. China
| | - Shuangying Hao
- Jiangsu
Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province, P. R. China
| | - Huiying Yan
- Department
of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, P. R. China
| | - Zihuan Zhang
- Department
of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yangchun Hu
- Department
of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, P. R. China
| | - Zong Zhuang
- Department
of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, P. R. China
| | - Wei Li
- Department
of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, P. R. China
| | - Mengliang Zhou
- Department
of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, P. R. China
| | - Kuanyu Li
- Jiangsu
Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province, P. R. China
| | - Chunhua Hang
- Department
of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, P. R. China
| |
Collapse
|
36
|
Chen Y, Huang L, Zhang H, Diao X, Zhao S, Zhou W. Reduction in Autophagy by (-)-Epigallocatechin-3-Gallate (EGCG): a Potential Mechanism of Prevention of Mitochondrial Dysfunction After Subarachnoid Hemorrhage. Mol Neurobiol 2016; 54:392-405. [PMID: 26742518 DOI: 10.1007/s12035-015-9629-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/15/2015] [Indexed: 11/25/2022]
Abstract
Mitochondrial dysfunction and subsequent autophagy, which are common features in central nervous system (CNS) disorders, were found to contribute to neuronal cell injury after subarachnoid hemorrhage (SAH). (-)-Epigallocatechin-3-gallate (EGCG), the main biological active of tea catechin, is well known for its beneficial effects in the treatment of CNS diseases. Here, the ability of EGCG to rescue cellular injury and mitochondrial function following the improvement of autophagic flux after SAH was investigated. As expected, EGCG-protected mitochondrial function depended on the inhibition of cytosolic Ca2+ concentration ([Ca2+]i) influx via voltage-gated calcium channels (VGCCs) and, consequently, mitochondrial Ca2+ concentration ([Ca2+]m) overload via mitochondrial Ca2+ uniporter (MCU). The attenuated [Ca2+]i and [Ca2+]m levels observed in the EGCG-treated group likely lessened oxyhemoglobin (OxyHb)-induced mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondrial membrane permeability transition pore (mPTP) opening, reactive oxygen species (ROS), and cytochrosome c (cyt c) releasing. Subsequently, EGCG can restore the disrupted autophagy flux after SAH both at the initiation and formation stages by regulating Atg5, LC3B, and Becn-1 (Beclin-1) mRNA expressions. Thus, precondition EGCG resulted in autophagosomes and more autolysosomes compared with SAH group. As a result, EGCG pre-treatment increased the neurological score and decreased cell death. This study suggested that the mitochondrial dysfunction and abnormal autophagy flux synergistically contribute to SAH pathogenesis. Thus, EGCG can be regarded as a new pharmacological agent that targets both mitochondria and altered autophagy in SAH therapy.
Collapse
Affiliation(s)
- Ying Chen
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Liyong Huang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, China
| | - Huiyong Zhang
- College of Life Science and Biotechnology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiling Diao
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, China
| | - Shuyang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, China
| | - Wenke Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, China
| |
Collapse
|
37
|
Zhang Y, Sun J, Zhu S, Xu T, Lu J, Han H, Zhou C, Yan J. The role of rhynchophylline in alleviating early brain injury following subarachnoid hemorrhage in rats. Brain Res 2015; 1631:92-100. [PMID: 26631843 DOI: 10.1016/j.brainres.2015.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 12/30/2022]
Abstract
Rhynchophylline (Rhy) has been demonstrated protective effects on some neurological diseases. However, the roles of Rhy in the subarachnoid hemorrhage (SAH) are still to be cleared. In the present study, the effects of Rhy on attenuation of early brain injury (EBI) after SAH have been evaluated. The adult male Sprague-Dawley rats (280-300g) were used to establish the SAH models using endovascular perforation method. Rhy was administered by intraperitoneal injection immediately following SAH. Brain edema was assessed by magnetic resonance imaging (MRI) at 24h after SAH. Neurological deficits, brain water content, malondialdehyde (MDA) concentration, myeloperoxidase (MPO) activity and reactive oxygen species (ROS) content in hippocampus were also evaluated. Immunofluorescence and western blot were used to explore the underlying protective mechanism of Rhy. The results showed that, following 10mg/kg Rhy treatment, the brain edema and neurological deficits, and blood-brain barrier (BBB) disruption were significantly attenuated at 24h after SAH. Additionally, in hippocampus, MDA concentration, MPO activity and ROS content were markedly decreased. Meanwhile, the levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase (NQO-1) were increased, while the expressions of p-p53, cleaved-caspase-3 and tumor necrosis factor-α (TNF-α) were significantly decreased. Our results indicated that Rhy could attenuate early brain injury by reducing inflammation and apoptosis in hippocampus after SAH.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Juan Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shijie Zhu
- Department of Anatomy, School of Basic Medical Sciences, GuiYang College of Traditional Chinese Medicine, Guiyang, China
| | - Ting Xu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianfei Lu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Lab of Magnetic Resonance Imaging Technology, Beijing 100191, China
| | - Changman Zhou
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Lab of Magnetic Resonance Imaging Technology, Beijing 100191, China.
| |
Collapse
|
38
|
Yan H, Hao S, Sun X, Zhang D, Gao X, Yu Z, Li K, Hang CH. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage. Biochem Biophys Res Commun 2014; 456:835-40. [PMID: 25529443 DOI: 10.1016/j.bbrc.2014.12.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that iron accumulation is involved in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH) and chelation of iron reduced mortality and oxidative DNA damage. We previously reported that blockage of mitochondrial calcium uniporter (MCU) provided benefit in the early brain injury after experimental SAH. This study was undertaken to identify whether blockage of MCU could ameliorate iron accumulation-associated brain injury following SAH. Therefore, we used two reagents ruthenium red (RR) and spermine (Sper) to inhibit MCU. Sprague-Dawley (SD) rats were randomly divided into four groups including sham, SAH, SAH+RR, and SAH+Sper. Biochemical analysis and histological assays were performed. The results confirmed the iron accumulation in temporal lobe after SAH. Interestingly, blockage of MCU dramatically reduced the iron accumulation in this area. The mechanism was revealed that inhibition of MCU reversed the down-regulation of iron regulatory protein (IRP) 1/2 and increase of ferritin. Iron-sulfur cluster dependent-aconitase activity was partially conserved when MCU was blocked. In consistence with this and previous report, ROS levels were notably reduced and ATP supply was rescued; levels of cleaved caspase-3 dropped; and integrity of neurons in temporal lobe was protected. Taken together, our results indicated that blockage of MCU could alleviate iron accumulation and the associated injury following SAH. These findings suggest that the alteration of calcium and iron homeostasis be coupled and MCU be considered to be a therapeutic target for patients suffering from SAH.
Collapse
Affiliation(s)
- Huiying Yan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Shuangying Hao
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province, China
| | - Xiaoyan Sun
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province, China
| | - Dingding Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Xin Gao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Zhuang Yu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|