1
|
Ye J, Shan F, Xu X, Liang C, Zhang N, Hu H, Li J, Ouyang F, Wang J, Zhao Y, Ma Z, Meng C, Li Z, Yu S, Jing J, Zheng M. Centripetal migration and prolonged retention of microglia promotes spinal cord injury repair. J Neuroinflammation 2025; 22:77. [PMID: 40075472 PMCID: PMC11905688 DOI: 10.1186/s12974-025-03411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Recent studies have confirmed the critical role of neonatal microglia in wound healing and axonal regeneration following spinal cord injury (SCI). However, the limited migration of microglia to the center of adult lesion may significantly impede their potential benefits. METHODS We established a model of microglial centripetal migration and prolonged retention in C57BL/6J and transgenic mice by injecting exogenous C-X3-C motif chemokine ligand 1 (CX3CL1) and macrophage colony-stimulating factor (M-CSF) directly into the lesion site post-SCI. Wound healing and axonal preservation/regrowth was assessed anatomically, and kinematics analysis was conducted to determine the recovery of locomotor function. RESULTS We identified decreased expression and perilesional distribution of CX3CL1 as the primary reason for the limited centripetal migration of microglia. In situ injection of CX3CL1 into the lesion core promoted microglial centripetal migration, but alone did not improve functional recovery. Nevertheless, a combinational administration of CX3CL1 and M-CSF fostered both centripetal migration and prolonged retention of microglia, thereby effectively displacing blood-derived macrophage infiltration and optimizing wound healing and axonal preservation/regrowth after SCI. Notably, the beneficial effects of CX3CL1 and M-CSF co-administration were specifically blocked in C-X3-C motif chemokine receptor 1 (CX3CR1)-deficient mice. These phenomena may be related to the increase in spleen tyrosine kinase (SYK) levels, which boosts centripetal microglial phagocytosis. CONCLUSION Our study uncovers the criticality of microglial location and abundance in orchestrating SCI repair, highlighting centripetal microglial dynamics as valuable targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jianan Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fangli Shan
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xinzhong Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chao Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ningyuan Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hao Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianjian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fangru Ouyang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jingwen Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuanzhe Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhida Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Congpeng Meng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ziyu Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shuisheng Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Meige Zheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
2
|
Zhang Z, Li Z, Peng Y, Li Z, Xv N, Jin L, Cao Y, Jiang C, Chen Z. TRIM21-mediated ubiquitination of PLIN2 regulates neuronal lipid droplet accumulation after acute spinal cord injury. Exp Neurol 2024; 381:114916. [PMID: 39122166 DOI: 10.1016/j.expneurol.2024.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
To investigate the changes in neuronal lipid droplet (LD) accumulation and lipid metabolism after acute spinal cord injury (SCI), we established a rat model of compressive SCI. Oil Red O staining, BODIPY 493/503 staining, and 4-hydroxynonenal immunofluorescence staining were performed to determine overall LD accumulation, neuronal LD accumulation, and lipid peroxidation. Lipidomics was conducted to identify the lipid components in the local SCI microenvironment. We focused on the expression and regulation of perilipin 2 (PLIN2) and knocked down PLIN2 in vivo by intrathecal injection of adeno-associated virus 9-synapsin-short-hairpin RNA-PLIN2 (AAV9-SYN-shPlin2). Motor function was assessed using the Basso-Beattie-Bresnahan score. Proteins that interacted with PLIN2 were screened by immunoprecipitation (IP) and qualitative shotgun proteomics, and confirmed by co-IP. A ubiquitination assay was performed to validate whether ubiquitination was involved in PLIN2 degradation. Oil Red O staining indicated that LDs steadily accumulated after SCI. Fluorescent staining indicated the accumulation of LDs in neurons with increased lipid peroxidation. Lipidomics revealed significant changes in lipid components after SCI. PLIN2 expression significantly increased following SCI, and knockdown of PLIN2 using AAV9-SYN-Plin2 reduced neuronal LD accumulation. This intervention improved the neuronal survival and motor function of injured rats. IP and qualitative shotgun proteomics identified tripartite motif-containing protein 21 (TRIM21) as a direct binding protein of PLIN2, and this interaction was confirmed by co-IP in vitro and immunofluorescence staining in vivo. By manipulating TRIM21 expression, we found it was negatively correlated with PLIN2 expression. In conclusion, PLIN2 is involved in neuronal LD accumulation following SCI. TRIM21 mediated the ubiquitination and degradation of PLIN2 in neurons. Inhibition of PLIN2 enhanced the recovery of motor function after SCI.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Li
- Department of Orthopaedics, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230002, China
| | - Ying Peng
- Trauma center, Shanghai General Hospital, Shanghai 200080, China
| | - Zhuoxuan Li
- Trauma center, Shanghai General Hospital, Shanghai 200080, China
| | - Nixi Xv
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lixia Jin
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanwu Cao
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zixian Chen
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Shi Y, Zheng M, Luo Y, Li J, Ouyang F, Zhao Y, Wang J, Ma Z, Meng C, Bi Y, Cheng L, Jing J. Targeting transcription factor pu.1 for improving neurologic outcomes after spinal cord injury. Front Neurosci 2024; 18:1418615. [PMID: 39211434 PMCID: PMC11358095 DOI: 10.3389/fnins.2024.1418615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 09/04/2024] Open
Abstract
Background After spinal cord injury (SCI), lipid metabolism dysregulation at the lesion site exacerbates secondary damage. The transcription factor pu.1 has been implicated as a negative regulator of multiple lipid metabolism-related genes and pathways. However, its role in post-SCI lipid metabolism remains unclear. Methods We employed a mouse model of complete T10 crush SCI. Non-targeted metabolomics and bioinformatics analysis were utilized to investigate lipid metabolism at the lesion site after SCI. Polarized light imaging was used to evaluate the presence of cholesterol crystals. DB1976, a specific inhibitor of pu.1, was administered to examine its impact on local lipid metabolism after SCI. Immunofluorescence staining was performed to assess pu.1 expression and distribution, and to evaluate lipid droplet formation, astrocytic/fibrotic scar development, inflammatory cell infiltration, and tight junctions within the vasculature. Results Non-targeted metabolomics and bioinformatics analyses revealed significant alterations in lipid metabolism components after SCI. Moreover, immunofluorescence staining and polarized light imaging demonstrated substantial BODIPY+ lipid droplet accumulation and persistent cholesterol crystal formation at the lesion site after SCI. Increased pu.1 expression was predominantly observed within macrophages/microglia at the lesion site after SCI. DB1976 treatment significantly mitigated lipid droplet accumulation and cholesterol crystal formation, reduced CD68+ macrophage/microglial infiltration, and attenuated fibrotic scar formation. Moreover, DB1976 treatment promoted the expression of claudin-5 and zonula occludens-1 between vascular endothelial cells and enhanced GFAP+ glial connectivity after SCI. Conclusion Our study reveals a significant correlation between lipid metabolism disturbance post-SCI and transcription factor pu.1 upregulation, specifically in macrophages/microglia at the lesion site. Thus, targeted pu.1 modulation has the potential to yield promising results by substantially diminishing the deposition of lipid metabolism byproducts at the lesion site and fostering a milieu conducive to SCI repair.
Collapse
Affiliation(s)
- Yi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meige Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianjian Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangru Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanzhe Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingwen Wang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhida Ma
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Congpeng Meng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yihui Bi
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Shaw DK, Saraswathy VM, McAdow AR, Zhou L, Park D, Mote R, Johnson AN, Mokalled MH. Elevated phagocytic capacity directs innate spinal cord repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598515. [PMID: 38915507 PMCID: PMC11195157 DOI: 10.1101/2024.06.11.598515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Immune cells elicit a continuum of transcriptional and functional states after spinal cord injury (SCI). In mammals, inefficient debris clearance and chronic inflammation impede recovery and overshadow pro-regenerative immune functions. We found that, unlike mammals, zebrafish SCI elicits transient immune activation and efficient debris clearance, without causing chronic inflammation. Single-cell transcriptomics and inducible genetic ablation showed zebrafish macrophages are highly phagocytic and required for regeneration. Cross-species comparisons between zebrafish and mammalian macrophages identified transcription and immune response regulator ( tcim ) as a macrophage-enriched zebrafish gene. Genetic deletion of zebrafish tcim impairs phagocytosis and regeneration, causes aberrant and chronic immune activation, and can be rescued by transplanting wild-type immune precursors into tcim mutants. Conversely, genetic expression of human TCIM accelerates debris clearance and regeneration by reprogramming myeloid precursors into activated phagocytes. This study establishes a central requirement for elevated phagocytic capacity to achieve innate spinal cord repair.
Collapse
|
5
|
Granadeiro L, Zarralanga VE, Rosa R, Franquinho F, Lamas S, Brites P. Ataxia with giant axonopathy in Acbd5-deficient mice halted by adeno-associated virus gene therapy. Brain 2024; 147:1457-1473. [PMID: 38066620 DOI: 10.1093/brain/awad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 04/06/2024] Open
Abstract
Acyl-CoA binding domain containing 5 (ACBD5) is a critical player in handling very long chain fatty acids (VLCFA) en route for peroxisomal β-oxidation. Mutations in ACBD5 lead to the accumulation of VLCFA and patients present retinal dystrophy, ataxia, psychomotor delay and a severe leukodystrophy. Using CRISPR/Cas9, we generated and characterized an Acbd5 Gly357* mutant allele. Gly357* mutant mice recapitulated key features of the human disorder, including reduced survival, impaired locomotion and reflexes, loss of photoreceptors, and demyelination. The ataxic presentation of Gly357* mice involved the loss of cerebellar Purkinje cells and a giant axonopathy throughout the CNS. Lipidomic studies provided evidence for the extensive lipid dysregulation caused by VLCFA accumulation. Following a proteomic survey, functional studies in neurons treated with VLCFA unravelled a deregulated cytoskeleton with reduced actin dynamics and increased neuronal filopodia. We also show that an adeno-associated virus-mediated gene delivery ameliorated the gait phenotypes and the giant axonopathy, also improving myelination and astrocyte reactivity. Collectively, we established a mouse model with significance for VLCFA-related disorders. The development of relevant neuropathological outcomes enabled the understanding of mechanisms modulated by VLCFA and the evaluation of the efficacy of preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Luis Granadeiro
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Violeta Enríquez Zarralanga
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| | - Ricardo Rosa
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| | - Filipa Franquinho
- Animal Facility, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S, 4200-135 Porto, Portugal
| | - Sofia Lamas
- Animal Facility, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S, 4200-135 Porto, Portugal
| | - Pedro Brites
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Farah MH, Dali CÍ, Groeschel S, Moldovan M, Whiteman DAH, Malanga CJ, Krägeloh‐Mann I, Li J, Barton N, Krarup C. Effects of sulfatide on peripheral nerves in metachromatic leukodystrophy. Ann Clin Transl Neurol 2024; 11:328-341. [PMID: 38146590 PMCID: PMC10863914 DOI: 10.1002/acn3.51954] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE To evaluate the longitudinal correlations between sulfatide/lysosulfatide levels and central and peripheral nervous system function in children with metachromatic leukodystrophy (MLD) and to explore the impact of intravenous recombinant human arylsulfatase A (rhASA) treatment on myelin turnover. METHODS A Phase 1/2 study of intravenous rhASA investigated cerebrospinal fluid (CSF) and sural nerve sulfatide levels, 88-item Gross Motor Function Measure (GMFM-88) total score, sensory and motor nerve conduction, brain N-acetylaspartate (NAA) levels, and sural nerve histology in 13 children with MLD. Myelinated and unmyelinated nerves from an untreated MLD mouse model were also analyzed. RESULTS CSF sulfatide levels correlated with neither Z-scores for GMFM-88 nor brain NAA levels; however, CSF sulfatide levels correlated negatively with Z-scores of nerve conduction parameters, number of large (≥7 μm) myelinated fibers, and myelin/fiber diameter slope, and positively with nerve g-ratios and cortical latencies of somatosensory-evoked potentials. Quantity of endoneural litter positively correlated with sural nerve sulfatide/lysosulfatide levels. CSF sulfatide levels decreased with continuous high-dose treatment; this change correlated with improved nerve conduction. At 26 weeks after treatment, nerve g-ratio decreased by 2%, and inclusion bodies per Schwann cell unit increased by 55%. In mice, abnormal sulfatide storage was observed in non-myelinating Schwann cells in Remak bundles of sciatic nerves but not in unmyelinated urethral nerves. INTERPRETATION Lower sulfatide levels in the CSF and peripheral nerves correlate with better peripheral nerve function in children with MLD; intravenous rhASA treatment may reduce CSF sulfatide levels and enhance sulfatide/lysosulfatide processing and remyelination in peripheral nerves.
Collapse
Affiliation(s)
- Mohamed H. Farah
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Christine í Dali
- Department of Clinical GeneticsRigshospitaletCopenhagenDenmark
- Present address:
Zevra Denmark A/S
| | - Samuel Groeschel
- Department of Pediatric NeurologyUniversity Children's Hospital TübingenTübingenGermany
| | - Mihai Moldovan
- Department of Clinical NeurophysiologyRigshospitaletCopenhagenDenmark
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
| | | | - C. J. Malanga
- Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | | | - Jing Li
- Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Norman Barton
- Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Christian Krarup
- Department of Clinical NeurophysiologyRigshospitaletCopenhagenDenmark
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Tian D, You X, Ye J, Chen G, Yu H, Lv J, Shan F, Liang C, Bi Y, Jing J, Zheng M. hBcl2 overexpression in BMSCs enhances resistance to myelin debris-induced apoptosis and facilitates neuroprotection after spinal cord injury in rats. Sci Rep 2024; 14:1830. [PMID: 38246980 PMCID: PMC10800342 DOI: 10.1038/s41598-024-52167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
After spinal cord injury (SCI), the accumulation of myelin debris at the lesion exacerbates cell death and hinders axonal regeneration. Transplanted bone marrow mesenchymal stem cells (BMSCs) have been proven to be beneficial for SCI repair, but they are susceptible to apoptosis. It remains unclear whether this apoptotic process is influenced by myelin debris. Here, we constructed rat BMSCs overexpressing human B-cell lymphoma 2 (hBcl2) alone (hBcl2 group), BMSCs overexpressing hBcl2 with an endoplasmic reticulum-anchored segment (hBcl2-cb) (cb group), and a negative control group (NC group) for transplantation in this study. Immunocytochemistry staining validated the successful expression of hBcl2 in BMSCs within the hBcl2 group and cb group. All BMSCs from each group exhibited the ability to phagocytize myelin debris. Nevertheless, only BMSCs derived from the hBcl2 group exhibited heightened resistance to apoptosis and maintained prolonged viability for up to 5 days when exposed to myelin debris. Notably, overexpression of hBcl2 protein, rather than its endoplasmic reticulum-anchored counterpart, significantly enhanced the resistance of BMSCs against myelin debris-induced apoptosis. This process appeared to be associated with the efficient degradation of myelin debris through the Lamp1+ lysosomal pathway in the hBcl2 group. In vivo, the hBcl2 group exhibited significantly higher numbers of surviving cells and fewer apoptotic BMSCs compared to the cb and NC groups following transplantation. Furthermore, the hBcl2 group displayed reduced GFAP+ glial scarring and greater preservation of NF200+ axons in the lesions of SCI rats. Our results suggest that myelin debris triggers apoptosis in transplanted BMSCs, potentially elucidating the low survival rate of these cells after SCI. Consequently, the survival rate of transplanted BMSCs is improved by hBcl2 overexpression, leading to enhanced preservation of axons within the injured spinal cord.
Collapse
Affiliation(s)
- Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xingyu You
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianan Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Gan Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hang Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianwei Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fangli Shan
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chao Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yihui Bi
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Meige Zheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
8
|
Meehan SD, Neag E, Bhattacharya SK. Glycerophospholipid Analysis of Optic Nerve Regeneration Models Indicate Potential Membrane Order Changes Associated with the Lipidomic Shifts. J Ocul Pharmacol Ther 2023; 39:519-529. [PMID: 37192491 PMCID: PMC10616943 DOI: 10.1089/jop.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/19/2023] [Indexed: 05/18/2023] Open
Abstract
Purpose: Optic nerve (ON) injury causes irreversible degeneration, leading to vision loss that cannot be restored with available therapeutics. Current therapies slow further degeneration but do not promote regeneration. New regenerative factors have been discovered that are successful in vivo. However, the mechanisms of efficient long-distance regeneration are still unknown. Membrane expansion by lipid insertion is an essential regenerative process, so lipid profiles for regenerating axons can provide insight into growth mechanisms. This article's analysis aims to add to the increasingly available ON regeneration lipid profiles and relate it to membrane order/properties. Methods: In this study, we present an analysis of glycerophospholipids, one of the largest axonal lipid groups, from three mammalian ON regeneration lipid profiles: Wnt3a, Zymosan + CPT-cAMP, and Phosphatase/Tensin homolog knockout (PTENKO) at 7 and 14 days post crush (dpc). Significant lipid classes, species, and ontological properties were crossreferenced between treatments and analyzed using Metaboanalyst 5.0 and Lipid Ontology (LION). Membrane order changes associated with significant lipid classes were evaluated by C-Laurdan dye and exogenous lipids provided to a neuroblastoma cell line. Results and Conclusions: At 7 dpc, ONs show increased lysoglycerophospholipids and decreased phosphatidylethanolamines (PEs)/negative intrinsic curvature lipids. At 14 dpc, regenerative treatments show divergence: Wnt3a displays higher lysoglycerophospholipid content, while Zymosan and PTENKO decrease lysoglycerophospholipids and increase phosphatidylcholine (PC)-related species. Membrane order imaging indicates lysoglycerophospholipids decreases membrane order while PE and PC had no significant membrane order effects. Understanding these changes will allow therapeutic development targeting lipid metabolic pathways that can be used for vision loss treatments.
Collapse
Affiliation(s)
- Sean D. Meehan
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Miller School of Medicine at University of Miami, Miami, Florida, USA
| | - Emily Neag
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Miller School of Medicine at University of Miami, Miami, Florida, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sanjoy K. Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Miller School of Medicine at University of Miami, Miami, Florida, USA
| |
Collapse
|
9
|
Basu S, Choudhury IN, Lee JYP, Chacko A, Ekberg JAK, St John JA. Macrophages Treated with VEGF and PDGF Exert Paracrine Effects on Olfactory Ensheathing Cell Function. Cells 2022; 11:cells11152408. [PMID: 35954252 PMCID: PMC9368560 DOI: 10.3390/cells11152408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Glial cell transplantation using olfactory ensheathing cells (OECs) holds a promising approach for treating spinal cord injury (SCI). However, integration of OECs into the hostile acute secondary injury site requires interaction and response to macrophages. Immunomodulation of macrophages to reduce their impact on OECs may improve the functionality of OECs. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), known for their immunomodulatory and neuroprotective functions, have provided improved outcomes in SCI animal models. Thus, VEGF and PDGF modulation of the SCI microenvironment may be beneficial for OEC transplantation. In this in vitro study, the effect of VEGF and PDGF on macrophages in an inflammatory condition was tested. Combined VEGF + PDGF reduced translocation nuclear factor kappa B p65 in macrophages without altering pro-inflammatory cytokines. Further, the ability of OECs to phagocytose myelin debris was assessed using macrophage-conditioned medium. Conditioned medium from macrophages incubated with PDGF and combined VEGF + PDGF in inflammatory conditions promoted phagocytosis by OECs. The growth factor treated conditioned media also modulated the expression of genes associated with nerve repair and myelin expression in OECs. Overall, these results suggest that the use of growth factors together with OEC transplantation may be beneficial in SCI therapy.
Collapse
Affiliation(s)
- Souptik Basu
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Indra N. Choudhury
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Jia Yu Peppermint Lee
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
| | - Anu Chacko
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Jenny A. K. Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| | - James A. St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Correspondence:
| |
Collapse
|
10
|
The Role of Tissue Geometry in Spinal Cord Regeneration. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040542. [PMID: 35454380 PMCID: PMC9028021 DOI: 10.3390/medicina58040542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Unlike peripheral nerves, axonal regeneration is limited following injury to the spinal cord. While there may be reduced regenerative potential of injured neurons, the central nervous system (CNS) white matter environment appears to be more significant in limiting regrowth. Several factors may inhibit regeneration, and their neutralization can modestly enhance regrowth. However, most investigations have not considered the cytoarchitecture of spinal cord white matter. Several lines of investigation demonstrate that axonal regeneration is enhanced by maintaining, repairing, or reconstituting the parallel geometry of the spinal cord white matter. In this review, we focus on environmental factors that have been implicated as putative inhibitors of axonal regeneration and the evidence that their organization may be an important determinant in whether they inhibit or promote regeneration. Consideration of tissue geometry may be important for developing successful strategies to promote spinal cord regeneration.
Collapse
|
11
|
Becktel DA, Zbesko JC, Frye JB, Chung AG, Hayes M, Calderon K, Grover JW, Li A, Garcia FG, Tavera-Garcia MA, Schnellmann RG, Wu HJJ, Nguyen TVV, Doyle KP. Repeated Administration of 2-Hydroxypropyl-β-Cyclodextrin (HPβCD) Attenuates the Chronic Inflammatory Response to Experimental Stroke. J Neurosci 2022; 42:325-348. [PMID: 34819339 PMCID: PMC8802936 DOI: 10.1523/jneurosci.0933-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/24/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Globally, more than 67 million people are living with the effects of ischemic stroke. Importantly, many stroke survivors develop a chronic inflammatory response that may contribute to cognitive impairment, a common and debilitating sequela of stroke that is insufficiently studied and currently untreatable. 2-Hydroxypropyl-β-cyclodextrin (HPβCD) is an FDA-approved cyclic oligosaccharide that can solubilize and entrap lipophilic substances. The goal of the present study was to determine whether the repeated administration of HPβCD curtails the chronic inflammatory response to stroke by reducing lipid accumulation within stroke infarcts in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we subcutaneously injected young adult and aged male mice with vehicle or HPβCD 3 times per week, with treatment beginning 1 week after stroke. We evaluated mice at 7 weeks following stroke using immunostaining, RNA sequencing, lipidomic, and behavioral analyses. Chronic stroke infarct and peri-infarct regions of HPβCD-treated mice were characterized by an upregulation of genes involved in lipid metabolism and a downregulation of genes involved in innate and adaptive immunity, reactive astrogliosis, and chemotaxis. Correspondingly, HPβCD reduced the accumulation of lipid droplets, T lymphocytes, B lymphocytes, and plasma cells in stroke infarcts. Repeated administration of HPβCD also preserved NeuN immunoreactivity in the striatum and thalamus and c-Fos immunoreactivity in hippocampal regions. Additionally, HPβCD improved recovery through the protection of hippocampal-dependent spatial working memory and reduction of impulsivity. These results indicate that systemic HPβCD treatment following stroke attenuates chronic inflammation and secondary neurodegeneration and prevents poststroke cognitive decline.SIGNIFICANCE STATEMENT Dementia is a common and debilitating sequela of stroke. Currently, there are no available treatments for poststroke dementia. Our study shows that lipid metabolism is disrupted in chronic stroke infarcts, which causes an accumulation of uncleared lipid debris and correlates with a chronic inflammatory response. To our knowledge, these substantial changes in lipid homeostasis have not been previously recognized or investigated in the context of ischemic stroke. We also provide a proof of principle that solubilizing and entrapping lipophilic substances using HPβCD could be an effective strategy for treating chronic inflammation after stroke and other CNS injuries. We propose that using HPβCD for the prevention of poststroke dementia could improve recovery and increase long-term quality of life in stroke sufferers.
Collapse
Affiliation(s)
- Danielle A Becktel
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Jacob C Zbesko
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Jennifer B Frye
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Amanda G Chung
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Megan Hayes
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Kylie Calderon
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | - Jeffrey W Grover
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85719
| | - Anna Li
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
- Arizona Arthritis Center, University of Arizona, Tucson, Arizona 85719
| | - Frankie G Garcia
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
| | | | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85719
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
- Arizona Arthritis Center, University of Arizona, Tucson, Arizona 85719
| | - Thuy-Vi V Nguyen
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
- Department of Neurology, University of Arizona, Tucson, Arizona 85719
| | - Kristian P Doyle
- Department of Immunobiology, University of Arizona, Tucson, Arizona 85719
- Department of Neurology, University of Arizona, Tucson, Arizona 85719
- BIO5 Institute, University of Arizona, Tucson, Arizona 85719
- Arizona Center on Aging, University of Arizona, Tucson, Arizona 85719
- Department of Psychology, University of Arizona, Tucson, Arizona 85719
- Department of Neurosurgery, University of Arizona, Tucson, Arizona 85719
| |
Collapse
|
12
|
Nogueira-Rodrigues J, Leite SC, Pinto-Costa R, Sousa SC, Luz LL, Sintra MA, Oliveira R, Monteiro AC, Pinheiro GG, Vitorino M, Silva JA, Simão S, Fernandes VE, Provazník J, Benes V, Cruz CD, Safronov BV, Magalhães A, Reis CA, Vieira J, Vieira CP, Tiscórnia G, Araújo IM, Sousa MM. Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Dev Cell 2021; 57:440-450.e7. [PMID: 34986324 DOI: 10.1016/j.devcel.2021.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Regeneration of adult mammalian central nervous system (CNS) axons is abortive, resulting in inability to recover function after CNS lesion, including spinal cord injury (SCI). Here, we show that the spiny mouse (Acomys) is an exception to other mammals, being capable of spontaneous and fast restoration of function after severe SCI, re-establishing hind limb coordination. Remarkably, Acomys assembles a scarless pro-regenerative tissue at the injury site, providing a unique structural continuity of the initial spinal cord geometry. The Acomys SCI site shows robust axon regeneration of multiple tracts, synapse formation, and electrophysiological signal propagation. Transcriptomic analysis of the spinal cord following transcriptome reconstruction revealed that Acomys rewires glycosylation biosynthetic pathways, culminating in a specific pro-regenerative proteoglycan signature at SCI site. Our work uncovers that a glycosylation switch is critical for axon regeneration after SCI and identifies β3gnt7, a crucial enzyme of keratan sulfate biosynthesis, as an enhancer of axon growth.
Collapse
Affiliation(s)
- Joana Nogueira-Rodrigues
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Sérgio C Leite
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Rita Pinto-Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Sara C Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Liliana L Luz
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Maria A Sintra
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Raquel Oliveira
- Translational NeuroUrology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London WC2R 2LS, London, UK
| | - Ana C Monteiro
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Gonçalo G Pinheiro
- Molecular & Regenerative Medicine Laboratory, Centro de Ciências do Mar (CCMAR), University of Algarve, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Marta Vitorino
- Molecular & Regenerative Medicine Laboratory, Centro de Ciências do Mar (CCMAR), University of Algarve, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joana A Silva
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Sónia Simão
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal; Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal
| | - Vitor E Fernandes
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal; Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal
| | - Jan Provazník
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Célia D Cruz
- Translational NeuroUrology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Boris V Safronov
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Ana Magalhães
- Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology, IPATIMUP), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Molecular Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Celso A Reis
- Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology, IPATIMUP), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Molecular Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; Department of Pathology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Jorge Vieira
- Phenotypic Evolution Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Cristina P Vieira
- Phenotypic Evolution Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Gustavo Tiscórnia
- Molecular & Regenerative Medicine Laboratory, Centro de Ciências do Mar (CCMAR), University of Algarve, 8005-139 Faro, Portugal; Clinica Eugin, Research and Development, 08006 Barcelona, Spain
| | - Inês M Araújo
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal; Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - Mónica M Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
13
|
Plasmalogens regulate the AKT-ULK1 signaling pathway to control the position of the axon initial segment. Prog Neurobiol 2021; 205:102123. [PMID: 34302896 DOI: 10.1016/j.pneurobio.2021.102123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/11/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023]
Abstract
The axon initial segment (AIS) is a specialized region in neurons that encompasses two essential functions, the generation of action potentials and the regulation of the axodendritic polarity. The mechanism controlling the position of the axon initial segment to allow plasticity and regulation of neuron excitability is unclear. Here we demonstrate that plasmalogens, the most abundant ether-phospholipid, are essential for the homeostatic positioning of the AIS. Plasmalogen deficiency is a hallmark of Rhizomelic Chondrodysplasia Punctata (RCDP) and Zellweger spectrum disorders, but Alzheimer's and Parkinson's disease, are also characterized by plasmalogen defects. Neurons lacking plasmalogens displaced the AIS to more distal positions and were characterized by reduced excitability. Treatment with a short-chain alkyl glycerol was able to rescue AIS positioning. Plasmalogen deficiency impaired AKT activation, and we show that inhibition of AKT phosphorylation at Ser473 and Thr308 is sufficient to induce a distal relocation of the AIS. Pathway analysis revealed that downstream of AKT, overtly active ULK1 mediates AIS repositioning. Rescuing the impaired AKT signaling pathway was able to normalize AIS position independently of the biochemical defect. These results unveil a previously unknown mechanism that couples the phospholipid composition of the neuronal membrane to the positional assembly of the AIS.
Collapse
|
14
|
One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. Int J Mol Sci 2021; 22:ijms22095009. [PMID: 34066896 PMCID: PMC8125918 DOI: 10.3390/ijms22095009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.
Collapse
|
15
|
The Role of Lipids, Lipid Metabolism and Ectopic Lipid Accumulation in Axon Growth, Regeneration and Repair after CNS Injury and Disease. Cells 2021; 10:cells10051078. [PMID: 34062747 PMCID: PMC8147289 DOI: 10.3390/cells10051078] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Axons in the adult mammalian nervous system can extend over formidable distances, up to one meter or more in humans. During development, axonal and dendritic growth requires continuous addition of new membrane. Of the three major kinds of membrane lipids, phospholipids are the most abundant in all cell membranes, including neurons. Not only immature axons, but also severed axons in the adult require large amounts of lipids for axon regeneration to occur. Lipids also serve as energy storage, signaling molecules and they contribute to tissue physiology, as demonstrated by a variety of metabolic disorders in which harmful amounts of lipids accumulate in various tissues through the body. Detrimental changes in lipid metabolism and excess accumulation of lipids contribute to a lack of axon regeneration, poor neurological outcome and complications after a variety of central nervous system (CNS) trauma including brain and spinal cord injury. Recent evidence indicates that rewiring lipid metabolism can be manipulated for therapeutic gain, as it favors conditions for axon regeneration and CNS repair. Here, we review the role of lipids, lipid metabolism and ectopic lipid accumulation in axon growth, regeneration and CNS repair. In addition, we outline molecular and pharmacological strategies to fine-tune lipid composition and energy metabolism in neurons and non-neuronal cells that can be exploited to improve neurological recovery after CNS trauma and disease.
Collapse
|
16
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
17
|
Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M, Zafar S, Kamran SKS, Razzaq A, Aziz N, Ahmad W, Shabbir A, Iqbal J, Baig SM, Sun T. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 2019; 18:26. [PMID: 30683111 PMCID: PMC6347843 DOI: 10.1186/s12944-019-0965-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/06/2019] [Indexed: 01/07/2023] Open
Abstract
Brain is a vital organ of the human body which performs very important functions such as analysis, processing, coordination, and execution of electrical signals. For this purpose, it depends on a complex network of nerves which are ensheathed in lipids tailored myelin; an abundant source of lipids in the body. The nervous system is enriched with important classes of lipids; sphingolipids and cholesterol which compose the major portion of the brain particularly in the form of myelin. Both cholesterol and sphingolipids are embedded in the microdomains of membrane rafts and are functional units of the neuronal cell membrane. These molecules serve as the signaling molecules; hold important roles in the neuronal differentiation, synaptogenesis, and many others. Thus, their adequate provision and active metabolism are of crucial importance in the maintenance of physiological functions of brain and body of an individual. In the present review, we have highlighted the physiological roles of cholesterol and sphingolipids in the development of the nervous system as well as the association of their altered metabolism to neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan.
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian Province, China
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shamaila Zafar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Syed Kashif Shahid Kamran
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Nimra Aziz
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Ahmad
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian Province, China.
| |
Collapse
|
18
|
Kovrazhkina EA, Stakhovskaya LV, Razinskaya OD, Serdyuk AV. [Inhibitors of CNS regeneration, their physiological role and participation in pathogenesis of diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:143-149. [PMID: 29927419 DOI: 10.17116/jnevro201811851143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The review is devoted to axon growth inhibitors in the CNS, including a physiological role of myelin-associated proteins (Nogo-A, MAG, OMgp) and their involvement in the pathogenesis of various diseases (spinal injuries, stroke, neurodegenerations).
Collapse
Affiliation(s)
- E A Kovrazhkina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - L V Stakhovskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O D Razinskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Serdyuk
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
19
|
Devaux S, Cizkova D, Mallah K, Karnoub MA, Laouby Z, Kobeissy F, Blasko J, Nataf S, Pays L, Mériaux C, Fournier I, Salzet M. RhoA Inhibitor Treatment At Acute Phase of Spinal Cord Injury May Induce Neurite Outgrowth and Synaptogenesis. Mol Cell Proteomics 2017; 16:1394-1415. [PMID: 28659490 PMCID: PMC5546194 DOI: 10.1074/mcp.m116.064881] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
The therapeutic use of RhoA inhibitors (RhoAi) has been experimentally tested in spinal cord injury (SCI). In order to decipher the underlying molecular mechanisms involved in such a process, an in vitro neuroproteomic-systems biology platform was developed in which the pan-proteomic profile of the dorsal root ganglia (DRG) cell line ND7/23 DRG was assessed in a large array of culture conditions using RhoAi and/or conditioned media obtained from SCI ex vivo derived spinal cord slices. A fine mapping of the spatio-temporal molecular events of the RhoAi treatment in SCI was performed. The data obtained allow a better understanding of regeneration/degeneration induced above and below the lesion site. Results notably showed a time-dependent alteration of the transcription factors profile along with the synthesis of growth cone-related factors (receptors, ligands, and signaling pathways) in RhoAi treated DRG cells. Furthermore, we assessed in a rat SCI model the in vivo impact of RhoAi treatment administered in situ via alginate scaffold that was combined with FK506 delivery. The improved recovery of locomotion was detected only at the early postinjury time points, whereas after overall survival a dramatic increase of synaptic contacts on outgrowing neurites in affected segments was observed. We validate these results by in vivo proteomic studies along the spinal cord segments from tissue and secreted media analyses, confirming the increase of the synaptogenesis expression factors under RhoAi treatment. Taken together, we demonstrate that RhoAi treatment seems to be useful to stimulate neurite outgrowth in both in vitro as well in vivo environments. However, for in vivo experiments there is a need for sustained delivery regiment to facilitate axon regeneration and promote synaptic reconnections with appropriate target neurons also at chronic phase, which in turn may lead to higher assumption for functional improvement.
Collapse
Affiliation(s)
- Stephanie Devaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
- §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
| | - Dasa Cizkova
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
- §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
- ¶Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Khalil Mallah
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Melodie Anne Karnoub
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Zahra Laouby
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Firas Kobeissy
- ‖Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut
| | - Juraj Blasko
- **Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej 4-6 Kosice, Slovakia
| | - Serge Nataf
- ‡‡Univ Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, Fr-69600, Oullins, France
| | - Laurent Pays
- ‡‡Univ Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, Fr-69600, Oullins, France
| | - Céline Mériaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Isabelle Fournier
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Michel Salzet
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France;
| |
Collapse
|
20
|
Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. J Neurosci 2017; 37:2362-2376. [PMID: 28130359 DOI: 10.1523/jneurosci.2751-16.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/13/2017] [Accepted: 01/22/2017] [Indexed: 11/21/2022] Open
Abstract
Although infiltrating macrophages influence many pathological processes after spinal cord injury (SCI), the intrinsic molecular mechanisms that regulate their function are poorly understood. A major hurdle has been dissecting macrophage-specific functions from those in other cell types as well as understanding how their functions change over time. Therefore, we used the RiboTag method to obtain macrophage-specific mRNA directly from the injured spinal cord in mice and performed RNA sequencing to investigate their transcriptional profile. Our data show that at 7 d after SCI, macrophages are best described as foam cells, with lipid catabolism representing the main biological process, and canonical nuclear receptor pathways as their potential mediators. Genetic deletion of a lipoprotein receptor, CD36, reduces macrophage lipid content and improves lesion size and locomotor recovery. Therefore, we report the first macrophage-specific transcriptional profile after SCI and highlight the lipid catabolic pathway as an important macrophage function that can be therapeutically targeted after SCI.SIGNIFICANCE STATEMENT The intrinsic molecular mechanisms that regulate macrophage function after spinal cord injury (SCI) are poorly understood. We obtained macrophage-specific mRNA directly from the injured spinal cord and performed RNA sequencing to investigate their transcriptional profile. Our data show that at 7 d after SCI, macrophages are best described as foam cells, with lipid catabolism representing the main biological process and canonical nuclear receptor pathways as their potential mediators. Genetic deletion of a lipoprotein receptor, CD36, reduces macrophage lipid content and improves lesion size and locomotor recovery. Therefore, we report the first macrophage-specific transcriptional profile after SCI and highlight the lipid catabolic pathway as an important macrophage function that can be therapeutically targeted after SCI.
Collapse
|
21
|
Cao XJ, Feng SQ, Fu CF, Gao K, Guo JS, Guo XD, He XJ, Huang ZW, Li ZH, Liu L, Liu RH, Lü HZ, Mei XF, Ning B, Ning GZ, Qian CH, Qin J, Qu YZ, Saijilafu, Shi B, Sui T, Sun TS, Wang J, Wen JK, Xiao J, Xu B, Xu HD, Yu PP, Zhang ZC, Zhou Y, Zhou YL. Repair, protection and regeneration of spinal cord injury. Neural Regen Res 2015; 10:1953-75. [PMID: 26889184 PMCID: PMC4730820 DOI: 10.4103/1673-5374.172314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Inhibitory Injury Signaling Represses Axon Regeneration After Dorsal Root Injury. Mol Neurobiol 2015; 53:4596-605. [PMID: 26298667 DOI: 10.1007/s12035-015-9397-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/14/2015] [Indexed: 01/05/2023]
Abstract
Following injury to peripheral axons, besides increased cyclic adenosine monophosphate (cAMP), the positive injury signals extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 (STAT-3) are locally activated and retrogradely transported to the cell body, where they induce a pro-regenerative program. Here, to further understand the importance of injury signaling for successful axon regeneration, we used dorsal root ganglia (DRG) neurons that have a central branch without regenerative capacity and a peripheral branch that regrows after lesion. Although injury to the DRG central branch (dorsal root injury (DRI)) activated ERK, JNK, and STAT-3 and increased cAMP levels, it did not elicit gain of intrinsic growth capacity nor the ability to overcome myelin inhibition, as occurred after peripheral branch injury (sciatic nerve injury (SNI)). Besides, gain of growth capacity after SNI was independent of ERK and cAMP. Antibody microarrays of dynein-immunoprecipitated axoplasm from rats with either DRI or SNI revealed a broad differential activation and transport of signals after each injury type and further supported that ERK, JNK, STAT-3, and cAMP signaling pathways are minor contributors to the differential intrinsic axon growth capacity of both injury models. Increased levels of inhibitory injury signals including GSK3β and ROCKII were identified after DRI, not only in axons but also in DRG cell bodies. In summary, our work shows that activation and transport of positive injury signals are not sufficient to promote increased axon growth capacity and that differential modulation of inhibitory molecules may contribute to limited regenerative response.
Collapse
|