1
|
Chen X, Chen Z, Li M, Guo W, Yuan S, Xu L, Lin C, Shi X, Chen W, Yang S. Tranylcypromine upregulates Sestrin 2 expression to ameliorate NLRP3-related noise-induced hearing loss. Neural Regen Res 2025; 20:1483-1494. [PMID: 39075914 PMCID: PMC11624888 DOI: 10.4103/nrr.nrr-d-24-00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00030/figure1/v/2024-07-28T173839Z/r/image-tiff Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction. However, there are currently no effective pharmacological interventions for patients with noise-induced hearing loss. Here, we present evidence suggesting that the lysine-specific demethylase 1 inhibitor-tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss, and elucidate its underlying regulatory mechanisms. We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 dB for 4 hours. We found that tranylcypromine treatment led to the upregulation of Sestrin2 (SESN2) and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine. The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click, 4, 8, and 16 kHz frequencies compared with the noise exposure group treated with saline. These findings indicate that tranylcypromine treatment resulted in increased SESN2, light chain 3B, and lysosome-associated membrane glycoprotein 1 expression after noise exposure, leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3, thereby reducing noise-induced hair cell loss. Additionally, immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway. Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domain-containing 3 (NLRP3) production. In conclusion, our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2, which induced autophagy, thereby restricting NLRP3-related inflammasome signaling, alleviating cochlear hair cell loss, and protecting hearing function. These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.
Collapse
Affiliation(s)
- Xihang Chen
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhifeng Chen
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, Gansu Province, China
| | - Menghua Li
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Weiwei Guo
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shuolong Yuan
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Liangwei Xu
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Chang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xi Shi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan Province, China
- Academician Workstation of Hainan University, School of Pharmaceutical Sciences, Yazhou Bay, Sanya, Hainan Province, China
| | - Wei Chen
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
2
|
Wu M, Jia G, Liu Y, Lou Y, Li Y, Xia M, Li H, Li W. PKM2 controls cochlear development through lactate-dependent transcriptional regulation. Proc Natl Acad Sci U S A 2025; 122:e2410829122. [PMID: 39773029 PMCID: PMC11745320 DOI: 10.1073/pnas.2410829122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Understanding the role of metabolic processes during inner ear development is essential for identifying targets for hair cell (HC) regeneration, as metabolic choices play a crucial role in cell proliferation and differentiation. Among the metabolic processes, growing evidence shows that glucose metabolism is closely related to organ development. However, the role of glucose metabolism in mammalian inner ear development and HC regeneration remains unclear. In this study, we found that glycolytic metabolism is highly active during mouse and human cochlear prosensory epithelium expansion. Using mouse cochlear organoids, we revealed that glycolytic activity in cochlear nonsensory epithelial cells was predominantly dominated by pyruvate kinase M2 (PKM2). Deletion of PKM2 induced a metabolic switch from glycolysis to oxidative phosphorylation, impairing cochlear organoid formation. Furthermore, conditional loss of PKM2 in cochlear progenitors hindered sensory epithelium morphogenesis, as demonstrated in PKM2 knockout mice. Mechanistically, pyruvate is generated by PKM2 catalysis and then converted into lactate, which then lactylates histone H3, regulating the transcription of key genes for cochlear development. Specifically, accumulated lactate causes histone H3 lactylation at lysine 9 (H3K9la), upregulating the expression of Sox family transcription factors through epigenetic modification. Moreover, overexpression of PKM2 in supporting cells (SCs) triggered metabolism reprogramming and enhanced HC generation in cultured mouse and human cochlear explants. Our findings uncover a molecular mechanism of sensory epithelium formation driven by glycolysis-lactate flow and suggest unique approaches for mammalian HC regeneration.
Collapse
Affiliation(s)
- Mingxuan Wu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Gaogan Jia
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Yaoqian Liu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Yiyun Lou
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Yunjie Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Mingyu Xia
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai200032, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai200032, China
- Shanghai Engineering Research Centre of Cochlear Implant, Shanghai200031, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai200032, China
- Shanghai Engineering Research Centre of Cochlear Implant, Shanghai200031, China
| |
Collapse
|
3
|
Xiao Y, Li D. The role of epigenetic modifications in sensory hair cell development, survival, and regulation. Front Cell Neurosci 2023; 17:1210279. [PMID: 37388412 PMCID: PMC10300351 DOI: 10.3389/fncel.2023.1210279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
The cochlea is the sensory organ in the periphery, and hair cells are its main sensory cells. The development and survival of hair cells are highly controlled processes. When cells face intracellular and environmental stimuli, epigenetic regulation controls the structure and function of the genome in response to different cell fates. During sensory hair cell development, different histone modifications can induce normal numbers of functional hair cells to generate. When individuals are exposed to environmental-related hair cell damage, epigenetic modification also plays a significant role in the regulation of hair cell fate. Since mammalian hair cells cannot regenerate, their loss can cause permanent sensorineural hearing loss. Many breakthroughs have been achieved in recent years in understanding the signaling pathways that determine hair cell regeneration, and it is fascinating to note that epigenetic regulation plays a significant role in hair cell regeneration. In this review, we discuss the role of epigenetics in inner ear cell development, survival and regeneration and the significant impact on hearing protection.
Collapse
|
4
|
Wang X, Gu X, Wang C, He Y, Liu D, Sun S, Li H. Loss of ndrg2 Function Is Involved in Notch Activation in Neuromast Hair Cell Regeneration in Zebrafish. Mol Neurobiol 2023; 60:3100-3112. [PMID: 36800156 DOI: 10.1007/s12035-023-03262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
The regeneration of hair cells in zebrafish is a complex process involving the precise regulation of multiple signaling pathways, but this complicated regulatory network is not fully understood. Current research has primarily focused on finding molecules and pathways that can regulate hair cell regeneration and restore hair cell functions. Here, we show the role of N-Myc downstream regulated gene 2 (ndrg2) in zebrafish hair cell regeneration. We first found that ndrg2 was dynamically expressed in neuromasts of the developing zebrafish, and this expression was increased after neomycin-induced hair cell damage. Then, ndrg2 loss-of-function larvae showed reduced numbers of regenerated hair cells but increased numbers of supporting cells after neomycin exposure. By in situ hybridization, we further observed that ndrg2 loss of function resulted in the activation of Notch signaling and downregulation of atoh1a during hair cell regeneration in vivo. Additionally, blocking Notch signaling rescued the number of regenerated hair cells in ndrg2-deficient larvae. Together, this study provides evidence for the role of ndrg2 in regulating hair cell regeneration in zebrafish neuromasts.
Collapse
Affiliation(s)
- Xin Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaodong Gu
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
| | - Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Yingzi He
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.
| | - Shan Sun
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China.
| | - Huawei Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China.
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
5
|
Tang D, Lu Y, Zuo N, Yan R, Wu C, Wu L, Liu S, He Y. The H3K27 demethylase controls the lateral line embryogenesis of zebrafish. Cell Biol Toxicol 2023; 39:1137-1152. [PMID: 34716527 PMCID: PMC10406677 DOI: 10.1007/s10565-021-09669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Kdm6b, a specific histone 3 lysine 27 (H3K27) demethylase, has been reported to be implicated in a variety of developmental processes including cell differentiation and cell fate determination and multiple organogenesis. Here, we regulated the transcript level of kdm6bb to study the potential role in controlling the hearing organ development of zebrafish. METHODS A morpholino antisense oligonucleotide (MO) strategy was used to induce Kdm6b deficiency; immunohistochemical staining and in situ hybridization analysis were conducted to figure out the morphologic alterations and embryonic mechanisms. RESULTS Kdm6bb is expressed in the primordium and neuromasts at the early stage of zebrafish embryogenesis, suggesting a potential function of Kdm6b in the development of mechanosensory organs. Knockdown of kdm6bb severely influences the cell migration and proliferation in posterior lateral line primordium, abates the number of neuromasts along the trunk, and mRNA-mediated rescue test can partially renew the neuromasts. Loss of kdm6bb might be related to aberrant expressions of chemokine genes encompassing cxcl12a and cxcr4b/cxcr7b in the migrating primordium. Moreover, inhibition of kdm6bb reduces the expression of genes in Fgf signaling pathway, while it increases the axin2 and lef1 expression level of Wnt/β-catenin signaling during the migrating stage. CONCLUSIONS Collectively, our results revealed that Kdm6b plays an essential role in guiding the migration of primordium and in regulating the deposition of zebrafish neuromasts by mediating the gene expression of chemokines and Wnt and Fgf signaling pathway. Since histone methylation and demethylation are reversible, targeting Kdm6b may present as a novel therapeutic regimen for hearing disorders.
Collapse
Affiliation(s)
- Dongmei Tang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Yitong Lu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Lijuan Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China.
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
6
|
Xu S, Yang N. Research Progress on the Mechanism of Cochlear Hair Cell Regeneration. Front Cell Neurosci 2021; 15:732507. [PMID: 34489646 PMCID: PMC8417573 DOI: 10.3389/fncel.2021.732507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Mammalian inner ear hair cells do not have the ability to spontaneously regenerate, so their irreversible damage is the main cause of sensorineural hearing loss. The damage and loss of hair cells are mainly caused by factors such as aging, infection, genetic factors, hypoxia, autoimmune diseases, ototoxic drugs, or noise exposure. In recent years, research on the regeneration and functional recovery of mammalian auditory hair cells has attracted more and more attention in the field of auditory research. How to regenerate and protect hair cells or auditory neurons through biological methods and rebuild auditory circuits and functions are key scientific issues that need to be resolved in this field. This review mainly summarizes and discusses the recent research progress in gene therapy and molecular mechanisms related to hair cell regeneration in the field of sensorineural hearing loss.
Collapse
Affiliation(s)
- Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Ning Yang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Baumgartner JE, Baumgartner LS, Baumgartner ME, Moore EJ, Messina SA, Seidman MD, Shook DR. Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Transl Med 2021; 10:164-180. [PMID: 33034162 PMCID: PMC7848325 DOI: 10.1002/sctm.20-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
While cell therapies hold remarkable promise for replacing injured cells and repairing damaged tissues, cell replacement is not the only means by which these therapies can achieve therapeutic effect. For example, recent publications show that treatment with varieties of adult, multipotent stem cells can improve outcomes in patients with neurological conditions such as traumatic brain injury and hearing loss without directly replacing damaged or lost cells. As the immune system plays a central role in injury response and tissue repair, we here suggest that multipotent stem cell therapies achieve therapeutic effect by altering the immune response to injury, thereby limiting damage due to inflammation and possibly promoting repair. These findings argue for a broader understanding of the mechanisms by which cell therapies can benefit patients.
Collapse
Affiliation(s)
- James E. Baumgartner
- Advent Health for ChildrenOrlandoFloridaUSA
- Department of Neurological SurgeryUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | | | - Ernest J. Moore
- Department of Audiology and Speech Language PathologyUniversity of North TexasDentonTexasUSA
| | | | - Michael D. Seidman
- Advent Health CelebrationCelebrationFloridaUSA
- Department of OtorhinolaryngologyUniversity of Central FloridaOrlandoFloridaUSA
| | | |
Collapse
|
8
|
Research Progress of Hair Cell Protection Mechanism. Neural Plast 2020; 2020:8850447. [PMID: 33133179 PMCID: PMC7568815 DOI: 10.1155/2020/8850447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/16/2020] [Accepted: 09/30/2020] [Indexed: 11/17/2022] Open
Abstract
How to prevent and treat hearing-related diseases through the protection of hair cells (HCs) is the focus in the field of hearing in recent years. Hearing loss caused by dysfunction or loss of HCs is the main cause of hearing diseases. Therefore, clarifying the related mechanisms of HC development, apoptosis, protection, and regeneration is the main goal of current hearing research. This review introduces the latest research on mechanism of HC protection and regeneration.
Collapse
|
9
|
He Y, Li W, Zheng Z, Zhao L, Li W, Wang Y, Li H. Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death. Theranostics 2020; 10:133-150. [PMID: 31903111 PMCID: PMC6929624 DOI: 10.7150/thno.37362] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Hair cells in the inner ear have been shown to be susceptible to ototoxicity from some beneficial pharmaceutical drugs, such as aminoglycosides and cisplatin. Thus, there is great interest in discovering new targets or compounds that protect hair cells from these ototoxic drugs. Epigenetic regulation is closely related to inner ear development; however, little is known about epigenetic regulation in the process of ototoxic drugs-induced hearing loss. Methods: In this study, we investigated the role of protein arginine methyltransferase 6 (PRMT6) in aminoglycoside- and cisplatin-induced hair cell loss by using EPZ020411, a selective small molecule PRMT6 inhibitor, in vitro in neonatal mouse cochlear explants and in vivo in C57BL/6 mice. We also took advantage of the HEI-OC1 cell line to evaluate the anti-apoptosis effects of PRMT6 knockdown on cisplatin-induced ototoxicity. Apoptotic cells were identified using cleaved caspase-3 staining and TUNEL assay. The levels of reactive oxygen species (ROS) were evaluated by DCFH-DA and cellROX green staining. The mitochondrial membrane potential (ΔΨm) were determined by JC-1, TMRM, and rhodamine 123 staining. Results: We found that EPZ020411 significantly alleviated neomycin- and cisplatin-induced cell apoptosis and increased hair cell survival. Moreover, pretreatment with EPZ020411 could attenuate neomycin- and cisplatin-induced hearing loss in vivo. Mechanistic studies revealed that inhibition of PRMT6 could reverse the increased expression of caspase-3 and cytochrome c translocation, mitochondrial dysfunction, increased accumulation of ROS, and activation of cell apoptosis after cisplatin injury. Conclusions: Our findings suggested that PRMT6 might serve as a new therapeutic target to prevent hearing loss caused by aminoglycoside- and cisplatin-induced ototoxicity by preventing ROS formation and modulating the mitochondria-related damage and apoptosis.
Collapse
|
10
|
Epigenetics in neuronal regeneration. Semin Cell Dev Biol 2019; 97:63-73. [PMID: 30951894 DOI: 10.1016/j.semcdb.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
Damage to neuronal tissues in mammals leads to permanent loss of tissue function that can have major health consequences. While mammals have no inherent regenerative capacity to functionally repair neuronal tissue, other species such as amphibians and teleost fish readily replace damaged tissue. The exploration of development and native regeneration can thus inform the process of inducing regeneration in non-regenerative systems, which can be used to develop new therapeutics. Increasing evidence points to an epigenetic component in the regulation of the changes in cellular gene expression necessary for regeneration. In this review, we compare evidence of epigenetic roles in development and regeneration of neuronal tissue. We have focused on three key systems of important clinical significance: the neural retina, the inner ear, and the spinal cord in regenerative and non-regenerative species. While evidence for epigenetic regulation of regeneration is still limited, changes in DNA accessibility, histone acetylation and DNA methylation have all emerged as key elements in this process. To date, most studies have used broadly acting experimental manipulations to establish a role for epigenetics in regeneration, but the advent of more targeted approaches to modify the epigenome will be critical to dissecting the relative contributions of these regulatory factors in this process and the development of methods to stimulate the regeneration in those organisms like ourselves where only limited regeneration occurs in these neural systems.
Collapse
|
11
|
Walters BJ, Cox BC. Approaches for the study of epigenetic modifications in the inner ear and related tissues. Hear Res 2019; 376:69-85. [PMID: 30679030 PMCID: PMC6456365 DOI: 10.1016/j.heares.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation and histone modifications such as methylation, acetylation, and phosphorylation, are two types of epigenetic modifications that alter gene expression. These additions to DNA regulatory elements or to the tails of histones can be inherited or can also occur de novo. Since epigenetic modifications can have significant effects on various processes at both the cellular and organismal level, there has been a rapid increase in research on this topic throughout all fields of biology in recent years. However, epigenetic research is relativity new for the inner ear field, likely due to the limited number of cells present and their quiescent nature. Here, we provide an overview of methods used to detect DNA methylation and histone modifications with a focus on those that have been validated for use with limited cell numbers and a discussion of the strengths and limitations for each. We also provide examples for how these methods have been used to investigate the epigenetic landscape in the inner ear and related tissues.
Collapse
Affiliation(s)
- Bradley J Walters
- Departments of Neurobiology and Anatomical Sciences, and of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Brandon C Cox
- Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA.
| |
Collapse
|
12
|
Quinoxaline protects zebrafish lateral line hair cells from cisplatin and aminoglycosides damage. Sci Rep 2018; 8:15119. [PMID: 30310154 PMCID: PMC6181994 DOI: 10.1038/s41598-018-33520-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023] Open
Abstract
Hair cell (HC) death is the leading cause of hearing and balance disorders in humans. It can be triggered by multiple insults, including noise, aging, and treatment with certain therapeutic drugs. As society becomes more technologically advanced, the source of noise pollution and the use of drugs with ototoxic side effects are rapidly increasing, posing a threat to our hearing health. Although the underlying mechanism by which ototoxins affect auditory function varies, they share common intracellular byproducts, particularly generation of reactive oxygen species. Here, we described the therapeutic effect of the heterocyclic compound quinoxaline (Qx) against ototoxic insults in zebrafish HCs. Animals incubated with Qx were protected against the deleterious effects of cisplatin and gentamicin, and partially against neomycin. In the presence of Qx, there was a reduction in the number of TUNEL-positive HCs. Since Qx did not block the mechanotransduction channels, based on FM1-43 uptake and microphonic potentials, this implies that Qx’s otoprotective effect is at the intracellular level. Together, these results unravel a novel therapeutic role for Qx as an otoprotective drug against the deleterious side effects of cisplatin and aminoglycosides, offering an alternative option for patients treated with these compounds.
Collapse
|
13
|
Fang G, Jia X, Li H, Tan S, Nie Q, Yu H, Yang Y. Characterization of microRNA and mRNA expression profiles in skin tissue between early-feathering and late-feathering chickens. BMC Genomics 2018; 19:399. [PMID: 29801437 PMCID: PMC5970437 DOI: 10.1186/s12864-018-4773-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/09/2018] [Indexed: 01/05/2023] Open
Abstract
Background Early feathering and late feathering in chickens are sex-linked phenotypes, which have commercial application in the poultry industry for sexing chicks at hatch and have important impacts on performance traits. However, the genetic mechanism controlling feather development and feathering patterns is unclear. Here, miRNA and mRNA expression profiles in chicken wing skin tissues were analysed through high-throughput transcriptomic sequencing, aiming to understand the biological process of follicle development and the formation of different feathering phenotypes. Results Compared to the N1 group with no primary feathers extending out, 2893 genes and 31 miRNAs displayed significantly different expression in the F1 group with primary feathers longer than primary-covert feathers, and 1802 genes and 11 miRNAs in the L2 group displayed primary feathers shorter than primary-covert feathers. Only 201 altered genes and 3 altered miRNAs were identified between the N1 and L2 groups (fold change > 2, q value < 0.01). Both sequencing and qPCR tests revealed that PRLR was significantly decreased in the F1 and L2 groups compared to the N1 group, whereas SPEF2 was significantly decreased in the F1 group compared to the N1 or L2 group. Functional analysis revealed that the altered genes or targets of altered miRNAs were involved in multiple biological processes and pathways related to feather growth and development, such as the Wnt signalling pathway, the TGF-beta signalling pathway, the MAPK signalling pathway, epithelial cell differentiation, and limb development. Integrated analysis of miRNA and mRNA showed that 14 pairs of miRNA-mRNA negatively interacted in the process of feather formation. Conclusions Transcriptomic sequencing of wing skin tissues revealed large changes in F1 vs. N1 and L2 vs. N1, but few changes in F1 vs. L2 for both miRNA and mRNA expression. PRLR might only contribute to follicle development, while SPEF2 was highly related to the growth rate of primary feathers or primary-covert feathers and could be responsible for early and late feather formation. Interactions between miR-1574-5p/NR2F, miR-365-5p/JAK3 and miR-365-5p/CDK6 played important roles in hair or feather formation. In all, our results provide novel evidence to understand the molecular regulation of follicle development and feathering phenotype. Electronic supplementary material The online version of this article (10.1186/s12864-018-4773-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guijun Fang
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xinzheng Jia
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China. .,Guangdong Tinoo's Foods Limited Company, Qingyuan, 511827, Guangdong, China.
| | - Shuwen Tan
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,Guangdong Tinoo's Foods Limited Company, Qingyuan, 511827, Guangdong, China
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hui Yu
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,Guangdong Tinoo's Foods Limited Company, Qingyuan, 511827, Guangdong, China
| | - Ying Yang
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| |
Collapse
|
14
|
Ahmed M, Streit A. Lsd1 interacts with cMyb to demethylate repressive histone marks and maintain inner ear progenitor identity. Development 2018; 145:dev.160325. [PMID: 29437831 DOI: 10.1242/dev.160325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/20/2018] [Indexed: 01/30/2023]
Abstract
During development, multipotent progenitor cells must maintain their identity while retaining the competence to respond to new signalling cues that drive cell fate decisions. This depends on both DNA-bound transcription factors and surrounding histone modifications. Here, we identify the histone demethylase Lsd1 as a crucial component of the molecular machinery that preserves progenitor identity in the developing ear prior to lineage commitment. Although Lsd1 is mainly associated with repressive complexes, we show that, in ear precursors, it is required to maintain active transcription of otic genes. We reveal a novel interaction between Lsd1 and the transcription factor cMyb, which in turn recruits Lsd1 to the promoters of key ear transcription factors. Here, Lsd1 prevents the accumulation of repressive H3K9me2, while allowing H3K9 acetylation. Loss of Lsd1 function causes rapid silencing of active promoters and loss of ear progenitor genes, and shuts down the entire ear developmental programme. Our data suggest that Lsd1-cMyb acts as a co-activator complex that maintains a regulatory module at the top of the inner ear gene network.
Collapse
Affiliation(s)
- Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, Dental Institute, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, Dental Institute, King's College London, London SE1 9RT, UK
| |
Collapse
|
15
|
He Y, Cai C, Sun S, Wang X, Li W, Li H. Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae. Oncotarget 2018; 7:51640-51650. [PMID: 27438150 PMCID: PMC5239503 DOI: 10.18632/oncotarget.10540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/29/2016] [Indexed: 11/25/2022] Open
Abstract
The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibition strongly decreased the number of regenerated hair cells in response to neomycin damage. These changes were associated with reduced proliferation. JNK inhibition also increased cleaved caspase-3 activity and induced apoptosis in regenerating neuromasts. Finally, JNK inhibition with SP600125 decreased the expression of genes related to Wnt. Over-activation of the Wnt signalling pathway partly rescued the hair cell regeneration defects induced by JNK inhibition. Together, our findings provide novel insights into the function of JNK and show that JNK inhibition blocks hair cell regeneration by controlling the Wnt signalling pathway.
Collapse
Affiliation(s)
- Yingzi He
- Department of Otorhinolaryngology, Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Chengfu Cai
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Wenyan Li
- Department of Otorhinolaryngology, Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, China
| | - Huawei Li
- Department of Otorhinolaryngology, Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, China.,Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan University, Shanghai, China.,Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Yi X, Jiang X, Li X, Jiang DS. Histone lysine methylation and congenital heart disease: From bench to bedside (Review). Int J Mol Med 2017; 40:953-964. [PMID: 28902362 DOI: 10.3892/ijmm.2017.3115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2017] [Indexed: 11/05/2022] Open
Abstract
Histone post-translational modifications (PTM) as one of the key epigenetic regulatory mechanisms that plays critical role in various biological processes, including regulating chromatin structure dynamics and gene expression. Histone lysine methyltransferase contributes to the establishment and maintenance of differential histone methylation status, which can recognize histone methylated sites and build an association between these modifications and their downstream processes. Recently, it was found that abnormalities in the histone lysine methylation level or pattern may lead to the occurrence of many types of cardiovascular diseases, such as congenital heart disease (CHD). In order to provide new theoretical basis and targets for the treatment of CHD from the view of developmental biology and genetics, this review discusses and elaborates on the association between histone lysine methylation modifications and CHD.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
17
|
He Y, Bao B, Li H. Using zebrafish as a model to study the role of epigenetics in hearing loss. Expert Opin Drug Discov 2017; 12:967-975. [PMID: 28682135 DOI: 10.1080/17460441.2017.1340270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The rapid progress of bioinformatics and high-throughput screening techniques in recent years has led to the identification of many candidate genes and small-molecule drugs that have the potential to make significant contributions to our understanding of the developmental and pathological processes of hearing, but it remains unclear how these genes and regulatory factors are coordinated. Increasing evidence suggests that epigenetic mechanisms are essential for establishing gene expression profiles and likely play an important role in the development of inner ear and in the pathology of hearing-associated diseases. Zebrafish are a valuable and tractable in vivo model organism for monitoring changes in the epigenome and for identifying new epigenetic processes and drug molecules that can influence vertebrate development. Areas covered: In this review, the authors focus on zebrafish as a model to summarize recent findings concerning the roles of epigenetics in the development, regeneration, and protection of hair cells. Expert opinion: Using the zebrafish model in combination with high-throughput screening and genome-editing technologies to investigate the function of epigenetics in hearing is crucial to help us better understand the molecular and genetic mechanisms of auditory development and function. It will also contribute to the development of new strategies to restore hearing loss.
Collapse
Affiliation(s)
- Yingzi He
- a ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai , China.,c Key Laboratory of Hearing Medicine of NHFPC , Shanghai , China
| | - Beier Bao
- a ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai , China
| | - Huawei Li
- a ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai , China.,b Institutes of Biomedical Sciences , Fudan University , Shanghai , China.,c Key Laboratory of Hearing Medicine of NHFPC , Shanghai , China.,d Shanghai Engineering Research Centre of Cochlear Implant , Shanghai , China.,e The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science , Fudan University , Shanghai , China
| |
Collapse
|
18
|
Doetzlhofer A, Avraham KB. Insights into inner ear-specific gene regulation: Epigenetics and non-coding RNAs in inner ear development and regeneration. Semin Cell Dev Biol 2017; 65:69-79. [PMID: 27836639 PMCID: PMC5512292 DOI: 10.1016/j.semcdb.2016.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict inner ear sensory hair cell regeneration.
Collapse
Affiliation(s)
- Angelika Doetzlhofer
- The Solomon H. Snyder Department of Neuroscience, the Center for Sensory Biology, the Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
19
|
Bao B, He Y, Tang D, Li W, Li H. Inhibition of H3K27me3 Histone Demethylase Activity Prevents the Proliferative Regeneration of Zebrafish Lateral Line Neuromasts. Front Mol Neurosci 2017; 10:51. [PMID: 28348517 PMCID: PMC5346882 DOI: 10.3389/fnmol.2017.00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/14/2017] [Indexed: 01/01/2023] Open
Abstract
The H3K27 demethylases are involved in a variety of biological processes, including cell differentiation, proliferation, and cell death by regulating transcriptional activity. However, the function of H3K27 demethylation in the field of hearing research is poorly understood. Here, we investigated the role of H3K27me3 histone demethylase activity in hair cell regeneration using an in vivo animal model. Our data showed that pharmacologic inhibition of H3K27 demethylase activity with the specific small-molecule inhibitor GSK-J4 decreased the number of regenerated hair cells in response to neomycin damage. Furthermore, inhibition of H3K27me3 histone demethylase activity dramatically suppressed cell proliferation and activated caspase-3 levels in the regenerating neuromasts of the zebrafish lateral line. GSK-J4 administration also increased the expression of p21 and p27 in neuromast cells and inhibited the ERK signaling pathway. Collectively, our findings indicate that H3K27me3 demethylation is a key epigenetic regulator in the process of hair cell regeneration in zebrafish and suggest that H3K27me3 histone demethylase activity might be a novel therapeutic target for the treatment of hearing loss.
Collapse
Affiliation(s)
- Beier Bao
- State Key Laboratory of Medical Neurobiology, Medical College of Fudan University Shanghai, China
| | - Yingzi He
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China
| | - Dongmei Tang
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China
| | - Huawei Li
- State Key Laboratory of Medical Neurobiology, Medical College of Fudan UniversityShanghai, China; ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China; Institutes of Biomedical Science, Fudan UniversityShanghai, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan UniversityShanghai, China
| |
Collapse
|
20
|
Zheng F, Zuo J. Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development? Hear Res 2016; 349:182-196. [PMID: 28034617 DOI: 10.1016/j.heares.2016.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022]
Abstract
Noise-induced hearing loss (NIHL) affects a large number of military personnel and civilians. Regenerating inner-ear cochlear hair cells (HCs) is a promising strategy to restore hearing after NIHL. In this review, we first summarize recent transcriptome profile analysis of zebrafish lateral lines and chick utricles where spontaneous HC regeneration occurs after HC damage. We then discuss recent studies in other mammalian regenerative systems such as pancreas, heart and central nervous system. Both spontaneous and forced HC regeneration occurs in mammalian cochleae in vivo involving proliferation and direct lineage conversion. However, both processes are inefficient and incomplete, and decline with age. For direct lineage conversion in vivo in cochleae and in other systems, further improvement requires multiple factors, including transcription, epigenetic and trophic factors, with appropriate stoichiometry in appropriate architectural niche. Increasing evidence from other systems indicates that the molecular paths of direct lineage conversion may be different from those of normal developmental lineages. We therefore hypothesize that HC regeneration does not have to follow HC development and that epigenetic memory of supporting cells influences the HC regeneration, which may be a key to successful cochlear HC regeneration. Finally, we discuss recent efforts in viral gene therapy and drug discovery for HC regeneration. We hope that combination therapy targeting multiple factors and epigenetic signaling pathways will provide promising avenues for HC regeneration in humans with NIHL and other types of hearing loss.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 322, Memphis, TN 38105, United States.
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 322, Memphis, TN 38105, United States.
| |
Collapse
|
21
|
Tang D, Lin Q, He Y, Chai R, Li H. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways. Front Mol Neurosci 2016; 9:39. [PMID: 27303264 PMCID: PMC4880589 DOI: 10.3389/fnmol.2016.00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
The activation of neuromast (NM) supporting cell (SC) proliferation leads to hair cell (HC) regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of NM cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the NMs of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration.
Collapse
Affiliation(s)
- Dongmei Tang
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Qin Lin
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Fujian Medical University Fuzhou, China
| | - Yingzi He
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China; Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan UniversityShanghai, China; Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
22
|
Kruger M, Boney R, Ordoobadi AJ, Sommers TF, Trapani JG, Coffin AB. Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory Hair Cells from Aminoglycoside Toxicity. Front Cell Neurosci 2016; 10:83. [PMID: 27065807 PMCID: PMC4811916 DOI: 10.3389/fncel.2016.00083] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/16/2016] [Indexed: 01/24/2023] Open
Abstract
Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20–30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.
Collapse
Affiliation(s)
- Matthew Kruger
- School of Biological Sciences, Washington State University Vancouver, WA, USA
| | - Robert Boney
- College of Arts and Sciences, Washington State University Vancouver, WA, USA
| | | | - Thomas F Sommers
- Department of Biology and Neuroscience Program, Amherst College Amherst, MA, USA
| | - Josef G Trapani
- Department of Biology and Neuroscience Program, Amherst College Amherst, MA, USA
| | - Allison B Coffin
- School of Biological Sciences, Washington State UniversityVancouver, WA, USA; College of Arts and Sciences, Washington State UniversityVancouver, WA, USA; Department of Integrative Physiology and Neuroscience, Washington State UniversityVancouver, WA, USA
| |
Collapse
|