1
|
Yamada K. Minor acidic glycans: Review of focused glycomics methods. BBA ADVANCES 2025; 7:100150. [PMID: 40051816 PMCID: PMC11883302 DOI: 10.1016/j.bbadva.2025.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 03/09/2025] Open
Abstract
Glycans are modified by acidic molecules, including sialic acid, sulfates, phosphates, and glucuronic acid, forming acidic glycans. Among these, sialylated glycans form major components of deuterostome glycomes, and their structure and function have been widely studied. The other acidic glycans, comprising minor components of the glycome, are often overlooked by glycomics and glycoproteomics methods, although they are implicated in conditions such as inflammatory diseases, neurological diseases, and viral infections. Therefore, minor acidic glycans are high-priority targets for glycomics, and analytical techniques focused on minor acidic glycans are being developed. This review examines the methods of enriching the minor acidic glycans from biological glycomes and examines their structure, providing examples of the application of these techniques in biological and clinical samples.
Collapse
Affiliation(s)
- Keita Yamada
- The Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| |
Collapse
|
2
|
Zúñiga CH, Acosta BI, Menchaca R, Amescua CA, Hong S, Hui L, Gil M, Rhee YH, Yoon S, Kim M, Chang PY, Kim YM, Song PY, Betito K. Treatment of Alzheimer's Disease subjects with expanded non-genetically modified autologous natural killer cells (SNK01): a phase I study. Alzheimers Res Ther 2025; 17:40. [PMID: 39939891 DOI: 10.1186/s13195-025-01681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND The importance of natural killer (NK) cells of the innate immune system in neurodegenerative disease has largely been overlooked despite studies demonstrating their ability to reduce neuroinflammation (thought to be mediated by the elimination of activated T cells, degradation of protein aggregates and secretion of anti-inflammatory cytokines). SNK01 is an autologous non-genetically modified NK cell product showing increased activity in vitro. We hypothesized that SNK01 can be safely infused to reduce neuroinflammation in Alzheimer's Disease (AD) patients. METHODS SNK01 was produced and characterized for its ability to eliminate activated T cells, degrade protein aggregates and secrete anti-inflammatory cytokines. In this phase 1 study, SNK01 was administered intravenously every three weeks for a total of 4 treatments using a 3 + 3 dose escalation design (1, 2 and 4 × 109 cells) in subjects with either mild, moderate, or severe AD (median CDR-SB 10.0). Cognitive assessments and cerebrospinal fluid biomarkers associated with protein aggregation, neurodegeneration and neuroinflammation including amyloid-β42 and 42/40, α-synuclein, total Tau, pTau217 and pTau181, neurofilament light, GFAP and YKL-40 analyses were performed at baseline, at 1 and 12 weeks after the last dose. The primary endpoint was safety; secondary endpoints included changes in cognitive assessments and biomarker levels. RESULTS In preclinical in vitro studies, SNK01 were able to uptake and degrade the protein aggregates of amyloid-β and α-synuclein, produce anti-inflammatory cytokines and eliminate activated T cells. In the phase 1 clinical study, eleven subjects were enrolled (10 evaluable). No drug-related adverse events were observed. Despite 70% of subjects being treated at relatively low doses of SNK01 (1 and 2 × 109 cells), 50-70% of all enrolled subjects had stable/improved CDR-SB, ADAS-Cog and/or MMSE scores and 90% had stable/improved ADCOMS at one-week after the last dose. SNK01 also appeared to have beneficial effects on protein aggregate levels and neuroinflammatory biomarkers in the cerebrospinal fluid, with decreases in pTau181 and GFAP appearing to be dose-dependent. CONCLUSIONS SNK01 was well tolerated and appeared to have clinical activity in AD while also having beneficial effects on cerebrospinal fluid protein and neuroinflammatory biomarker levels. A larger trial with a higher dosing/duration has been initiated in the USA in 2023. TRIAL REGISTRATION www. CLINICALTRIALS gov NCT04678453, date of registration: 2020-12-22.
Collapse
Affiliation(s)
| | - Blanca Isaura Acosta
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Rufino Menchaca
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Cesar A Amescua
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Sean Hong
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Lucia Hui
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Minchan Gil
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Yong-Hee Rhee
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Sangwook Yoon
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Minji Kim
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Paul Y Chang
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Yong Man Kim
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Paul Y Song
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Katia Betito
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA.
| |
Collapse
|
3
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Pradeep P, Kang H, Lee B. Glycosylation and behavioral symptoms in neurological disorders. Transl Psychiatry 2023; 13:154. [PMID: 37156804 PMCID: PMC10167254 DOI: 10.1038/s41398-023-02446-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Glycosylation, the addition of glycans or carbohydrates to proteins, lipids, or other glycans, is a complex post-translational modification that plays a crucial role in cellular function. It is estimated that at least half of all mammalian proteins undergo glycosylation, underscoring its importance in the functioning of cells. This is reflected in the fact that a significant portion of the human genome, around 2%, is devoted to encoding enzymes involved in glycosylation. Changes in glycosylation have been linked to various neurological disorders, including Alzheimer's disease, Parkinson's disease, autism spectrum disorder, and schizophrenia. Despite its widespread occurrence, the role of glycosylation in the central nervous system remains largely unknown, particularly with regard to its impact on behavioral abnormalities in brain diseases. This review focuses on examining the role of three types of glycosylation: N-glycosylation, O-glycosylation, and O-GlcNAcylation, in the manifestation of behavioral and neurological symptoms in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Prajitha Pradeep
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyeyeon Kang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea.
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea.
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
5
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
6
|
Kawade H, Morise J, Mishra SK, Tsujioka S, Oka S, Kizuka Y. Tissue-Specific Regulation of HNK-1 Biosynthesis by Bisecting GlcNAc. Molecules 2021; 26:5176. [PMID: 34500611 PMCID: PMC8434142 DOI: 10.3390/molecules26175176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023] Open
Abstract
Human natural killer-1 (HNK-1) is a sulfated glyco-epitope regulating cell adhesion and synaptic functions. HNK-1 and its non-sulfated forms, which are specifically expressed in the brain and the kidney, respectively, are distinctly biosynthesized by two homologous glycosyltransferases: GlcAT-P in the brain and GlcAT-S in the kidney. However, it is largely unclear how the activity of these isozymes is regulated in vivo. We recently found that bisecting GlcNAc, a branching sugar in N-glycan, suppresses both GlcAT-P activity and HNK-1 expression in the brain. Here, we observed that the expression of non-sulfated HNK-1 in the kidney is unexpectedly unaltered in mutant mice lacking bisecting GlcNAc. This suggests that the biosynthesis of HNK-1 in the brain and the kidney are differentially regulated by bisecting GlcNAc. Mechanistically, in vitro activity assays demonstrated that bisecting GlcNAc inhibits the activity of GlcAT-P but not that of GlcAT-S. Furthermore, molecular dynamics simulation showed that GlcAT-P binds poorly to bisected N-glycan substrates, whereas GlcAT-S binds similarly to bisected and non-bisected N-glycans. These findings revealed the difference of the highly homologous isozymes for HNK-1 synthesis, highlighting the novel mechanism of the tissue-specific regulation of HNK-1 synthesis by bisecting GlcNAc.
Collapse
Affiliation(s)
- Haruka Kawade
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan;
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Sushil K. Mishra
- Glycoscience Center of Research Excellence, The University of Mississippi, Oxford, MS 38677, USA;
| | - Shuta Tsujioka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Yasuhiko Kizuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
7
|
Xu Y, Wang N, Liu R, Lv H, Li Z, Zhang F, Gai C, Tian Z. Epigenetic Study of Esophageal Carcinoma Based on Methylation, Gene Integration and Weighted Correlation Network Analysis. Onco Targets Ther 2021; 14:3133-3149. [PMID: 34012270 PMCID: PMC8128498 DOI: 10.2147/ott.s298620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose Esophageal carcinoma is a common and highly metastatic malignant tumor of the digestive tract. The aim of the present study was to identify potential molecular markers of esophageal carcinoma that may help its diagnosis and treatment. Materials and Methods First, mRNA and DNA methylation data were downloaded from The Cancer Genome Atlas (TCGA) database for the identification of differentially expressed genes (DEGs) and DNA methylation analysis. Secondly, Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify important modules and hub genes. In addition, correlation analysis between DNA methylation genes and DEGs was performed. Thirdly, the GSE45670 dataset was used to validate the expression of the diagnostic and survival ability analysis of genes in TCGA data. Finally, reverse transcription-quantitative PCR and immunohistochemical analysis of genes were performed. Results A total of 2408 DEGs and 5134 differentially methylated sites were obtained. In the WGCNA analysis, the royal blue module was found to be the optimal module. In addition, hub genes in the module, including ESRRG, MFSD4, CCKBR, ATP4B, ESRRB, ATP4A, CCKAR and B3GAT1, were also differentially methylated genes and DEGs. It was found that CCKAR, MFSD4 and ESRRG may be diagnostic gene biomarkers for esophageal carcinoma. In addition, the high expression of MFSD4 was significantly correlated with patient survival. Immunohistochemistry analysis results showed that the gene expression levels of ATP4B, B3GAT1, CCKBR and ESRRG were decreased in esophageal carcinoma tissues, which was in line with the bioinformatics results. Conclusion Therefore, these identified molecular markers may be helpful in the diagnosis and treatment of esophageal carcinoma.
Collapse
Affiliation(s)
| | - Na Wang
- Department of Cancer Institute
| | - Rongfeng Liu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Sytnyk V, Leshchyns'ka I, Schachner M. Neural glycomics: the sweet side of nervous system functions. Cell Mol Life Sci 2021; 78:93-116. [PMID: 32613283 PMCID: PMC11071817 DOI: 10.1007/s00018-020-03578-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The success of investigations on the structure and function of the genome (genomics) has been paralleled by an equally awesome progress in the analysis of protein structure and function (proteomics). We propose that the investigation of carbohydrate structures that go beyond a cell's metabolism is a rapidly developing frontier in our expanding knowledge on the structure and function of carbohydrates (glycomics). No other functional system appears to be suited as well as the nervous system to study the functions of glycans, which had been originally characterized outside the nervous system. In this review, we describe the multiple studies on the functions of LewisX, the human natural killer cell antigen-1 (HNK-1), as well as oligomannosidic and sialic (neuraminic) acids. We attempt to show the sophistication of these structures in ontogenetic development, synaptic function and plasticity, and recovery from trauma, with a view on neurodegeneration and possibilities to ameliorate deterioration. In view of clinical applications, we emphasize the need for glycomimetic small organic compounds which surpass the usefulness of natural glycans in that they are metabolically more stable, more parsimonious to synthesize or isolate, and more advantageous for therapy, since many of them pass the blood brain barrier and are drug-approved for treatments other than those in the nervous system, thus allowing a more ready access for application in neurological diseases. We describe the isolation of such mimetic compounds using not only Western NIH, but also traditional Chinese medical libraries. With this review, we hope to deepen the interests in this exciting field.
Collapse
Affiliation(s)
- Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041, Guangdong, China
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
9
|
Mealer RG, Williams SE, Daly MJ, Scolnick EM, Cummings RD, Smoller JW. Glycobiology and schizophrenia: a biological hypothesis emerging from genomic research. Mol Psychiatry 2020; 25:3129-3139. [PMID: 32377000 PMCID: PMC8081046 DOI: 10.1038/s41380-020-0753-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Advances in genomics are opening new windows into the biology of schizophrenia. Though common variants individually have small effects on disease risk, GWAS provide a powerful opportunity to explore pathways and mechanisms contributing to pathophysiology. Here, we highlight an underappreciated biological theme emerging from GWAS: the role of glycosylation in schizophrenia. The strongest coding variant in schizophrenia GWAS is a missense mutation in the manganese transporter SLC39A8, which is associated with altered glycosylation patterns in humans. Furthermore, variants near several genes encoding glycosylation enzymes are unambiguously associated with schizophrenia: FUT9, MAN2A1, TMTC1, GALNT10, and B3GAT1. Here, we summarize the known biological functions, target substrates, and expression patterns of these enzymes as a primer for future studies. We also highlight a subset of schizophrenia-associated proteins critically modified by glycosylation including glutamate receptors, voltage-gated calcium channels, the dopamine D2 receptor, and complement glycoproteins. We hypothesize that common genetic variants alter brain glycosylation and play a fundamental role in the development of schizophrenia. Leveraging these findings will advance our mechanistic understanding of disease and may provide novel avenues for treatment development.
Collapse
Affiliation(s)
- Robert G. Mealer
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute.,Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA.,Corresponding Author: Robert Gene Mealer, M.D., Ph.D., Richard B. Simches Research Center, 185 Cambridge St, 6th Floor, Boston, MA 02114, Tel: +1 (617) 724-9076,
| | - Sarah E. Williams
- Massachusetts General Hospital, Department of Psychiatry.,Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA
| | - Mark J. Daly
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| | - Edward M. Scolnick
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA
| | - Jordan W. Smoller
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| |
Collapse
|
10
|
Yamada K, Suzuki K, Hirohata Y, Kinoshita M. Analysis of Minor Acidic N-Glycans in Human Serum. J Proteome Res 2020; 19:3033-3043. [PMID: 32436713 DOI: 10.1021/acs.jproteome.0c00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prior investigations by our research group focused on the method development for the simultaneous analysis of sulfated and phosphorylated glycans. Herein, the developed method was applied to analyze minor acidic N-glycans including sulfated and phosphorylated N-glycans in human serum. First, 2-aminobenzoic acid-labeled minor acidic N-glycans were enriched from the serum using a serotonin-immobilized column and were then separated into groups using hydrophilic interaction liquid chromatography, and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Phosphorylated hybrid-type and sulfated bi-antennary N-glycans were detected in the serum. In addition, we observed that multiple types of glucuronidated N-glycans were present. These results indicate that the developed method is applicable to the analysis of glucuronidated as well as sulfated and phosphorylated N-glycans. It was also applied to the sera obtained from 17 healthy subjects and 15 pancreatic cancer patients, and the profiles of sulfated, phosphorylated, and glucuronidated N-glycans were compared. The expressed amount of glucuronidated N-glycans was significantly decreased in some pancreatic cancer patients. Numerous examples of the N-glycan analysis in human serum were reported, but phosphorylated and glucuronidated glycans were not investigated. The methods described herein allow the analysis of minor acidic glycans that are typically difficult to detect.
Collapse
Affiliation(s)
- Keita Yamada
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Koji Suzuki
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Yoshihiko Hirohata
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Mitsuhiro Kinoshita
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
11
|
Melrose J. Keratan sulfate (KS)-proteoglycans and neuronal regulation in health and disease: the importance of KS-glycodynamics and interactive capability with neuroregulatory ligands. J Neurochem 2019; 149:170-194. [PMID: 30578672 DOI: 10.1111/jnc.14652] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Compared to the other classes of glycosaminoglycans (GAGs), that is, chondroitin/dermatan sulfate, heparin/heparan sulfate and hyaluronan, keratan sulfate (KS), have the least known of its interactive properties. In the human body, the cornea and the brain are the two most abundant tissue sources of KS. Embryonic KS is synthesized as a linear poly-N-acetyllactosamine chain of d-galactose-GlcNAc repeat disaccharides which become progressively sulfated with development, sulfation of GlcNAc is more predominant than galactose. KS contains multi-sulfated high-charge density, monosulfated and non-sulfated poly-N-acetyllactosamine regions and thus is a heterogeneous molecule in terms of chain length and charge distribution. A recent proteomics study on corneal KS demonstrated its interactivity with members of the Slit-Robbo and Ephrin-Ephrin receptor families and proteins which regulate Rho GTPase signaling and actin polymerization/depolymerization in neural development and differentiation. KS decorates a number of peripheral nervous system/CNS proteoglycan (PG) core proteins. The astrocyte KS-PG abakan defines functional margins of the brain and is up-regulated following trauma. The chondroitin sulfate/KS PG aggrecan forms perineuronal nets which are dynamic neuroprotective structures with anti-oxidant properties and roles in neural differentiation, development and synaptic plasticity. Brain phosphacan a chondroitin sulfate, KS, HNK-1 PG have roles in neural development and repair. The intracellular microtubule and synaptic vesicle KS-PGs MAP1B and SV2 have roles in metabolite transport, storage, and export of neurotransmitters and cytoskeletal assembly. MAP1B has binding sites for tubulin and actin through which it promotes cytoskeletal development in growth cones and is highly expressed during neurite extension. The interactive capability of KS with neuroregulatory ligands indicate varied roles for KS-PGs in development and regenerative neural processes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Sydney Medical School, Northern Campus, Royal North Shore Hospital, The University of Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Royal North Shore Hospital, The University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
12
|
Morise J, Takematsu H, Oka S. The role of human natural killer-1 (HNK-1) carbohydrate in neuronal plasticity and disease. Biochim Biophys Acta Gen Subj 2017; 1861:2455-2461. [PMID: 28709864 DOI: 10.1016/j.bbagen.2017.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/01/2017] [Accepted: 06/17/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The human natural killer-1 (HNK-1) carbohydrate, a unique trisaccharide possessing sulfated glucuronic acid in a non-reducing terminus (HSO3-3GlcAß1-3Galß1-4GlcNAc-), is highly expressed in the nervous system and its spatiotemporal expression is strictly regulated. Mice deficient in the gene encoding a key enzyme, GlcAT-P, of the HNK-1 biosynthetic pathway exhibit almost complete disappearance of the HNK-1 epitope in the brain, significant reduction of long-term potentiation, and aberration of spatial learning and memory formation. In addition to its physiological roles in higher brain function, the HNK-1 carbohydrate has attracted considerable attention as an autoantigen associated with peripheral demyelinative neuropathy, which relates to IgM paraproteinemia, because of high immunogenicity. It has been suggested, however, that serum autoantibodies in IgM anti-myelin-associated glycoprotein (MAG) antibody-associated neuropathy patients show heterogeneous reactivity to the HNK-1 epitope. SCOPE OF REVIEW We have found that structurally distinct HNK-1 epitopes are expressed in specific proteins in the nervous system. Here, we overview the current knowledge of the involvement of these HNK-1 epitopes in the regulation of neural plasticity and discuss the impact of different HNK-1 antigens of anti-MAG neuropathy patients. MAJOR CONCLUSIONS We identified the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit GluA2 and aggrecan as HNK-1 carrier proteins. The HNK-1 epitope on GluA2 and aggrecan regulates neural plasticity in different ways. Furthermore, we found the clinical relationship between reactivity of autoantibodies to the different HNK-1 epitopes and progression of anti-MAG neuropathy. GENERAL SIGNIFICANCE The HNK-1 epitope is indispensable for the acquisition of normal neuronal function and can be a good target for the establishment of diagnostic criteria for anti-MAG neuropathy.
Collapse
Affiliation(s)
- Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|