1
|
Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173577. [PMID: 38852866 DOI: 10.1016/j.scitotenv.2024.173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Mercury is a well-known neurotoxicant for humans and wildlife. The epidemic of mercury poisoning in Japan has clearly demonstrated that chronic exposure to methylmercury (MeHg) results in serious neurological damage to the cerebral and cerebellar cortex, leading to the dysfunction of the central nervous system (CNS), especially in infants exposed to MeHg in utero. The occurrences of poisoning have caused a wide public concern regarding the health risk emanating from MeHg exposure; particularly those eating large amounts of fish may experience the low-level and long-term exposure. There is growing evidence that MeHg at environmentally relevant concentrations can affect the health of biota in the ecosystem. Although extensive in vivo and in vitro studies have demonstrated that the disruption of redox homeostasis and microtube assembly is mainly responsible for mercurial toxicity leading to adverse health outcomes, it is still unclear whether we could quantitively determine the occurrence of interaction between mercurial and thiols and/or selenols groups of proteins linked directly to outcomes, especially at very low levels of exposure. Furthermore, intracellular calcium homeostasis, cytoskeleton, mitochondrial function, oxidative stress, neurotransmitter release, and DNA methylation may be the targets of mercury compounds; however, the primary targets associated with the adverse outcomes remain to be elucidated. Considering these knowledge gaps, in this article, we conducted a comprehensive review of mercurial toxicity, focusing mainly on the mechanism, and genes/proteins expression. We speculated that comprehensive analyses of transcriptomics, proteomics, and metabolomics could enhance interpretation of "omics" profiles, which may reveal specific biomarkers obviously correlated with specific pathways that mediate selective neurotoxicity.
Collapse
Affiliation(s)
- Bolun Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
2
|
Xu Y, Sun S, Fu Y, Wang L, Ren C, Ling Y, Zhang Z, Cao H. Positive In Vitro Effect of ROCK Pathway Inhibitor Y-27632 on Qualitative Characteristics of Goat Sperm Stored at Low Temperatures. Animals (Basel) 2024; 14:1441. [PMID: 38791659 PMCID: PMC11117216 DOI: 10.3390/ani14101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Y-27632, as a cytoskeleton protector, is commonly used for low-temperature preservation of cells. Goat sperm are prone to damage to the cytoskeleton under low-temperature conditions, leading to a loss of sperm vitality. However, the Y-27632 small molecule has not yet been used in research on low-temperature preservation of goat semen. This study aims to address the issue of low temperature-induced loss of sperm motility in goats by using Y-27632, and explore the regulation of Y-27632 on goat sperm metabolism. At a low temperature of 4 °C, different concentrations of Y-27632 were added to the sperm diluent. The regulation of Y-27632 on the quality of low temperature-preserved goat semen was evaluated by detecting goat sperm motility, antioxidant capacity, mitochondrial activity, cholesterol levels, and metabolomics analysis. The results indicated that 20 µM Y-27632 significantly increased plasma membrane integrity (p < 0.05), and acrosome integrity (p < 0.05) and sperm motility (p < 0.05), increased levels of superoxide dismutase (SOD) and catalase (CAT) (p < 0.01), increased total antioxidant capacity (T-AOC) (p < 0.05), decreased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) (p < 0.01), and significantly increased mitochondrial membrane potential (MMP). The levels of ATP, Ca2+, and TC in sperm increased (p < 0.01). Twenty metabolites with significant differences were identified, with six metabolic pathways having a significant impact, among which the D-glutamic acid and D-glutamine metabolic pathways had the most significant impact. The artificial insemination effect of goat semen treated with 20 μM Y-27632 was not significantly different from that of fresh semen. This study indicates that Y-27632 improves the quality of low-temperature preservation of sperm by protecting the sperm plasma membrane, enhancing sperm antioxidant capacity, regulating D-glutamine and D-glutamate metabolism, and promoting the application of low-temperature preservation of semen in artificial insemination technology.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Yu Fu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Leal-Nazaré CG, Arrifano GP, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, Soares-Silva I, Crespo-Lopez ME, Augusto-Oliveira M. Methylmercury neurotoxicity: Beyond the neurocentric view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170939. [PMID: 38365040 DOI: 10.1016/j.scitotenv.2024.170939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Mercury is a highly toxic metal widely used in human activities worldwide, therefore considered a global public health problem. Many cases of mercury intoxication have occurred in history and represent a huge challenge nowadays. Of particular importance is its methylated form, methylmercury (MeHg). This mercurial species induces damage to several organs in the human body, especially to the central nervous system. Neurological impairments such as executive, memory, motor and visual deficits are associated with MeHg neurotoxicity. Molecular mechanisms involved in MeHg-induced neurotoxicity include excitotoxicity due to glutamatergic imbalance, disturbance in calcium homeostasis and oxidative balance, failure in synaptic support, and inflammatory response. Although neurons are largely affected by MeHg intoxication, they only represent half of the brain cells. Glial cells represent roughly 50 % of the brain cells and are key elements in the functioning of the central nervous system. Particularly, astrocytes and microglia are deeply involved in MeHg-induced neurotoxicity, resulting in distinct neurological outcomes depending on the context. In this review, we discuss the main findings on astroglial and microglial involvement as mediators of neuroprotective and neurotoxic responses to MeHg intoxication. The literature shows that these responses depend on chemical and morphophysiological features, thus, we present some insights for future investigations, considering the particularities of the context, including time and dose of exposure, brain region, and species of study.
Collapse
Affiliation(s)
- Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jean Ludger Barthelemy
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Isabela Soares-Silva
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
4
|
Ng MG, Chan BJL, Koh RY, Ng KY, Chye SM. Prevention of Parkinson's Disease: From Risk Factors to Early Interventions. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:746-760. [PMID: 37326115 DOI: 10.2174/1871527322666230616092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by progressively worsening motor dysfunction. Currently, available therapies merely alleviate symptoms, and there are no cures. Consequently, some researchers have now shifted their attention to identifying the modifiable risk factors of PD, with the intention of possibly implementing early interventions to prevent the development of PD. Four primary risk factors for PD are discussed including environmental factors (pesticides and heavy metals), lifestyle (physical activity and dietary intake), drug abuse, and individual comorbidities. Additionally, clinical biomarkers, neuroimaging, biochemical biomarkers, and genetic biomarkers could also help to detect prodromal PD. This review compiled available evidence that illustrates the relationship between modifiable risk factors, biomarkers, and PD. In summary, we raise the distinct possibility of preventing PD via early interventions of the modifiable risk factors and early diagnosis.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Brendan Jun Lam Chan
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University, 47500 Selangor, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Baratange C, Baali H, Gaillet V, Bonnard I, Delahaut L, Gaillard JC, Grandjean D, Sayen S, Gallorini A, Le Bris N, Renault D, Breider F, Loizeau JL, Armengaud J, Cosio C. Bioaccumulation and molecular effects of carbamazepine and methylmercury co-exposure in males of Dreissena polymorpha. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165379. [PMID: 37423277 DOI: 10.1016/j.scitotenv.2023.165379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Dreissena polymorpha is a bivalve promising for biomonitoring in freshwater ecosystems thanks to its abundance and high filtration activity allowing rapid uptake of toxicants and identification of their negative effects. Nonetheless, we still lack knowledge on its molecular responses to stress under realistic scenario, e.g. multi-contamination. Carbamazepine (CBZ) and Hg are ubiquitous pollutants sharing molecular toxicity pathways, e.g. oxidative stress. A previous study in zebra mussels showed their co-exposure to cause more alterations than single exposures, but molecular toxicity pathways remained unidentified. D. polymorpha was exposed 24 h (T24) and 72 h (T72) to CBZ (6.1 ± 0.1 μg L-1), MeHg (430 ± 10 ng L-1) and the co-exposure (6.1 ± 0.1 μg L-1CBZ and 500 ± 10 ng L-1 MeHg) at concentrations representative of polluted areas (~10× EQS). RedOx system at the gene and enzyme level, the proteome and the metabolome were compared. The co-exposure resulted in 108 differential abundant proteins (DAPs), as well as 9 and 10 modulated metabolites at T24 and T72, respectively. The co-exposure specifically modulated DAPs and metabolites involved in neurotransmission, e.g. dopaminergic synapse and GABA. CBZ specifically modulated 46 DAPs involved in calcium signaling pathways and 7 amino acids at T24. MeHg specifically modulated 55 DAPs involved in the cytoskeleton remodeling and hypoxia-induced factor 1 pathway, without altering the metabolome. Single and co-exposures commonly modulated proteins and metabolites involved in energy and amino acid metabolisms, response to stress and development. Concomitantly, lipid peroxidation and antioxidant activities were unchanged, supporting that D. polymorpha tolerated experimental conditions. The co-exposure was confirmed to cause more alterations than single exposures. This was attributed to the combined toxicity of CBZ and MeHg. Altogether, this study underlined the necessity to better characterize molecular toxicity pathways of multi-contamination that are not predictable on responses to single exposures, to better anticipate adverse effects in biota and improve risk assessment.
Collapse
Affiliation(s)
- Clément Baratange
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Hugo Baali
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Véronique Gaillet
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze Cedex, France
| | - Dominique Grandjean
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC, IIE, Central Environmental Laboratory, Station 2, 1015 Lausanne, Switzerland
| | - Stéphanie Sayen
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, BP 1039, F-51687 Reims Cedex, 2, France
| | - Andrea Gallorini
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Nathalie Le Bris
- Université de Rennes, CNRS, EcoBio (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
| | - David Renault
- Université de Rennes, CNRS, EcoBio (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC, IIE, Central Environmental Laboratory, Station 2, 1015 Lausanne, Switzerland
| | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze Cedex, France
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France.
| |
Collapse
|
6
|
de Souza Prestes A, Vargas JLS, Dos Santos MM, Druzian GT, da Rocha JT, Aschner M, Barbosa NV. EtHg is more toxic than MeHg to human peripheral blood mononuclear cells: Involvement of apoptotic, mitochondrial, oxidative and proliferative parameters. Biochim Biophys Acta Gen Subj 2023; 1867:130446. [PMID: 37619690 DOI: 10.1016/j.bbagen.2023.130446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Methylmercury (MeHg) and ethylmercury (EtHg) are potent toxicants affecting the environment and human healthy. In this way, the present study aimed to investigate and compare the effects of MeHg and EtHg exposure on human peripheral blood mononuclear cells (PBMCs), which are critical components of the mammalian immune system. METHODS PBMCs were exposed to 2.5 μM MeHg or 2.5 μM EtHg. The number of cells and incubation times varied according to each assay. After exposures, the PBMCs were subjected to different evaluations, including cell viability, morphological aspects, cell cycle phases, indices of apoptosis and necrosis, reactive species (RS) production, and mitochondrial functionality. RESULTS PBMCs exposed to EtHg were characterized by decreased viability and size, increased granularity, RS production, and apoptotic indexes accompanied by an intensification of Sub-G1 and reduction in G0-G1 cell cycle phases. Preceding these effects, we found mitochondrial dysfunctions, namely a reduction in the electron transport system related to mitochondrial complex I. In contrast, PBMCs exposed to MeHg showed only reduced viability. By ICP-MS, we found that PBMCs treated with EtHg accumulated Hg + levels ∼1.8-fold greater than MeHg-exposed cells. CONCLUSIONS AND SIGNIFICANCE Taken together, our findings provide important insights about mercury immunotoxicity, showing that EtHg is more immunotoxic to human PBMCs than MeHg.
Collapse
Affiliation(s)
- Alessandro de Souza Prestes
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - João Luis Souza Vargas
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Matheus Mülling Dos Santos
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - João Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nilda Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Sasaki S, Negishi T, Tsuzuki T, Yukawa K. Methylmercury-induced reactive oxygen species-dependent and independent dysregulation of MAP kinase-related signaling pathway in cultured normal rat cerebellar astrocytes. Toxicology 2023; 487:153463. [PMID: 36813253 DOI: 10.1016/j.tox.2023.153463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Methylmercury (MeHg), a global environmental pollutant, could seriously damage the central nervous system (CNS) and cause neurological disorders such as cerebellar symptoms. Although numerous studies have revealed detailed toxicity mechanisms of MeHg in neurons, toxicity in astrocytes is barely known. Here, we tried to shed light on the toxicity mechanisms of MeHg exposure in cultured normal rat cerebellar astrocytes (NRA), focusing on the involvement of reactive oxygen species (ROS) in MeHg toxicity by assessing the effects of major antioxidants Trolox, a free-radical scavenger, N-acetyl-L-cysteine (NAC), a potent thiol-containing antioxidant, and glutathione (GSH), an endogenous thiol-containing antioxidant. Exposure to MeHg at just approximately 2 µM for 96 h increased cell viability, which was accompanied by the increase in intracellular ROS level and at ≥ 5 µM induced significant cell death and lowered ROS level. Trolox and NAC suppressed 2 µM MeHg-induced increases in cell viability and ROS level corresponding to control, although GSH with 2 µM MeHg induced significant cell death and ROS increase. On the contrary, against 4 µM MeHg-induced cell loss and ROS decrease, NAC inhibited both cell loss and ROS decrease, Trolox inhibited cell loss and further enhanced ROS decrease, and GSH moderately inhibited cell loss and increased ROS level above the control level. MeHg-induced oxidative stress was suggested by increases in the protein expression levels of heme oxygenase-1 (HO-1), Hsp70, and Nrf2, except for the decrease in SOD-1 and no change in catalase. Furthermore, MeHg exposure dose-dependently induced increases in the phosphorylation of MAP kinases (ERK1/2, p38MAPK, and SAPK/JNK) and phosphorylation and/or expression levels of transcription factors (CREB, c-Jun, and c-Fos) in NRA. NAC successfully suppressed 2 µM MeHg-induced alterations in all of the above-mentioned MeHg-responsive factors, whereas Trolox suppressed some MeHg-responsive factors but failed to suppress MeHg-induced increases in the protein expression levels of HO-1 and Hsp70 and increase in p38MAPK phosphorylation. Protein expression analyses in NRA exposed to 2 µM MeHg and GSH were excluded because of devastating cell death. These results suggested that MeHg could induce aberrant NRA activation, and ROS must be substantially involved in the toxicity mechanism of MeHg in NRA; however, other factors should be assumed.
Collapse
Affiliation(s)
- Shoto Sasaki
- Department of Physiology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan
| | - Takayuki Negishi
- Department of Physiology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan; Department of Physiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan.
| | - Takamasa Tsuzuki
- Department of Physiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan
| | - Kazunori Yukawa
- Department of Physiology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan; Department of Physiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan
| |
Collapse
|
8
|
Puty B, Bittencourt LO, Plaça JR, de Oliveira EHC, Lima RR. Astrocyte-Like Cells Transcriptome Changes After Exposure to a Low and Non-cytotoxic MeHg Concentration. Biol Trace Elem Res 2023; 201:1151-1162. [PMID: 35378667 DOI: 10.1007/s12011-022-03225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
The central nervous system is the main target of MeHg toxicity and glial cells are the first line of defense; however, their true role remains unclear. This study aimed to identify the global map of human glial-like (U87) cells transcriptome after exposure to a non-toxic and non-lethal MeHg concentration and to investigate the related molecular changes. U87 cells were exposed upon 0.1, 0.5, and 1 µM MeHg for 4 and 24 h. Although no changes were observed in the percentage of viable cells, the metabolic viability was significantly decreased after exposure to 1 µM MeHg for 24 h; thus, the non-toxic concentration of 0.1 µM MeHg was chosen to perform microarray analysis. Significant changes in U87 cells transcriptome were observed only after 24 h. The expression of 392 genes was down regulated while 431 genes were up-regulated. Gene ontology showed alterations in biological processes (75%), cellular components (21%), and molecular functions (4%). The main pathways showed by KEGG and Reactome were cell cycle regulation and Rho GTPase signaling. The complex mechanism of U87 cells response against MeHg exposure indicates that even a low and non-toxic concentration is able to alter the gene expression profile.
Collapse
Affiliation(s)
- Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environmental Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil
| | - Jéssica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Science, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
9
|
Shinoda Y, Akiyama M, Toyama T. Potential Association between Methylmercury Neurotoxicity and Inflammation. Biol Pharm Bull 2023; 46:1162-1168. [PMID: 37661394 DOI: 10.1248/bpb.b23-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is the causal substrate of Minamata disease and a major environmental toxicant. MeHg is widely distributed, mainly in the ocean, meaning its bioaccumulation in seafood is a considerable problem for human health. MeHg has been intensively investigated and is known to induce inflammatory responses and neurodegeneration. However, the relationship between MeHg-induced inflammatory responses and neurodegeneration is not understood. In the present review, we first describe recent findings showing an association between inflammatory responses and certain MeHg-unrelated neurological diseases caused by neurodegeneration. In addition, cell-specific MeHg-induced inflammatory responses are summarized for the central nervous system including those of microglia, astrocytes, and neurons. We also describe MeHg-induced inflammatory responses in peripheral cells and tissue, such as macrophages and blood. These findings provide a concept of the relationship between MeHg-induced inflammatory responses and neurodegeneration, as well as direction for future research of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
10
|
Methylmercury promotes oxidative stress and autophagy in rat cerebral cortex: Involvement of PI3K/AKT/mTOR or AMPK/TSC2/mTOR pathways and attenuation by N-acetyl-L-cysteine. Neurotoxicol Teratol 2023; 95:107137. [PMID: 36403891 DOI: 10.1016/j.ntt.2022.107137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Methylmercury (MeHg) is a potent neurotoxicant that could induce oxidative stress and autophagy. However, the underlying mechanisms through which MeHg affects the central nervous system have not been fully elucidated, and little has been known of the interaction between oxidative stress and autophagy. Therefore, rats were administrated with different MeHg concentrations to evaluate the neurotoxic effects and autophagy in cerebral cortex. Moreover, we have investigated the neuroprotective role of N-acetyl-L-cysteine (NAC) against MeHg-induced neurotoxicity in order to estimate the regulation effects of oxidative stress on autophagy. A total of 64 rats, 40 of which were randomly divided into control and MeHg-treated (4, 8 and 12 μ mol/kg) groups. The remaining 24 rats were divided into control, NAC control (1 mmol/kg), 12 μ mol/kg MeHg, and NAC pretreatment. Administration of 12 μ mol/kg MeHg significantly increased behavioral and pathological abnormalities, and autophagy levels. In addition, the oxidative stress levels increased, together with abnormal expression of autophagy-related molecules. Pretreatment with NAC significantly prevented MeHg-induced oxidative stress and PI3K/AKT/mTOR or AMPK/TSC2/mTOR-mediated autophagy. In conclusion, the present study suggested that oxidative stress can regulate autophagy through PI3K/AKT/mTOR or AMPK/TSC2/mTOR pathways. This study provides a theoretical basis for the study and treatment of MeHg-induced neurotoxicity.
Collapse
|
11
|
Martins B, Novo JP, Fonseca É, Raposo R, Sardão VA, Pereira F, Oriá RB, Fontes-Ribeiro C, Malva J. Necrotic-like BV-2 microglial cell death due to methylmercury exposure. Front Pharmacol 2022; 13:1003663. [PMID: 36408241 PMCID: PMC9667718 DOI: 10.3389/fphar.2022.1003663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Methylmercury (MeHg) is a dangerous environmental contaminant with strong bioaccumulation in the food chain and neurotoxic properties. In the nervous system, MeHg may cause neurodevelopment impairment and potentially interfere with immune response, compromising proper control of neuroinflammation and aggravating neurodegeneration. Human populations are exposed to environmental contamination with MeHg, especially in areas with strong mining or industrial activity, raising public health concerns. Taking this into consideration, this work aims to clarify pathways leading to acute toxic effects caused by MeHg exposure in microglial cells. BV-2 mouse microglial cells were incubated with MeHg at different concentrations (0.01, 0.1, 1 and 10 µM) for 1 h prior to continuous Lipopolysaccharide (LPS, 0.5 μg/ml) exposure for 6 or 24 h. After cell exposure, reactive oxygen species (ROS), IL-6 and TNF-α cytokines production, inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) release, metabolic activity, propidium iodide (PI) uptake, caspase-3 and -9 activities and phagocytic activity were assessed. MeHg 10 µM decreased ROS formation, the production and secretion of pro-inflammatory cytokines IL-6, TNF-α, iNOS immunoreactivity, the release of NO in BV-2 cells. Furthermore, MeHg 10 µM decreased the metabolic activity of BV-2 and increased the number of PI-positive cells (necrotic-like cell death) when compared to the respective control group. Besides, MeHg did not interfere with caspase activity or the phagocytic profile of cells. The short-term effects of a high concentration of MeHg on BV-2 microglial cells lead to impaired production of several pro-inflammatory mediators, as well as a higher microglial cell death via necrosis, compromising their neuroinflammatory response. Clarifying the mechanisms underlying MeHg-induced neurotoxicity and neurodegeneration in brain cells is relevant to better understand acute and long-term chronic neuroinflammatory responses following MeHg exposure.
Collapse
Affiliation(s)
- B. Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - J. P. Novo
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - É. Fonseca
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - R. Raposo
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal,Experimental Biology Core, Health Sciences Center, University of Fortaleza, Fortaleza, Brazil
| | - V. A. Sardão
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology (CNC), UC Biotech, University of Coimbra, Cantanhede, Portugal
| | - F. Pereira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - R. B. Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - C. Fontes-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - J. Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal,*Correspondence: J. Malva,
| |
Collapse
|
12
|
Sousa AH, Pereira JPG, Malaquias AC, Sagica FDES, de Oliveira EHC. Intracellular accumulation and DNA damage caused by methylmercury in glial cells. J Biochem Mol Toxicol 2022; 36:e23170. [PMID: 35822649 DOI: 10.1002/jbt.23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/14/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Mercury is widely used in industrial and extractive processes, and the improper disposal of waste or products containing this metal produces a significant impact on ecosystems, causing adverse effects on living organisms, including humans. Exposure to methylmercury, a highly toxic organic compound, causes important neurological and developmental impairments. Recently, the genotoxicity of mercurial compounds has gained prominence as one of the possible mechanisms associated with the neurological effects of mercury, mostly by disturbing the mitotic spindle and causing chromosome loss. In this sense, it is important to investigate if these compounds can also cause direct damage to DNA, such as single and double-strand breaks. Thus, the aim of this study was to investigate the cytotoxic and genotoxic potential of methylmercury in cell lines derived from neurons (B103) and glia (C6), exposed to methylmercury (MeHg) for 24 h, by analyzing cell viability, metabolic activity, and damage to DNA and chromosomes. We found that in comparison to the neuronal cell line, glial cells showed higher tolerance to MeHg, and therefore a higher LC50 and consequent higher intracellular accumulation of Hg, which led to the occurrence of several genotoxic effects, as evidenced by the presence of micronuclei, bridges, sprouts, and chromosomal aberrations.
Collapse
Affiliation(s)
- Aline H Sousa
- Programa de Pós Graduação em Epidemiologia e vigilância em Saúde, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Seção de Bacteriologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - João P G Pereira
- Programa de Pós Graduação em Epidemiologia e vigilância em Saúde, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Allan C Malaquias
- Faculdade de Medicina, Universidade Federal do Pará, Campus de Altamira, Pará, Brazil
| | | | - Edivaldo H C de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Faculdade de Ciências Naturais, ICEN, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
13
|
Dong L, Yang B, Zhang Y, Wang S, Li F, Xing G, Farina M, Zhang Y, Appiah-Kubi K, Tinkov AA, Aschner M, Shi H, Liu T, Lu R. Ferroptosis contributes to methylmercury-induced cytotoxicity in rat primary astrocytes and Buffalo rat liver cells. Neurotoxicology 2022; 90:228-236. [DOI: 10.1016/j.neuro.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 01/18/2023]
|
14
|
Salkov VN, Voronkov DN, Khudoerkov RM. [The role of mercury and arsenic in the etiology and pathogenesis of Parkinson's and Alzheimer's diseases]. Arkh Patol 2022; 84:59-64. [PMID: 36178224 DOI: 10.17116/patol20228405159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A critical review of literature data on the toxic effects of mercury and arsenic on the human brain and their relationship with the etiology and pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases is presented. In the first case, the toxic effect of mercury and arsenic on the brain stimulates oxidative stress, which leads to the formation of free oxygen species and a decrease in the antioxidant defense of neurons. In the second case, the harmful effect of mercury changes the structure and properties of β-amyloid, and the toxic effect of arsenic contributes to its accumulation. In the pathogenesis of the diseases under consideration, particular importance is attached to the reaction of astrocytes that initiate neuroinflammation, which is also characteristic of mercury and arsenic intoxication. Considering that the symptoms recorded during intoxication with mercury and arsenic are in many respects similar to those of Parkinson's and Alzheimer's diseases, and their pathogenetic mechanisms (oxidative stress and neuroinflammation) coincide, then the toxic effects of mercury and arsenic in neurodegenerative diseases analyzed in this review can be characterized as the influence of the most significant risk factors.
Collapse
Affiliation(s)
- V N Salkov
- Research Center of Neurology, Brain Institute, Moscow, Russia
| | - D N Voronkov
- Research Center of Neurology, Brain Institute, Moscow, Russia
| | - R M Khudoerkov
- Research Center of Neurology, Brain Institute, Moscow, Russia
| |
Collapse
|
15
|
Hoffe B, Mazurkiewicz A, Thomson H, Banton R, Piehler T, Petel OE, Holahan MR. Relating strain fields with microtubule changes in porcine cortical sulci following drop impact. J Biomech 2021; 128:110708. [PMID: 34492445 DOI: 10.1016/j.jbiomech.2021.110708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
The biomechanical response of brain tissue to strain and the immediate neural outcomes are of fundamental importance in understanding mild traumatic brain injury (mTBI). The sensitivity of neural tissue to dynamic strain events and the resulting strain-induced changes are considered to be a primary factor in injury. Rodent models have been used extensively to investigate impact-induced injury. However, the lissencephalic structure is inconsistent with the human brain, which is gyrencephalic (convoluted structure), and differs considerably in strain field localization effects. Porcine brains have a similar structure to the human brain, containing a similar ratio of white-grey matter and gyrification in the cortex. In this study, coronal brain slabs were extracted from female pig brains within 2hrs of sacrifice. Slabs were implanted with neutral density radiopaque markers, sealed inside an elastomeric encasement, and dropped from 0.9 m onto a steel anvil. Particle tracking revealed elevated tensile strains in the sulcus. One hour after impact, decreased microtubule associated protein 2 (MAP2) was found exclusively within the sulcus with no increase in cell death. These results suggest that elevated tensile strain in the sulcus may result in compromised cytoskeleton, possibly indicating a vulnerability to pathological outcomes under the right circumstances. The results demonstrated that the observed changes were unrelated to shear strain loading of the tissues but were more sensitive to tensile load.
Collapse
Affiliation(s)
- Brendan Hoffe
- Departement of Neuroscience, Carleton University, Ottawa Ontario K1S 5B6, Canada.
| | - Ashley Mazurkiewicz
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Hannah Thomson
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Rohan Banton
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Thuvan Piehler
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Oren E Petel
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Matthew R Holahan
- Departement of Neuroscience, Carleton University, Ottawa Ontario K1S 5B6, Canada
| |
Collapse
|
16
|
Ni L, Wei Y, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. The effects of mTOR or Vps34-mediated autophagy on methylmercury-induced neuronal apoptosis in rat cerebral cortex. Food Chem Toxicol 2021; 155:112386. [PMID: 34242720 DOI: 10.1016/j.fct.2021.112386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 01/13/2023]
Abstract
Methylmercury (MeHg) is a environmental contaminant, which can induce neurotoxic effects. So far, the exact molecular mechanisms of autophagy and its effect on apoptosis in MeHg-induced neurotoxicity have not been elucidated. Here, rats were exposed to MeHg (4, 8, or 12 μmol/kg) for 4 weeks to evaluate the dose-effect relationship between MeHg and apoptosis, or autophagy in cerebral cortex. On this basis, rapamycin (Rapa) or 3-methyladenine (3-MA) was administrated to further explore the regulatory mechanisms of autophagy on MeHg-induced neuronal apoptosis. The pathological changes, autophagy or apoptosis levels, expression of autophagic or apoptotic-associated factors such as mTOR, S6K1, 4EBP1, Vps34, Beclin1, p62, LC3, Bcl-2/Bax, caspase, or MAPKs were investigated. Results showed that MeHg dose-dependently induced pathological changes in cerebral cortex, and the levels of autophagy and apoptosis were increased. Furthermore, Rapa pretreatment antagonized MeHg-induced apoptosis, whereas 3-MA further aggravated apoptosis, which were supported by findings that Rapa activated mTOR-mediated autophagy while 3-MA inhibited Vps34-related autophagy, further affect neuronal apoptosis through regulation of apoptotic factors mentioned above. In conclusion, the findings indicated that MeHg dose-dependently induced autophagy or apoptosis, and mTOR or Vps34 may play important roles in mediating autophagy, which further regulated apoptosis through MAPKs or mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.
| |
Collapse
|
17
|
Abu-Zeid EH, Khalifa BA, Elewa YHA, Arisha AH, Ismail TA, Hendam BM, Abdel-Hamid SE. Bee venom Apis mellifera lamarckii rescues blood brain barrier damage and neurobehavioral changes induced by methyl mercury via regulating tight junction proteins expression in rat cerebellum. Food Chem Toxicol 2021; 154:112309. [PMID: 34062221 DOI: 10.1016/j.fct.2021.112309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
The objective of the current study is to investigate the protective effect of Egyptian bee venom (BV) against methyl mercury chloride (MMC) induced blood-brain barrier (BBB) damage and neurobehavioral changes. Eighty male Sprague-Dawley rats were randomly grouped into 1st control (C), 2nd BV (0.5 mg/kg S/C for14 days), 3rd MMC (6.7 mg/kg orally/14 days), and 4th MMC + BV group. MMC exposure significantly altered rat cognitive behavior, auditory startle habituation, and swimming performance, increased the exploratory, grooming, and stereotypic behavior. MMC significantly impaired BBB integrity via induction of inflammation, oxidative stress, and down-regulation of tight junction proteins genes (TJPs) mRNA expression levels: Occludin (OCC), Claudins-5 (CLDN5), Zonula occludens-1 (ZO-1), while up-regulated the transforming growth factor-beta (TGF-β) mRNA expression levels. MMC revealed a significantly higher percentage of IgG positive area ratio, a higher index ratio of Iba1, Sox10, and ss-DNA, while index ratio of CD31, neurofilament, and pan neuron showed a significant reduction. Administration of BV significantly regulates the MMC altered behavioral responses, TJPs relative mRNA expression, and the immune-expression markers for specific neural cell types. It could be concluded for the first time that BV retains a promising in vivo protection against MMC-induced BBB dysfunction and neurobehavioral toxicity.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Bouthaina A Khalifa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt; Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shereen El Abdel-Hamid
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
18
|
Wei Y, Ni L, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity. Neuroscience 2021; 469:175-190. [PMID: 34174372 DOI: 10.1016/j.neuroscience.2021.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
Methylmercury (MeHg) is a potential neurotoxin that is highly toxic to the human central nervous system. Although MeHg neurotoxicity has been widely studied, the mechanism of MeHg neurotoxicity has not yet been fully elucidated. Some research evidence suggests that oxidative stress and autophagy are important molecular mechanisms of MeHg-induced neurotoxicity. Researchers have widely accepted that oxidative stress regulates the autophagy pathway. The current study reviews the activation of Nuclear factor-erythroid-2-related factor (Nrf2)-related oxidative stress pathways and autophagy signaling pathways in the case of MeHg neurotoxicity. In addition, autophagy mainly plays a role in the neurotoxicity of MeHg through mTOR-dependent and mTOR-independent autophagy signaling pathways. Finally, the regulation of autophagy by reactive oxygen species (ROS) and Nrf2 in MeHg neurotoxicity was explored in this review, providing a new concept for the study of the neurotoxicity mechanism of MeHg.
Collapse
Affiliation(s)
- Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| |
Collapse
|
19
|
Revisiting Astrocytic Roles in Methylmercury Intoxication. Mol Neurobiol 2021; 58:4293-4308. [PMID: 33990914 DOI: 10.1007/s12035-021-02420-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Intoxication by heavy metals such as methylmercury (MeHg) is recognized as a global health problem, with strong implications in central nervous system pathologies. Most of these neuropathological conditions involve vascular, neurotransmitter recycling, and oxidative balance disruption leading to accelerated decline in fine balance, and learning, memory, and visual processes as main outcomes. Besides neurons, astrocytes are involved in virtually all the brain processes and perform important roles in neurological response following injuries. Due to astrocytes' strategic functions in brain homeostasis, these cells became the subject of several studies on MeHg intoxication. The most heterogenous glial cells, astrocytes, are composed of plenty of receptors and transporters to dialogue with neurons and other cells and to monitor extracellular environment responding tightly through fluctuation of cytosolic ions. The overall toxicity of MeHg might be determined on the basis of the balance between MeHg-mediated injury to neurons and protective responses from astrocytes. Although the role of neurons in MeHg intoxication is relatively well-established, the role of the astrocytes is only beginning to be understood. In this review, we update the information on astroglial modulation of the MeHg-induced neurotoxicity, providing remarks on their protective and deleterious roles and insights for future studies.
Collapse
|
20
|
Mechanisms of oxidative stress in methylmercury-induced neurodevelopmental toxicity. Neurotoxicology 2021; 85:33-46. [PMID: 33964343 DOI: 10.1016/j.neuro.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Methylmercury (MeHg) is a long-lasting organic environmental pollutant that poses a great threat to human health. Ingestion of seafood containing MeHg is the most important way by which it comes into contact with human body, where the central nervous system (CNS) is the primary target of MeHg toxicity. During periods of pre-plus postnatal, in particular, the brain of offspring is vulnerable to specific developmental insults that result in abnormal neurobehavioral development, even without symptoms in mothers. While many studies on neurotoxic effects of MeHg on the developing brain have been conducted, the mechanisms of oxidative stress in MeHg-induced neurodevelopmental toxicity is less clear. Hitherto, no single process can explain the many effects observed in MeHg-induced neurodevelopmental toxicity. This review summarizes the possible mechanisms of oxidative stress in MeHg-induced neurodevelopmental toxicity, highlighting modulation of Nrf2/Keap1/Notch1, PI3K/AKT, and PKC/MAPK molecular pathways as well as some preventive drugs, and thus contributes to the discovery of endogenous and exogenous molecules that can counteract MeHg-induced neurodevelopmental toxicity.
Collapse
|
21
|
Metals associated neurodegeneration in Parkinson's disease: Insight to physiological, pathological mechanisms and management. Neurosci Lett 2021; 753:135873. [PMID: 33812934 DOI: 10.1016/j.neulet.2021.135873] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a deliberately progressive neurological disorder, arises due to degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The loss of dopaminergic nerves and dopamine deficiency leads to motor symptoms characterized by rigidity, tremor, and bradykinesia. Heavy metals and trace elements play various physiological and pathological roles in the nervous system. Excessive exposure to toxic metals like mercury (Hg), lead (Pb), copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), aluminium (Al), arsenic (As), cadmium(cd), and selenium (Se) cross the blood-brain barrier to enter into the brain and leads to dopaminergic neuronal degeneration. Excessive concentrations of heavy metals in the brain promote oxidative stress, mitochondrial dysfunction, and the formation of α-synuclein leads to dopaminergic neuronal damage. There is increasing evidence that heavy metals normally present in the human body in minute concentration also cause accumulation to initiate the free radical formation and affecting the basal ganglia signaling. In this review, we explored how these metals affect brain physiology and their roles in the accumulation of toxic proteins (α-synuclein and Lewy bodies). We have also discussed the metals associated with neurotoxic effects and their prevention as management of PD. Our goal is to increase the awareness of metals as players in the onset and progression of PD.
Collapse
|
22
|
Novo JP, Martins B, Raposo RS, Pereira FC, Oriá RB, Malva JO, Fontes-Ribeiro C. Cellular and Molecular Mechanisms Mediating Methylmercury Neurotoxicity and Neuroinflammation. Int J Mol Sci 2021; 22:ijms22063101. [PMID: 33803585 PMCID: PMC8003103 DOI: 10.3390/ijms22063101] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Methylmercury (MeHg) toxicity is a major environmental concern. In the aquatic reservoir, MeHg bioaccumulates along the food chain until it is consumed by riverine populations. There has been much interest in the neurotoxicity of MeHg due to recent environmental disasters. Studies have also addressed the implications of long-term MeHg exposure for humans. The central nervous system is particularly susceptible to the deleterious effects of MeHg, as evidenced by clinical symptoms and histopathological changes in poisoned humans. In vitro and in vivo studies have been crucial in deciphering the molecular mechanisms underlying MeHg-induced neurotoxicity. A collection of cellular and molecular alterations including cytokine release, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate dyshomeostasis, and cell death mechanisms are important consequences of brain cells exposure to MeHg. The purpose of this review is to organize an overview of the mercury cycle and MeHg poisoning events and to summarize data from cellular, animal, and human studies focusing on MeHg effects in neurons and glial cells. This review proposes an up-to-date compendium that will serve as a starting point for further studies and a consultation reference of published studies.
Collapse
Affiliation(s)
- João P. Novo
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Beatriz Martins
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Ramon S. Raposo
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Experimental Biology Core, University of Fortaleza, Health Sciences, Fortaleza 60110-001, Brazil
| | - Frederico C. Pereira
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil;
| | - João O. Malva
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Correspondence: (J.O.M.); (C.F.-R.)
| | - Carlos Fontes-Ribeiro
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Correspondence: (J.O.M.); (C.F.-R.)
| |
Collapse
|
23
|
Chen N, Tang X, Ye Z, Wang S, Xiao X. Methylmercury disrupts autophagic flux by inhibiting autophagosome-lysosome fusion in mouse germ cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110667. [PMID: 32339925 DOI: 10.1016/j.ecoenv.2020.110667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Methylmercury (MeHg) is an extremely toxic environmental pollutant that can cause serious male reproductive developmental dysplasia in humans and animals. However, the molecular mechanisms underlying MeHg-induced male reproductive injury are not fully clear. The purpose of this study was to explore whether mitophagy and lysosome dysfunction contribute to MeHg-induced apoptosis of germ cell and to determine the potential mechanism. First, we confirmed the exposure of GC2-spd cells to mercury. In GC2-spd cells (a mouse spermatocyte cell line), we found that MeHg treatment led to an obvious increase of cell apoptosis accompanied by a marked rise of LC3-II expression and an elevated number of autophagosomes. These results were associated with the induction of oxidative stress and mitophagy. Interestingly, we found that MeHg did not promote but prevented autophagosome-lysosome fusion by impairing the lysosome function. Furthermore, as a lysosome inhibitor, chloroquine pre-treatment obviously enhanced LC3-II expression and mitophagy formation in MeHg-treated cells. This further proved that the induction of mitophagy and the injury of the lysosome played an important role in the GC2-spd cell apoptosis induced by MeHg. Our findings indicate that MeHg caused apoptosis in the GC2-spd cells, which were dependent on oxidative stress-mediated mitophagy and the lysosome damaging-mediated inhibition of autophagic flux induced by MeHg.
Collapse
Affiliation(s)
- Na Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiaofeng Tang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Zhaoyang Ye
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shanshan Wang
- Key Laboratory of Agro-product Safety and Quality, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
24
|
V’yushina AV, Pritvorova AV, Semenova OG, Ordyan NE. Influence of Prenatal Stress on the Activity of Antioxidant Enzymes in the Subcellular Fractions of the Neurons and Neuroglia of the Rat Neocortex. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Yang B, Yin C, Zhou Y, Wang Q, Jiang Y, Bai Y, Qian H, Xing G, Wang S, Li F, Feng Y, Zhang Y, Cai J, Aschner M, Lu R. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology 2019; 425:152248. [PMID: 31330227 PMCID: PMC6710134 DOI: 10.1016/j.tox.2019.152248] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. Curcumin, a polyphenol obtained from the rhizome of turmeric, has well-known antioxidant functions. Here, we evaluated curcumin's efficacy in mitigating MeHg-induced cytotoxicity and further investigated the underlying mechanism of this neuroprotection in primary rat astrocytes. Pretreatment with curcumin (2, 5, 10 and 20 μM for 3, 6, 12 or 24 h) protected against MeHg-induced (5 μM for 6 h) cell death in a time and dose-dependent manner. Curcumin (2, 5, 10 or 20 μM) pretreatment for 12 h significantly ameliorated the MeHg-induced astrocyte injury and oxidative stress, as evidenced by morphological alterations, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, and glutathione (GSH) and catalase (CAT) levels. Moreover, curcumin pretreatment increased Nrf2 nuclear translocation and downstream enzyme expression, heme oxygenase-1 (HO-1) and NADPH quinone reductase-1 (NQO1). Knockdown of Nrf2 with siRNA attenuated the protective effect of curcumin against MeHg-induced cell death. However, both the pan-protein kinase C (PKC) inhibitor, Ro 31-8220, and the selective PKCδ inhibitor, rottlerin, failed to suppress the curcumin-activated Nrf2/Antioxidant Response Element(ARE) pathway and attenuate the protection exerted by curcumin. Taken together, these findings confirm that curcumin protects against MeHg-induced neurotoxicity by activating the Nrf2/ARE pathway and this protection is independent of PKCδ activation. More studies are needed to understand the mechanisms of curcumin cytoprotection.
Collapse
Affiliation(s)
- Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Changsheng Yin
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Zhou
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuanyue Jiang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yu Bai
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Qian
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Feng
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yubin Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77550-1106, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215132, China.
| |
Collapse
|
26
|
Chung YP, Yen CC, Tang FC, Lee KI, Liu SH, Wu CC, Hsieh SS, Su CC, Kuo CY, Chen YW. Methylmercury exposure induces ROS/Akt inactivation-triggered endoplasmic reticulum stress-regulated neuronal cell apoptosis. Toxicology 2019; 425:152245. [PMID: 31330229 DOI: 10.1016/j.tox.2019.152245] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have positively linked mercury exposure and neurodegenerative diseases (ND). Methylmercury (MeHg), an organic form of mercury, is a ubiquitous and potent environmental neurotoxicant that easily crosses the blood-brain barrier and causes irreversible injury to the central nervous system (CNS). However, the molecular mechanisms underlying MeHg-induced neurotoxicity remain unclear. Here, the present study found that Neuro-2a cells underwent apoptosis in response to MeHg (1-5 μM), which was accompanied by increased phosphatidylserine (PS) exposure on the outer cellular membrane leaflets, caspase-3 activity, and the activation of caspase cascades and poly (ADP-ribose) polymerase (PARP). Exposure of Neuro-2a cells to MeHg also triggered endoplasmic reticulum (ER) stress, which was identified via several key molecules (including: glucose-regulated protein (GRP)78, GRP94, C/EBP homologous protein (CHOP) X-box binding protein(XBP)-1, protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme(IRE)-1, activation transcription factor(AFT)4, and ATF6. Transfection with GRP78-, GRP94-, CHOP-, and XBP-1-specific small interfering (si)RNA significantly suppressed the expression of these proteins, and attenuated cytotoxicity and caspase-12, -7, and -3 activation in MeHg-exposed cells. Furthermore, MeHg dramatically decreased Akt phosphorylation, and the overexpression of activation of Akt1 (myr-Akt1) could significantly prevent MeHg-induced Akt inactivation, as well as apoptotic and ER stress-related signals. Pretreatment with the antioxidant N-acetylcysteine (NAC) effectively prevented MeHg-induced neuronal cell reactive oxygen species (ROS) generation, apoptotic and ER stress-related signals, and Akt inactivation. Collectively, these results indicate that MeHg exerts its cytotoxicity in neurons by inducing ROS-mediated Akt inactivation up-regulated ER stress, which induces apoptosis and ultimately leads to cell death.
Collapse
Affiliation(s)
- Yao-Pang Chung
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Feng-Cheng Tang
- Department of Occupational Medicine, Changhua Christian Hospital, Changhua County, 500, Taiwan; Department of Leisure Services Management, Chaoyang University of Technology, Taichung, 413, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung, 427, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Shang-Shu Hsieh
- Department of Emergency, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung, 427, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
27
|
Freire MAM, Santana LNS, Bittencourt LO, Nascimento PC, Fernandes RM, Leão LKR, Fernandes LMP, Silva MCF, Amado LL, Gomes-Leal W, Crespo-Lopez ME, Maia CDSF, Lima RR. Methylmercury intoxication and cortical ischemia: Pre-clinical study of their comorbidity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:557-565. [PMID: 30865911 DOI: 10.1016/j.ecoenv.2019.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Stroke is one of the main causes of human disability worldwide. Ischemic stroke is mostly characterized by metabolic collapse and fast tissue damage, followed by secondary damage in adjacent regions not previously affected. Heavy metals intoxication can be associated with stroke incidence, because of their damaging action in the vascular system. Mercury, in particular, possesses a high tropism by metabolically active regions, such as the brain. In the present study we sought to evaluate whether methylmercury (MeHg) intoxication can aggravate the tissue damage caused by an ischemic stroke induced by microinjections of endothelin-1 (ET-1) into the motor cortex of adult rats. Following MeHg intoxication by gavage (0.04 mg/kg/day) during 60 days, the animals were injected with ET-1 (1 μl, 40 pmol/μl) or vehicle (1 μl). After 7 days, all animals were submitted to behavioral tests and then their brains were processed to biochemical and immunohistochemical analyses. We observed that long-term MeHg intoxication promoted a significant Hg deposits in the motor cortex, with concomitant increase of microglial response, followed by reduction of the neuronal population following ischemia and MeHg intoxication, as well as disturbance in the antioxidant defense mechanisms by misbalance of oxidative biochemistry with increase of both lipid peroxidation and nitrite levels, associated to behavioral deficits. MeHg exposure and cortical ischemia demonstrated that both injuries are able of causing significant neurobehavioural impairments in motor coordination and learning accompanied of an exacerbated microglial activation, oxidative stress and neuronal loss in the motor cortex, indicating that MeHg as a source of metabolic disturbance can act as an important increasing factor of ischemic events in the brain.
Collapse
Affiliation(s)
| | - Luana Nazaré S Santana
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Monteiro Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Luana Ketlen R Leão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Luanna Melo P Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Marcia Cristina F Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Lílian Lund Amado
- Laboratory of Ecotoxicology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Walace Gomes-Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Cristiane do Socorro F Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
28
|
Lin T, Ruan S, Huang D, Meng X, Li W, Wang B, Zou F. MeHg-induced autophagy via JNK/Vps34 complex pathway promotes autophagosome accumulation and neuronal cell death. Cell Death Dis 2019; 10:399. [PMID: 31113939 PMCID: PMC6529499 DOI: 10.1038/s41419-019-1632-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/21/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Methylmercury (MeHg), an environmental toxin, may specifically cause neurological disorders. Recent studies have reported that autophagy can be induced by metals and be involved in metal cytotoxicity. However, the role of autophagy in MeHg-induced neurotoxicity remains unknown. Here, we demonstrate that MeHg induces mTOR-independent autophagy through JNK/Vps34 complex pathway, which further promotes autophagosome accumulation and neuronal cell death. In addition to cell death, MeHg increased LC3-II expression in a concentration- and time-dependent manner in neuronal cells; furthermore, western blot analysis of LC3-II expression under baf A1-treated condition indicates that MeHg activates autophagy induction. However, we found lysosomal degradative function was impaired by MeHg. Under this condition, MeHg-activated autophagy induction would elicit autophagosome accumulation and cell death. Consistent with this inference, the autophagy inhibitor decreased the MeHg-induced autophagosome accumulation and neuronal cells death, whereas the autophagy inducers further augmented MeHg cytotoxicity. Then, the mechanism of autophagy induction is investigated. We show that MeHg-induced autophagy is mTOR-independent. Vacuolar protein sorting 34 (Vps34) complex is critical for mTOR-independent autophagy. MeHg induced the interaction between Beclin1 and Vps34 to form Vps34 complex. Importantly, knockdown of Vps34 inhibited autophagy induction by MeHg. Furthermore, we found that JNK, but not p38 or ERK, promoted the formation of Vps34 complex and autophagy induction. Finally, inhibition of JNK or downregulation of Vps34 decreased autophagosome accumulation and alleviated MeHg-induced neuronal cell death. The present study implies that inhibiting JNK/Vps34 complex autophagy induction pathway may be a novel therapeutic approach for the treatment of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Tianji Lin
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Shijuan Ruan
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Dingbang Huang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Wenjun Li
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Bin Wang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Takahashi T, Shimohata T. Vascular Dysfunction Induced by Mercury Exposure. Int J Mol Sci 2019; 20:E2435. [PMID: 31100949 PMCID: PMC6566353 DOI: 10.3390/ijms20102435] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Methylmercury (MeHg) causes severe damage to the central nervous system, and there is increasing evidence of the association between MeHg exposure and vascular dysfunction, hemorrhage, and edema in the brain, but not in other organs of patients with acute MeHg intoxication. These observations suggest that MeHg possibly causes blood-brain barrier (BBB) damage. MeHg penetrates the BBB into the brain parenchyma via active transport systems, mainly the l-type amino acid transporter 1, on endothelial cell membranes. Recently, exposure to mercury has significantly increased. Numerous reports suggest that long-term low-level MeHg exposure can impair endothelial function and increase the risks of cardiovascular disease. The most widely reported mechanism of MeHg toxicity is oxidative stress and related pathways, such as neuroinflammation. BBB dysfunction has been suggested by both in vitro and in vivo models of MeHg intoxication. Therapy targeted at both maintaining the BBB and suppressing oxidative stress may represent a promising therapeutic strategy for MeHg intoxication. This paper reviews studies on the relationship between MeHg exposure and vascular dysfunction, with a special emphasis on the BBB.
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata 950-2085, Japan.
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|
30
|
Guida N, Valsecchi V, Laudati G, Serani A, Mascolo L, Molinaro P, Montuori P, Di Renzo G, Canzoniero LM, Formisano L. The miR206-JunD Circuit Mediates the Neurotoxic Effect of Methylmercury in Cortical Neurons. Toxicol Sci 2019. [PMID: 29522201 DOI: 10.1093/toxsci/kfy051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Methylmercury (MeHg) causes neuronal death through different pathways. Particularly, we found that in cortical neurons it increased the expression of Repressor Element-1 Silencing Transcription Factor (REST), histone deacetylase (HDAC)4, Specificity Protein (Sp)1, Sp4, and reduced the levels of brain-derived neurotrophic factor (BDNF). Herein, in rat cortical neurons we investigated whether microRNA (miR)206 can modulate MeHg-induced cell death by regulating REST/HDAC4/Sp1/Sp4/BDNF axis. MeHg (1 µM) reduced miR206 expression after both 12 and 24 h and miR206 transfection prevented MeHg-induced neuronal death. Furthermore, miR206 reverted MeHg-induced REST and Sp4 increase and BDNF reduction at gene and protein level, and reverted HDAC4 protein increase, but not HDAC4 mRNA upregulation. Moreover, since no miR206 seed sequences were identified in the 3'-untranslated regions (3'-UTRs) of REST and SP4, we investigated the role of JunD, that presents a consensus motif on REST, Sp4, and BDNF promoters. Indeed, MeHg increased JunD mRNA and protein levels, and JunD knockdown counteracted MeHg-induced REST, Sp4 increase, but not BDNF reduction. Furthermore, we identified a miR206 binding site in the 3'-UTR of JunD mRNA (miR206/JunD) and mutagenesis of miR206/JunD site reverted JunD luciferase activity reduction induced by miR206. Finally, miR206 prevented MeHg-increased JunD binding to REST and Sp4 promoters, and MeHg-reduced BDNF expression was determined by the increase of HDAC4 binding on BDNF promoter IV. Collectively, these results suggest that miR206 downregulation induced by MeHg exposure determines an upregulation of HDAC4, that in turn downregulated BDNF, and the activation of JunD that, by binding REST and Sp4 gene promoters, increased their expression.
Collapse
Affiliation(s)
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.,Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Preventive Medical Sciences, University Federico II, 80131 Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Lorella M Canzoniero
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.,Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.,Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
31
|
Ke T, Gonçalves FM, Gonçalves CL, Dos Santos AA, Rocha JBT, Farina M, Skalny A, Tsatsakis A, Bowman AB, Aschner M. Post-translational modifications in MeHg-induced neurotoxicity. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2068-2081. [PMID: 30385410 DOI: 10.1016/j.bbadis.2018.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
Mercury (Hg) exposure remains a major public health concern due to its widespread distribution in the environment. Organic mercurials, such as MeHg, have been extensively investigated especially because of their congenital effects. In this context, studies on the molecular mechanism of MeHg-induced neurotoxicity are pivotal to the understanding of its toxic effects and the development of preventive measures. Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and acetylation are essential for the proper function of proteins and play important roles in the regulation of cellular homeostasis. The rapid and transient nature of many PTMs allows efficient signal transduction in response to stress. This review summarizes the current knowledge of PTMs in MeHg-induced neurotoxicity, including the most commonly PTMs, as well as PTMs induced by oxidative stress and PTMs of antioxidant proteins. Though PTMs represent an important molecular mechanism for maintaining cellular homeostasis and are involved in the neurotoxic effects of MeHg, we are far from understanding the complete picture on their role, and further research is warranted to increase our knowledge of PTMs in MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Cinara Ludvig Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | | | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105900 Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, SC, Brazil
| | - Anatoly Skalny
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 105064, Russia; Orenburg State University, Pobedy Ave., 13, Orenburg 460352, Russia
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
32
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
33
|
Unoki T, Akiyama M, Kumagai Y, Gonçalves FM, Farina M, da Rocha JBT, Aschner M. Molecular Pathways Associated With Methylmercury-Induced Nrf2 Modulation. Front Genet 2018; 9:373. [PMID: 30271424 PMCID: PMC6146031 DOI: 10.3389/fgene.2018.00373] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Methylmercury (MeHg) is a potent neurotoxin that affects particularly the developing brain. Since MeHg is a potent electrophilic agent, a wide range of intracellular effects occur in response to its exposure. Yet, the molecular mechanisms associated with MeHg-induced cell toxicity have yet to be fully understood. Activation of cell defense mechanisms in response to metal exposure, including the up-regulation of Nrf2- (nuclear factor erythroid 2-related factor 2)-related genes has been previously shown. Nrf2 is a key regulator of cellular defenses against oxidative, electrophilic and environmental stress, regulating the expression of antioxidant proteins, phase-II xenobiotic detoxifying enzymes as well phase-III xenobiotic transporters. Analogous to other electrophiles, MeHg activates Nrf2 through modification of its repressor Keap1 (Kelch-like ECH-associated protein 1). However, recent findings have also revealed that Keap1-independent signal pathways might contribute to MeHg-induced Nrf2 activation and cytoprotective responses against MeHg exposure. These include, Akt phosphorylation (Akt/GSK-3β/Fyn-mediated Nrf2 activation pathway), activation of the PTEN/Akt/CREB pathway and MAPK-induced autophagy and p62 expression. In this review, we summarize the state-of-the-art knowledge regarding Nrf2 up-regulation in response to MeHg exposure, highlighting the modulation of signaling pathways related to Nrf2 activation. The study of these mechanisms is important in evaluating MeHg toxicity in humans, and can contribute to the identification of the molecular mechanisms associated with MeHg exposure.
Collapse
Affiliation(s)
- Takamitsu Unoki
- Department of Basic Medical Sciences, National Institute for Minamata Diseasexy3Minamata, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
34
|
Antunes Dos Santos A, Ferrer B, Marques Gonçalves F, Tsatsakis AM, Renieri EA, Skalny AV, Farina M, Rocha JBT, Aschner M. Oxidative Stress in Methylmercury-Induced Cell Toxicity. TOXICS 2018; 6:toxics6030047. [PMID: 30096882 PMCID: PMC6161175 DOI: 10.3390/toxics6030047] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Methylmercury (MeHg) is a hazardous environmental pollutant, which elicits significant toxicity in humans. The accumulation of MeHg through the daily consumption of large predatory fish poses potential health risks, and the central nervous system (CNS) is the primary target of toxicity. Despite well-described neurobehavioral effects (i.e., motor impairment), the mechanisms of MeHg-induced toxicity are not completely understood. However, several lines of evidence point out the oxidative stress as an important molecular mechanism in MeHg-induced intoxication. Indeed, MeHg is a soft electrophile that preferentially interacts with nucleophilic groups (mainly thiols and selenols) from proteins and low-molecular-weight molecules. Such interaction contributes to the occurrence of oxidative stress, which can produce damage by several interacting mechanisms, impairing the function of various molecules (i.e., proteins, lipids, and nucleic acids), potentially resulting in modulation of different cellular signal transduction pathways. This review summarizes the general aspects regarding the interaction between MeHg with regulators of the antioxidant response system that are rich in thiol and selenol groups such as glutathione (GSH), and the selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (Gpx). A particular attention is directed towards the role of the PI3K/Akt signaling pathway and the nuclear transcription factor NF-E2-related factor 2 (Nrf2) in MeHg-induced redox imbalance.
Collapse
Affiliation(s)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Elisavet A Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Anatoly V Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 150000, Russia.
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Yaroslavl 150014, Russia.
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow 150000, Russia.
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil.
| | - João B T Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
35
|
Zepeta-Flores N, Valverde M, Lopez-Saavedra A, Rojas E. Glutathione depletion triggers actin cytoskeleton changes via actin-binding proteins. Genet Mol Biol 2018; 41:475-487. [PMID: 29870570 PMCID: PMC6082235 DOI: 10.1590/1678-4685-gmb-2017-0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/18/2017] [Indexed: 11/30/2022] Open
Abstract
The importance of glutathione (GSH) in alternative cellular roles to the
canonically proposed, were analyzed in a model unable to synthesize GSH. Gene
expression analysis shows that the regulation of the actin cytoskeleton pathway
is strongly impacted by the absence of GSH. To test this hypothesis, we evaluate
the effect of GSH depletion via buthionine sulfoximine (5 and 12.5 mM) in human
neuroblastoma MSN cells. In the present study, 70% of GSH reduction did not
induce reactive oxygen species, lipoperoxidation, or cytotoxicity, which enabled
us to evaluate the effect of glutathione in the absence of oxidative stress. The
cells with decreasing GSH levels acquired morphology changes that depended on
the actin cytoskeleton and not on tubulin. We evaluated the expression of three
actin-binding proteins: thymosin β4, profilin and gelsolin, showing a reduced
expression, both at gene and protein levels at 24 hours of treatment; however,
this suppression disappears after 48 hours of treatment. These changes were
sufficient to trigger the co-localization of the three proteins towards
cytoplasmic projections. Our data confirm that a decrease in GSH in the absence
of oxidative stress can transiently inhibit the actin binding proteins and that
this stimulus is sufficient to induce changes in cellular morphology via the
actin cytoskeleton.
Collapse
Affiliation(s)
- Nahum Zepeta-Flores
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Mahara Valverde
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Alejandro Lopez-Saavedra
- Unidad Biomédica de Investigación en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México. D.F., Mexico
| | - Emilio Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico
| |
Collapse
|
36
|
Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells. Food Chem Toxicol 2018; 113:328-336. [PMID: 29428217 DOI: 10.1016/j.fct.2018.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD+/NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA.
Collapse
|
37
|
Skalny AV, Simashkova NV, Skalnaya MG, Klyushnik TP, Chernova LN, Tinkov AA. Mercury and autism spectrum disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:75-79. [DOI: 10.17116/jnevro20181185275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Delayed neurochemical effects of prenatal exposure to MeHg in the cerebellum of developing rats. Toxicol Lett 2017; 284:161-169. [PMID: 29258870 DOI: 10.1016/j.toxlet.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/03/2017] [Accepted: 12/09/2017] [Indexed: 01/09/2023]
Abstract
Human fetuses and neonates are particularly vulnerable to methylmercury (MeHg)-induced brain damage and are sensitive even to low exposure levels. Previous work of our group evidence that prenatal exposure to MeHg causes cognitive and behavioral alterations and disrupt hippocampus signaling. The current study aimed to investigate the effect of gestational exposure of rats to MeHg at low doses (1 or 2 mg/kg) on parameters of redox imbalance and key signaling pathways in the cerebellum of their offspring. Pregnant females received MeHg (treated group) or 0.9% saline water (control group) by gavage in alternated days from gestational day 5 (GD5) until parturition and analyzes were proceed in the cerebellum of 30-day-old pups. We found increased lipid peroxidation and protein carbonylation levels as well as decreased SH content in pups prenatally exposed to 2 mg/kg MeHg. In addition, misregulated SOD/catalase activities supported imbalanced redox equilibrium. We found decreased GSK3β(Ser9) phosphorylation, suggesting activation of this enzyme and dephosphorylation/inhibition of ERK1/2 and JNK pathways. Increased PKAα catalytic subunit could be upstream of hyperphosphorylated c-Raf(Ser259) and downregulated MAPK pathway. In addition, we found raised levels of the Ca2+-dependent protein phosphatase 2 B (PP2B). We also found preserved immunohistochemical staining for both glial fibrillary acidic protein (GFAP) and NeuN in MeHg-exposed pups. Western blot analysis showed unaltered levels of BAX/BCL-XL, BAD/BCL-2 and active caspase 3. Together, these findings support absence of reactive astrocytes, neuronal damage and apoptotic cell death in the cerebellum of MeHg treated pups. The present study provides evidence that prenatal exposure to MeHg leads to later redox imbalance and disrupted signaling mechanisms in the cerebellum of 30-day-old pups potentially predisposing them to long-lasting neurological impairments in CNS.
Collapse
|
39
|
Dao CV, Shiraishi M, Miyamoto A. The MARCKS protein amount is differently regulated by calpain during toxic effects of methylmercury between SH-SY5Y and EA.hy926 cells. J Vet Med Sci 2017; 79:1931-1938. [PMID: 29046508 PMCID: PMC5745167 DOI: 10.1292/jvms.17-0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Methylmercury (MeHg) is an environmental pollutant that shows severe toxicity to humans and animals. However, the molecular mechanisms mediating MeHg toxicity are not completely understood. We have previously reported that the MARCKS protein is involved in the MeHg toxicity to SH-SY5Y neuroblastoma and EA.hy926 vascular endothelial cell lines. In addition, calpain, a Ca2+-dependent protease, is suggested to be associated with the MeHg toxicity. Because MARCKS is known as a substrate of calpain, we studied the relation between calpain activation and cleavage of MARCKS and its role in MeHg toxicity. In SH-SY5Y cells, MeHg decreased cell viability along with increased calcium mobilization, calpain activation and a decrease in MARCKS amounts. However, pretreatment with calpain inhibitors attenuated the decrease in cell viability and MARCKS amount induced only by 1 µM but not by 3 µM MeHg. In cells with a MARCKS knockdown, calpain inhibitors failed to attenuate the decrease in cell viability caused by MeHg. In EA.hy926 cells, although MeHg caused calcium mobilization and a decrease in MARCKS levels, calpain activation was not observed. These results indicate that the participation of calpain in the regulation of MARCKS amounts is dependent on the cell type and concentration of MeHg. In SH-SY5Y cells, calpain-mediated proteolysis of MARCKS is involved in cytotoxicity induced by a low concentration of MeHg.
Collapse
Affiliation(s)
- Cuong Van Dao
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Department of Veterinary Pharmacology, Faculty of Animal Husbandry and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Group 10, Quyet Thang Commune, Thai Nguyen City, Thai Nguyen, Vietnam
| | - Mitsuya Shiraishi
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Atsushi Miyamoto
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
40
|
Pierozan P, Biasibetti-Brendler H, Schmitz F, Ferreira F, Pessoa-Pureur R, Wyse ATS. Kynurenic Acid Prevents Cytoskeletal Disorganization Induced by Quinolinic Acid in Mixed Cultures of Rat Striatum. Mol Neurobiol 2017; 55:5111-5124. [PMID: 28840509 DOI: 10.1007/s12035-017-0749-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/31/2017] [Indexed: 01/03/2023]
Abstract
Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan known to modulate a number of mechanisms involved in neural dysfunction. Although its activity in the brain has been widely studied, the effect of KYNA counteracting the actions of quinolinic acid (QUIN) remains unknown. The present study aims at describing the ability of 100 μM KYNA preventing cytoskeletal disruption provoked by QUIN in astrocyte/neuron/microglia mixed culture. KYNA totally preserved cytoskeletal organization, cell morphology, and redox imbalance in mixed cultures exposed to QUIN. However, KYNA partially prevented morphological alteration in isolated primary astrocytes and failed to protect the morphological alterations of neurons caused by QUIN exposure. Moreover, KYNA prevented QUIN-induced microglial activation and upregulation of ionized calcium-binding adapter molecule 1 (Iba-1) and partially preserved tumor necrosis factor-α (TNF-α) level in mixed cultures. TNF-α level was also partially preserved in astrocytes. In addition to the mechanisms dependent on redox imbalance and microglial activation, KYNA prevented downregulation of connexin-43 and the loss of functionality of gap junctions (GJs), preserving cell-cell contact, cytoskeletal organization, and cell morphology in QUIN-treated cells. Furthermore, the toxicity of QUIN targeting the cytoskeleton of mixed cultures was not prevented by the N-methyl-D-aspartate (NMDA) antagonist MK-801. We suggest that KYNA protects the integrity of the cytoskeleton of mixed cultures by complex mechanisms including modulating microglial activation preventing oxidative imbalance and misregulated GJs leading to disrupted cytoskeleton in QUIN-treated cells. This study contributed to elucidate the molecular basis of KYNA protection against QUIN toxicity.
Collapse
Affiliation(s)
- Paula Pierozan
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil.
| | - Helena Biasibetti-Brendler
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Ferreira
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Citoesqueleto, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
41
|
Developmental neurotoxicity of the hippocampus following in utero exposure to methylmercury: impairment in cell signaling. Arch Toxicol 2017; 92:513-527. [PMID: 28821999 DOI: 10.1007/s00204-017-2042-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/10/2017] [Indexed: 01/01/2023]
Abstract
In this study, we assessed some hippocampal signaling cascades and behavioral impairments in 30-day-old rat pups prenatally exposed to methylmercury (MeHg). Pregnant rats were exposed to 1.0 or 2.0 mg/kg MeHg by gavage in alternated days from gestational day 5 until parturition. We found increased anxiety-like and decreased exploration behavior evaluated by open field test and deficit of both short- and long-term memories by novel object recognition task, respectively, in MeHg-treated pups. Downregulated PI3K/Akt/mTOR pathway and activated/hypophosphorylated (Ser9) GSK3β in MeHg-treated pups could be upstream of hyperphosphorylated Tau (Ser396) destabilizing microtubules and contributing to neural dysfunction in the hippocampus of these rats. Hyperphosphorylated/activated p38MAPK and downregulated phosphoErk1/2 support a role for mitogen-activated protein kinase (MAPK) cascade on MeHg neurotoxicity. Decreased receptor of advanced glycation end products (RAGE) immunocontent supports the assumption that downregulated RAGE/Erk1/2 pathway could be involved in hypophosphorylated lysine/serine/proline (KSP) repeats on neurofilament subunits and disturbed axonal transport. Downregulated myelin basic protein (MBP), the major myelin protein, is compatible with dysmyelination and neurofilament hypophosphorylation. Increased glial fibrillary acidic protein (GFAP) levels suggest reactive astrocytes, and active apoptotic pathways BAD/BCL-2, BAX/BCL-XL, and caspase 3 suggest cell death. Taken together, our findings get light on important signaling mechanisms that could underlie the behavioral deficits in 30-day-old pups prenatally exposed to MeHg.
Collapse
|