1
|
Yu H, Chen Y, Li H, Li Z, Cui Y, Han S, Cui Y, Zeng X, Cheng S, Feng Y. Design, synthesis and evaluation of novel L-tryptophan derivatives as multifunctional agents with cholinesterase inhibition, anti-β-amyloid aggregation, anti-inflammatory, antioxidant and neuroprotection properties against Alzheimer's disease. Bioorg Chem 2025; 161:108478. [PMID: 40318509 DOI: 10.1016/j.bioorg.2025.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
In our recent investigation, we conducted a systematic search for novel L-Tryptophan derivatives exhibiting marked inhibitory effects against human serum butyrylcholinesterase (hBuChE), an enzyme intricately implicated in the pathological cascade of Alzheimer's Disease (AD). Two lead compounds among these derivatives, Z165 and Z168 displayed IC50 values of 0.44 μM and 3.23 μM against butyrylcholinesterase, suggesting their promising potential for further structural optimization. Chemical modifications were subsequently undertaken to enhance the inhibitory activities of these leads, culminating in the development of compounds 4d-9, 4d-12, and 4d-13, which demonstrated IC50 values of 0.29 μM, 0.52 μM, and 0.13 μM, respectively. Furthermore, the following investigation revealed that these compounds exhibit exceptional antioxidant properties when juxtaposed with ascorbic acid. They are also proficient in inhibiting the aggregation of amyloid-beta (Aβ) peptides while concurrently displaying minimal cytotoxic effects towards BV-2 cell lines. Meanwhile the good blood-brain barrier permeability of these compounds was confirmed in PAMPA-BBB assay. Remarkably, compound 4d-13, which demonstrated the most potent inhibitory activity against butyrylcholinesterase, also afforded consistent neuroprotective effects compared with Galantamine against the injury induced by NMDA or L-(+)-Sodium glutamate in SH-SY5Y cells. Besides, 4d-13 could reduce the expression of inflammatory factors IL-1β and IL-6 dose-dependently in the LPS induced BV-2 inflammatory model. Morris water maze and step-down testing in vivo confirmed that 4d-13 could ameliorate scopolamine-induced cognitive deficits. These findings suggest that these compounds are promising leads for the development of therapeutic agents against AD.
Collapse
Affiliation(s)
- Haiyang Yu
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yinfang Chen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Huizhen Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zhiqiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yushun Cui
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shan Han
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yaru Cui
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Xianghao Zeng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shaobing Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yulin Feng
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Choudhary P, Kumari S, Bagri K, Deshmukh R. Ceramide: a central regulator in Alzheimer's disease pathogenesis. Inflammopharmacology 2025; 33:1775-1783. [PMID: 40148603 DOI: 10.1007/s10787-025-01719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
Ceramide is a key component of sphingolipid metabolism and functions as a lipid second messenger. Sphingolipids are crucial for maintaining the nervous system, particularly in differentiation and development. Ceramide supports hippocampal growth but, at elevated levels, can impair dendritic cell function. During aging and neurodegenerative diseases like Alzheimer's disease (AD), intracellular ceramide production and accumulation increase, negatively impacting cognitive functions. High ceramide levels are linked to the progression of AD pathology, significantly contributing to amyloid β (Aβ) accumulation, tau tangle formation, insulin resistance, oxidative stress, and neuroinflammation. Ceramide facilitates the production and aggregation of Aβ peptides, leading to neurotoxic plaque formation. Its dysregulation is associated with abnormal tau protein phosphorylation, resulting in neurofibrillary tangles (NFTs). In addition, elevated ceramide levels can trigger brain inflammation by promoting the release of pro-inflammatory cytokines and activating microglia. This accumulation also enhances oxidative stress in neurons, damaging cellular components such as proteins, lipids, and DNA. This review will help in deeper understanding of the molecular pathways altered via ceramide metabolism and accumulation involved in the AD pathology. The cellular and pathological mechanisms of ceramide and their impact on Alzheimer's disease pathophysiology. A deeper understanding of ceramide-mediated effects in aging and AD could pave the way for innovative therapeutic strategies targeting ceramide metabolism to treat neurodegenerative diseases and age-related cognitive decline.
Collapse
Affiliation(s)
- Priyanka Choudhary
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Shilpa Kumari
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Kajal Bagri
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rahul Deshmukh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
3
|
Lakela AL, Berntsson E, Vosough F, Jarvet J, Paul S, Barth A, Gräslund A, Roos PM, Wärmländer SKTS. Molecular interactions, structural effects, and binding affinities between silver ions (Ag +) and amyloid beta (Aβ) peptides. Sci Rep 2025; 15:5439. [PMID: 39948350 PMCID: PMC11825922 DOI: 10.1038/s41598-024-59826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 02/16/2025] Open
Abstract
Because silver is toxic to microbes, but not considered toxic to humans, the metal has been used as an antimicrobial agent since ancient times. Today, silver nanoparticles and colloidal silver are used for antibacterial purposes, and silver-peptide and similar complexes are being developed as therapeutic agents. Yet, the health effects of silver exposure are not fully understood, nor are the molecular details of silver-protein interactions. In Alzheimer's disease, the most common form of dementia worldwide, amyloid-β (Aβ) peptides aggregate to form soluble oligomers that are neurotoxic. Here, we report that monovalent silver ions (Ag+) bind wildtype Aβ40 peptides with a binding affinity of 25 ± 12 µM in MES buffer at 20 °C. Similar binding affinities are observed for wt Aβ40 peptides bound to SDS micelles, for an Aβ40(H6A) mutant, and for a truncated Aβ(4-40) variant containing an ATCUN (Amino Terminal Cu and Ni) motif. Weaker Ag+ binding is observed for the wt Aβ40 peptide at acidic pH, and for an Aβ40 mutant without histidines. These results are compatible with Ag+ ions binding to the N-terminal segment of Aβ peptides with linear bis-his coordination. Because the Ag+ ions do not induce any changes in the size or structure of Aβ42 oligomers, we suggest that Ag+ ions have a minor influence on Aβ toxicity.
Collapse
Affiliation(s)
- Amanda L Lakela
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086, Tallinn, Estonia
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden.
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden.
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
- University Healthcare Unit of Capio St. Göran Hospital, 11281, Stockholm, Sweden
| | - Sebastian K T S Wärmländer
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden.
- Chemistry Section, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
4
|
Nie T, Li J, You L, Wu Q. Environmental mycotoxins: A potential etiological factor for neurodegenerative diseases? Toxicology 2025; 511:154056. [PMID: 39814257 DOI: 10.1016/j.tox.2025.154056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Mycotoxins are potential environmental risk factors for neurodegenerative diseases. These toxins penetrate the central nervous system via a compromised blood-brain barrier, which may cause oxidative stress and neuroinflammation, these can also contribute to amyloid-beta (Aβ) plaque accumulation, Tau protein hyperphosphorylation, and neurofibrillary tangle formation. Mycotoxins also activate microglia, cause neuronal apoptosis, and disrupt central nervous system function. This study examines the evidence linking mycotoxin exposure to neurodegenerative disorders like Alzheimer's and Parkinson's diseases. We explore mechanisms such as oxidative stress, mitochondrial dysfunction, blood-brain barrier disruption, neuroinflammation, and direct neurotoxic effects. Epidemiological studies show regional variations in mycotoxin prevalence and corresponding neurodegenerative disease incidences, supporting this association. We also review current approaches to mitigate mycotoxin exposure and discuss the challenges and opportunities in developing strategies to prevent or slow neurodegenerative disease progression. This work highlights the need for increased awareness and research on mycotoxins as modifiable risk factors in neurological health.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
5
|
Muraleva NA, Zhdankina AA, Khlebnikov AI, Kolosova NG. JNK Signaling Pathway Activity Alterations in the Rat Hippocampus: Effect of Age, Alzheimer's Disease-Like Pathology Development, and the JNK Inhibitor IQ-1S. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:265-275. [PMID: 40254404 DOI: 10.1134/s0006297924603903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 04/22/2025]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder and the leading cause of senile dementia. The key risk factor for a more common (>95% of cases) sporadic form of AD is age. So far, there are no effective methods for AD prevention or treatment. A growing body of evidence indicates that the development of AD and other neurodegenerative diseases is associated with the activation of mitogen-activated protein kinase (MAPK) pathways, and JNK signaling pathway is considered as a potential target for the prevention and treatment of AD. However, the information on alterations in its activity in ontogenesis, which are evaluated by changes in the phosphorylation of its components, is extremely limited. The aim of this study was to compare age-related changes in the activity of JNK signaling pathway in the hippocampus of Wistar rats and senescence-accelerated OXYS rats (which spontaneously develop the key symptoms of AD-like pathology) and to evaluate the effect of the selective JNK3 inhibitor IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt). The ability of IQ-1S to suppress accelerated brain aging in OXYS rat has been proven previously, but the effect of this inhibitor on the JNK activity has not been studied. Here, we showed that with age, the activity of the JNK signaling pathway increased in the hippocampus of rats of both strains. At the same time, the manifestation and active progression of AD-like pathology in OXYS rats was accompanied by the increase in the phosphorylation level of the key kinase of this signaling pathway, JNK3, and its target proteins compared to Wistar rats, which allowed us to suggest JNK3 as a potential target for interventions aimed at preventing neurodegenerative processes. This suggestion was supported by the fact that the neuroprotective effect of the selective JNK3 inhibitor IQ-1S and its ability to suppress the development of neurodegenerative processes in OXYS rats were associated with a decrease in the phosphorylation levels of JNK3, c-Jun, APP, and Tau in the hippocampus.
Collapse
Affiliation(s)
- Natalia A Muraleva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | - Andrey I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
6
|
Eo H, Kim SH, Ju IG, Lee JH, Oh MS, Kim YJ. NXP032 Improves Memory Impairment Through Suppression of Tauopathy in PS19 Mice and Attenuates Okadaic Acid-Induced Tauopathy in SH-SY5Y Cells. J Neuroimmune Pharmacol 2025; 20:10. [PMID: 39891801 DOI: 10.1007/s11481-025-10175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Tauopathy is widely observed in multiple neurodegenerative diseases such as Alzheimer's disease (AD) and characterized by abnormal tau protein phosphorylation, aggregation and its accumulation as a form of neurofibrillary tangle (NFT) in the brain. However, there are no effective treatments targeting tau pathology in the AD. Vitamin C is known to reduce tauopathy and modulate one of its regulators called glycogen synthase kinase 3 (GSK3) in the body. Nevertheless, vitamin C has a limitation of its stability during metabolism due to its chemical properties. Thus, in the current study, NXP032 (a vitamin C/aptamer complex) was tested as a candidate for tau-targeting treatment because it can preserve antioxidative efficacy of vitamin C before it can reach the target tissue. In this context, the current study aimed to investigate the therapeutic effect of NXP032 on tauopathy in vivo and in vitro. As a result, NXP032 attenuated cognitive and memory decline and reduced NFT and tau hyperphosphorylation in the P301S mutant human tau transgenic mice (or called PS19 mice). In addition, NXP032 suppressed neuroinflammation found in the PS19 mice. Furthermore, NXP032 protected SH-SY5Y human neuroblastoma cells from okadaic acid (OKA)-induced cytotoxicity. Especially, 10 ng/ml of NXP032 reduced tau hyperphosphorylation and GSK3 activation though its phosphorylation at Tyr216 site which were promoted by OKA treatment in the SH-SY5Y cells. Taken together, our results suggest that NXP032 might be a potential therapy for AD and tauopathy-related neurodegenerative disorders as well.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seong Hye Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hee Lee
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Li NN, Lin WY, Wei YT, Jin ZB, Gu JX, Li HL, Ren HX, Xing ZY, Zong ZA. Development of an AIE-active fluorescent probe for the simultaneous detection of Al 3+ and viscosity and imaging in Alzheimer's disease model. Bioorg Chem 2024; 152:107768. [PMID: 39216196 DOI: 10.1016/j.bioorg.2024.107768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease is associated both with imbalances in Al3+ production and changes in viscosity in cells. Their simultaneous measurement could therefore provide valuable insights into Alzheimer's disease pathology. Their simultaneous measurement would therefore be of great value in investigating the pathological mechanism of Alzheimer's disease. We designed a fluorescent probe YM2T with AIE effect that is capable of selectively responding to Al3+ by fluorescence colormetrics and to viscosity by fluorescence "turn on" modes. Additionally, Al3+ and viscosity were simultaneously detected in PC12 cells using the low cytotoxic probe YM2T via blue and green fluorescence channels. More importantly, the YM2T probe was used to image mice with AD. Hence, the YM2T probe shows potential as a useful molecular instrument for studying the pathological impact of Al3+ and viscosity.
Collapse
Affiliation(s)
- Na-Na Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Wan-Ying Lin
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000 Guangxi, PR China
| | - Ying-Ting Wei
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Zhan-Bin Jin
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Jian-Xia Gu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Hai-Long Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Hai-Xian Ren
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Zhi-Yong Xing
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000 Guangxi, PR China
| | - Zi-Ao Zong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000 Guangxi, PR China.
| |
Collapse
|
8
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Pupyshev AB, Akopyan AA, Tenditnik MV, Ovsyukova MV, Dubrovina NI, Belichenko VM, Korolenko TA, Zozulya SA, Klyushnik TP, Tikhonova MA. Alimentary Treatment with Trehalose in a Pharmacological Model of Alzheimer's Disease in Mice: Effects of Different Dosages and Treatment Regimens. Pharmaceutics 2024; 16:813. [PMID: 38931934 PMCID: PMC11207537 DOI: 10.3390/pharmaceutics16060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
In the treatment of experimental neurodegeneration with disaccharide trehalose, various regimens are used, predominantly a 2% solution, drunk for several weeks. We studied the effects of different regimens of dietary trehalose treatment in an amyloid-β (Aβ) 25-35-induced murine model of Alzheimer's disease (AD). Aβ-treated mice received 2% trehalose solution daily, 4% trehalose solution daily (continuous mode) or every other day (intermittent mode), to drink for two weeks. We revealed the dose-dependent effects on autophagy activation in the frontal cortex and hippocampus, and the restoration of behavioral disturbances. A continuous intake of 4% trehalose solution caused the greatest activation of autophagy and the complete recovery of step-through latency in the passive avoidance test that corresponds to associative long-term memory and learning. This regimen also produced an anxiolytic effect in the open field. The effects of all the regimens studied were similar in Aβ load, neuroinflammatory response, and neuronal density in the frontal cortex and hippocampus. Trehalose successfully restored these parameters to the levels of the control group. Thus, high doses of trehalose had increased efficacy towards cognitive impairment in a model of early AD-like pathology. These findings could be taken into account for translational studies and the development of clinical approaches for AD therapy using trehalose.
Collapse
Affiliation(s)
- Alexander B. Pupyshev
- Laboratory of the Neurobiological Mechanisms of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), 630017 Novosibirsk, Russia
| | - Anna A. Akopyan
- Laboratory of the Neurobiological Mechanisms of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), 630017 Novosibirsk, Russia
| | - Michael V. Tenditnik
- Laboratory of the Neurobiological Mechanisms of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), 630017 Novosibirsk, Russia
| | - Marina V. Ovsyukova
- Laboratory of the Neurobiological Mechanisms of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), 630017 Novosibirsk, Russia
| | - Nina I. Dubrovina
- Laboratory of the Neurobiological Mechanisms of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), 630017 Novosibirsk, Russia
| | - Victor M. Belichenko
- Laboratory of the Neurobiological Mechanisms of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), 630017 Novosibirsk, Russia
| | - Tatiana A. Korolenko
- Laboratory of the Neurobiological Mechanisms of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), 630017 Novosibirsk, Russia
| | | | | | - Maria A. Tikhonova
- Laboratory of the Neurobiological Mechanisms of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), 630017 Novosibirsk, Russia
| |
Collapse
|
10
|
Aili M, Zhou K, Zhan J, Zheng H, Luo F. Anti-inflammatory role of gold nanoparticles in the prevention and treatment of Alzheimer's disease. J Mater Chem B 2023; 11:8605-8621. [PMID: 37615596 DOI: 10.1039/d3tb01023f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory and cognitive dysfunction and reduces a person's decision-making and reasoning functions. AD is the leading cause of dementia in the elderly. Patients with AD have increased expression of pro-inflammatory cytokines in the nervous system, and the sustained inflammatory response impairs neuronal function. Meanwhile, long-term use of anti-inflammatory drugs can reduce the incidence of AD to some extent. This confirms that anti-neuroinflammation may be an effective treatment for AD. Gold nanoparticles (AuNPs) are an emerging nanomaterial with promising physicochemical properties, anti-inflammatory and antioxidant. AuNPs reduce neuroinflammation by inducing macrophage polarization toward the M2 phenotype, reducing pro-inflammatory cytokine expression, blocking leukocyte adhesion, and decreasing oxidative stress. Therefore, AuNPs are gradually attracting the interest of scholars and are used for treating inflammatory diseases and drug delivery. Herein, we explored the role and mechanism of AuNPs in treating neuroinflammation in AD. The use of AuNPs for treating AD is a topic worth exploring in the future, not only to help solve a global public health problem but also to provide a reference for treating other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Munire Aili
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Kebing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China
| |
Collapse
|
11
|
Berntsson E, Vosough F, Noormägi A, Padari K, Asplund F, Gielnik M, Paul S, Jarvet J, Tõugu V, Roos PM, Kozak M, Gräslund A, Barth A, Pooga M, Palumaa P, Wärmländer SKTS. Characterization of Uranyl (UO 22+) Ion Binding to Amyloid Beta (Aβ) Peptides: Effects on Aβ Structure and Aggregation. ACS Chem Neurosci 2023; 14:2618-2633. [PMID: 37487115 PMCID: PMC10401651 DOI: 10.1021/acschemneuro.3c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.
Collapse
Affiliation(s)
- Elina Berntsson
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Faraz Vosough
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Andra Noormägi
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Kärt Padari
- Institute
of Molecular and Cell Biology, University
of Tartu, 50090 Tartu, Estonia
| | - Fanny Asplund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Maciej Gielnik
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus, Denmark
| | - Suman Paul
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Vello Tõugu
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Per M. Roos
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- University
Healthcare Unit of Capio St. Göran Hospital, 112 81 Stockholm, Sweden
| | - Maciej Kozak
- Department
of Biomedical Physics, Institute of Physics, Faculty of Physics, Adam Mickiewicz University, 61-712 Poznań, Poland
- SOLARIS
National Synchrotron Radiation Centre, Jagiellonian
University, 31-007 Kraków, Poland
| | - Astrid Gräslund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Andreas Barth
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Margus Pooga
- Institute
of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Peep Palumaa
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Sebastian K. T. S. Wärmländer
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
12
|
Zhao Y, Zhou H, Zhao Y, Liang Z, Gong X, Yu J, Huang T, Yang C, Wu M, Xiao Y, Yang Y, Liu W, Wang X, Shu X, Bao J. BACE1 SUMOylation deregulates phosphorylation and ubiquitination in Alzheimer's disease pathology. J Neurochem 2023; 166:318-327. [PMID: 37286480 DOI: 10.1111/jnc.15870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
BACE1 is essential for the generation of amyloid-β (Aβ) that likely initiates the toxicity in Alzheimer's disease (AD). BACE1 activity is mainly regulated by post-translational modifications, but the relationship between these modifications is not fully characterized. Here, we studied the effects of BACE1 SUMOylation on its phosphorylation and ubiquitination. We demonstrate that SUMOylation of BACE1 inhibits its phosphorylation at S498 and its ubiquitination in vitro. Conversely, BACE1 phosphorylation at S498 suppresses its SUMOylation, which results in promoting BACE1 degradation in vitro. Furthermore, an increase in BACE1 SUMOylation is associated with the progression of AD pathology, while its phosphorylation and ubiquitination are decreased in an AD mouse model. Our findings suggest that BACE1 SUMOylation reciprocally influences its phosphorylation and competes against its ubiquitination, which might provide a new insight into the regulations of BACE1 activity and Aβ accumulation.
Collapse
Affiliation(s)
- Yanna Zhao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Hongyan Zhou
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Yan Zhao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Zhen Liang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jing Yu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Tiantian Huang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Chaoqin Yang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Mengjuan Wu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Yifan Xiao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Youhua Yang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Physiology, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaochuan Wang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
13
|
Network Pharmacology and Molecular Docking-Based Strategy to Investigate the Multitarget Mechanisms of Shenqi Yizhi Granule on Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8032036. [PMID: 35535155 PMCID: PMC9078761 DOI: 10.1155/2022/8032036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/13/2022] [Indexed: 01/28/2023]
Abstract
Background Traditional Chinese herbal medicine draws more attention to explore an effective therapeutic strategy for Alzheimer's disease (AD). Shenqi Yizhi granule (SQYG), a Chinese herbal recipe, has been applied to ameliorate cognitive impairment in mild-to-moderate AD patients. However, the overall molecular mechanism of SQYG in treating AD has not been clarified. Objective This study aimed to investigate the molecular mechanism of SQYG on AD using an integration strategy of network pharmacology and molecular docking. Methods The active compounds of SQYG and common targets between SQYG and AD were screened from databases. The herb-compound network, compound-target network, and protein-protein interaction network were constructed. The enrichment analysis of common targets and molecular docking were performed. Results 816 compounds and 307 common targets between SQYG and AD were screened. KEGG analysis revealed that common targets were mainly enriched in lipid metabolism, metal ion metabolism, IL-17 signaling pathway, GABA receptor signaling, and neuroactive ligand-receptor interaction. Molecular docking analysis showed high binding affinity between ginsenoside Rg1 and Aβ 1-42, tanshinone IIA and BACE1, baicalin, and AchE. Conclusions The therapeutic mechanisms of SQYG on AD were associated with regulating lipid metabolism, metal ion metabolism, IL-17 signaling pathway, and GABA receptor signaling. Ginsenoside Rg1, tanshinone IIA, baicalin, astragaloside IV, and folic acid may play an important role in AD treatment.
Collapse
|
14
|
Xiao Y, Gong X, Deng R, Liu W, Yang Y, Wang X, Wang J, Bao J, Shu X. Iron Chelation Remits Memory Deficits Caused by the High-Fat Diet in a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2022; 86:1959-1971. [DOI: 10.3233/jad-215705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Obesity is a worldwide health problem that has been implicated in many diseases, including Alzheimer’s disease (AD). AD is one of the most common neurodegenerative disorders and is characterized by two pathologies, including extracellular senior plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles (NFTs) consisting of abnormally hyperphosphorylated tau. According to current research, a high-fat diet (HFD) could exacerbate Aβ accumulation, oxidative damage, and cognitive defects in AD mice. However, the accurate role of HFD in the pathogenesis of AD is far more unclear. Objective: To explore the accurate role of HFD in the pathogenesis of AD. Methods: Open Field, Barns Maze, Elevated zero-maze, Contextual fear condition, Tail suspension test, western blotting, immunofluorescence, Fluoro-Jade C Labeling, Perls’ Prussian blue staining, and ELISA were used. Results: HFD caused nonheme iron overload in the brains of APPswe/PS1dE9 (APP/PS1) mice. Furthermore, the administration of M30 (0.5 mg/kg) for iron chelation once every 2 days per os (p.o.) for 1 month remitted memory deficits caused by HFD in APP/PS1 mice. Notably, a variety of hematological parameters in whole blood had no difference after iron chelation. In addition, iron chelation effectively reduced synaptic impairment in hippocampus and neuronal degeneration in cortex in the HFD-fed APP/PS1 mice. Meanwhile, iron chelation decreased Aβ 1–40 and Aβ 1–42 level as well as neuroinflammation in HFD-fed APP/PS1 mice. Conclusion: These data enhance our understanding of how HFD aggravates AD pathology and cognitive impairments and might shed light on future preclinical studies.
Collapse
Affiliation(s)
- Yifan Xiao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Ronghua Deng
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Youhua Yang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaochuan Wang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianzhi Wang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
15
|
Bao J, Liang Z, Gong X, Zhao Y, Wu M, Liu W, Tu C, Wang X, Shu X. Tangeretin Inhibits BACE1 Activity and Attenuates Cognitive Impairments in AD Model Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1536-1546. [PMID: 35084179 DOI: 10.1021/acs.jafc.1c07241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tangeretin (TAN) exhibits many bioactivities, including neuroprotective effects. However, the efficacy of TAN in Alzheimer's disease (AD) has not been sufficiently investigated. In the present study, we integrated behavioral tests, pathology assessment, and biochemical analyses to elucidate the antidementia activity of TAN in APPswe/PSEN1dE9 transgenic (Tg) mice. At supplementation levels of 100 mg/kg body weight per day, TAN significantly attenuated the cognitive impairment of Tg mice in behavioral tests. These effects were associated with less synaptic impairments and fewer β-amyloid accumulations after TAN administration. Furthermore, our study revealed that TAN possessed powerful inhibitory activity against β-secretase both in vitro and in vivo, which played a crucial role in the process of Aβ generation. These findings indicate that TAN is a potential drug for preventing AD pathology. The key mechanism underlying the antidementia effect of TAN may include its inhibitory activity against β-secretase.
Collapse
Affiliation(s)
- Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Zheng Liang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yanna Zhao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Mengjuan Wu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chenyu Tu
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| |
Collapse
|
16
|
Bao J, Liang Z, Gong X, Yu J, Xiao Y, Liu W, Wang X, Wang JZ, Shu X. High Fat Diet Mediates Amyloid-β Cleaving Enzyme 1 Phosphorylation and SUMOylation, Enhancing Cognitive Impairment in APP/PS1 Mice. J Alzheimers Dis 2021; 85:863-876. [PMID: 34864680 DOI: 10.3233/jad-215299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia in older adults and extracellular accumulation of amyloid-β (Aβ) is one of the two characterized pathologies of AD. Obesity is significantly associated with AD developing factors. Several studies have reported that high fat diet (HFD) influenced Aβ accumulation and cognitive performance during AD pathology. However, the underlying neurobiological mechanisms have not yet been elucidated. OBJECTIVE The objective of this study was to explore the underlying neurobiological mechanisms of HFD influenced Aβ accumulation and cognitive performance during AD pathology. METHODS 2.5-month-old male APP/PS1 mice were randomly separated into two groups: 1) the normal diet (ND) group, fed a standard diet (10 kcal%fat); and 2) the HFD group, fed a high fat diet (40 kcal%fat, D12492; Research Diets). After 4 months of HFD or ND feeding, mice in the two groups were subjected for further ethological, morphological, and biochemical analyses. RESULTS A long-term HFD diet significantly increased perirenal fat and impaired dendritic integrity and aggravated neurodegeneration, and augmented learning and memory deficits in APP/PS1 mice. Furthermore, the HFD increased beta amyloid cleaving enzyme 1 (BACE1) dephosphorylation and SUMOylation, resulting in enhanced enzyme activity and stability, which exacerbated the deposition of amyloid plaques. CONCLUSION Our study demonstrates that long-term HFD consumption aggravates amyloid-β accumulation and cognitive impairments, and that modifiable lifestyle factors, such as obesity, can induce BACE1 post-modifications which may contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Zheng Liang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jing Yu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Yifan Xiao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaochuan Wang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
17
|
Copper, Iron, Selenium and Lipo-Glycemic Dysmetabolism in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22179461. [PMID: 34502369 PMCID: PMC8431716 DOI: 10.3390/ijms22179461] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present review is to discuss traditional hypotheses on the etiopathogenesis of Alzheimer's disease (AD), as well as the role of metabolic-syndrome-related mechanisms in AD development with a special focus on advanced glycation end-products (AGEs) and their role in metal-induced neurodegeneration in AD. Persistent hyperglycemia along with oxidative stress results in increased protein glycation and formation of AGEs. The latter were shown to possess a wide spectrum of neurotoxic effects including increased Aβ generation and aggregation. In addition, AGE binding to receptor for AGE (RAGE) induces a variety of pathways contributing to neuroinflammation. The existing data also demonstrate that AGE toxicity seems to mediate the involvement of copper (Cu) and potentially other metals in AD pathogenesis. Specifically, Cu promotes AGE formation, AGE-Aβ cross-linking and up-regulation of RAGE expression. Moreover, Aβ glycation was shown to increase prooxidant effects of Cu through Fenton chemistry. Given the role of AGE and RAGE, as well as metal toxicity in AD pathogenesis, it is proposed that metal chelation and/or incretins may slow down oxidative damage. In addition, selenium (Se) compounds seem to attenuate the intracellular toxicity of the deranged tau and Aβ, as well as inhibiting AGE accumulation and metal-induced neurotoxicity.
Collapse
|
18
|
Zhao Y, Kuca K, Wu W, Wang X, Nepovimova E, Musilek K, Wu Q. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement 2021; 18:152-158. [PMID: 34032377 DOI: 10.1002/alz.12370] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/10/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The exact signaling leading to neurological dysfunction in neurodegenerative diseases is currently unknown. We hypothesize that the c-Jun N-terminal kinase (JNK) signaling pathway is a potential therapeutic target for neurodegenerative diseases. This postulate rests on extensive data from cell and animal experimental studies, demonstrating that JNK signaling plays a crucial role in the pathogenesis of neurodegenerative diseases. The sustained activation of JNK leads to synaptic dysfunction and even neuronal apoptosis, ultimately resulting in memory deficits and neurodegeneration. JNK phosphorylates the amyloid precursor protein and tau, ultimately resulting in the formation of extraneuronal senile plaques and intraneuronal neurofibrillary tangles. Our hypothesis could be validated by investigating the cerebral cortex of elderly chimpanzees injected with phosphorylated JNK or transgenic pig and chimpanzee models established using gene editing technology including CRISPR. This hypothesis provides clues for further understanding the molecular mechanisms of neurodegenerative diseases and the development of potential target therapeutic drugs.
Collapse
Affiliation(s)
- Yingying Zhao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Azar J, Salama M, Chidambaram SB, Al‐Balushi B, Essa MM, Qoronfleh MW. Precision health in Alzheimer disease: Risk assessment‐based strategies. PRECISION MEDICAL SCIENCES 2021. [DOI: 10.1002/prm2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jihan Azar
- Institute of Global Health and Human Ecology (I‐GHHE) The American University in Cairo (AUC) Cairo Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I‐GHHE) The American University in Cairo (AUC) Cairo Egypt
- Faculty of Medicine Mansoura University Mansoura Egypt
| | - Saravana Babu Chidambaram
- Department of Pharmacology JSS College of Pharmacy, JSS Academy of Higher Education & Research Mysuru India
| | - Buthaina Al‐Balushi
- Department of Food Science and Nutrition CAMS, Sultan Qaboos University Muscat Oman
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition CAMS, Sultan Qaboos University Muscat Oman
- Ageing and Dementia Research Group Sultan Qaboos University Muscat Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI) Research & Policy Division Ypsilanti Michigan USA
- 21 Health Street, Consulting Services London UK
| |
Collapse
|
20
|
In vitro biological activity of Salvia fruticosa Mill. infusion against amyloid β-peptide-induced toxicity and inhibition of GSK-3 β, CK-1 δ, and BACE-1 enzymes relevant to Alzheimer's disease. Saudi Pharm J 2021; 29:236-243. [PMID: 33981172 PMCID: PMC8084717 DOI: 10.1016/j.jsps.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Salvia species have been traditionally used to improve cognition and have been proved to be a potential natural treatment for Alzheimer’s disease. Salvia fruticosa Mill. (Turkish sage or Greek sage) demonstrated to have anticholinergic effects in vitro. The aim of this study was to understand the mechanism underlying the neuroprotective effects of S. fruticosa infusion and its representative compound rosmarinic acid, which was detected by LC-DAD-ESI-MS/MS. The protective effects of the S. fruticosa infusion (SFINF) and its major substance rosmarinic acid (RA) on amyloid beta 1–42 -induced cytotoxicity on SH-SY5Y cells together with p-GSK-3β activation were investigated. Their in vitro inhibitory effects against glycogen synthase kinase 3β, β-secretase, and casein kinase 1δ enzymes were also evaluated. The results showed that treatment with the all tested concentrations, SFINF significantly decreased Aβ 1–42-induced cytotoxicity and exhibited promising in vitro glycogen synthase kinase 3β inhibitory activity below 10 µg/mL (IC50 6.52 ± 1.14 µg/mL), in addition to β-secretase inhibition (IC50 86 ± 2.9 µg/mL) and casein kinase 1δ inhibition (IC50 121.57 ± 4.00). The SFINF (100 µg/mL and 250 µg/mL) also activated the expression of p-GSK-3β in amyloid beta 1–42 treated SH-SY5Y cells. The outcomes of this study demonstrated that the S. fruticosa infusion possessed activity to prevent amyloid beta 1–42 -induced neurotoxicity and provided proof that its mechanism may involve regulation of p-GSK-3β protein.
Collapse
|
21
|
Ren J, Wei D, An H, Zhang J, Zhang Z. Shenqi Yizhi granules protect hippocampus of AD transgenic mice by modulating on multiple pathological processes. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112869. [PMID: 32315734 DOI: 10.1016/j.jep.2020.112869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine (CHM) draws more attention to explore effective therapeutic strategy for Alzheimer's disease (AD). CHM usually uses combinations of herbs or herbal ingredients to treat diseases, with the components targeting different disease processes. CHM might improve cognition in AD and MCI patients by optimizing network activity, promoting neural plasticity and repairing damaged neurons. Shenqi Yizhi granules (SQYG), a CHM prescription, are mainly consists of Panax ginseng C.A.Mey, Astragalus membranaceus (Fisch.) Bunge, and Scutellaria baicalensis Georgi and have been used to ameliorate cognitive impairment in mild-to-moderate dementia patients. AIM OF THE STUDY To investigate the neuroprotection effect and pharmacological mechanism of SQYG in the hippocampus of 5XFAD transgenic mice. MATERIALS AND METHODS The immunofluorescence detection, 2DE-gels, mass spectrum identification, biological information analysis and Western blot were performed after SQYG treatment. RESULTS SQYG treatment significantly decreased the fluorescence intensities of anti-GFAP and anti-Iba1 in the hippocampus of 5XFAD mice. The expression levels of 31 proteins in the hippocampus were significantly influenced by SQYG, approximately 65% of these proteins are related to energy metabolism, stress response and cytoskeleton, whereas others are related to synaptic transmission, signal transduction, antioxidation, amino acid metabolism, and DNA repair. The expression of these proteins were increased. The changes in the expression levels of malate dehydrogenase (cytoplasmic) and pyruvate kinase M were confirmed by Western blot. CONCLUSIONS The pharmacological mechanism of SQYG on the hippocampus may be related to modulation of multiple pathological processes, including energy metabolism, stress response, cytoskeleton, synaptic transmission, signal transduction, and amino acid metabolism in 5XFAD mice.
Collapse
Affiliation(s)
- Jianting Ren
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haiting An
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Junying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
22
|
Li P, Xu Y, Wang B, Huang J, Li Q. miR-34a-5p and miR-125b-5p attenuate Aβ-induced neurotoxicity through targeting BACE1. J Neurol Sci 2020; 413:116793. [PMID: 32251872 DOI: 10.1016/j.jns.2020.116793] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Accumulation of β-amyloid (Aβ) could induce neurotoxicity in Alzheimer's disease (AD). microRNA (miR)-34a-5p and miR-125b-5p have been reported to be aberrantly expressed in AD patients. However, the roles and mechanisms of these two miRNAs in AD remain poorly understood. METHODS Serum samples of 27 AD patients were collected. Primary mouse cortical neurons (MCN) and Neuro2a (N2a) cells were incubated with Aβ. The expression levels of miR-34a-5p, miR-125b-5p and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) were detected by quantitative real-time polymerase chain reaction and western blot. The effect of miRNAs or epigallocatechin-3-gallate (EGCG) on Aβ-induced neurotoxicity was investigated by cell viability, Caspase 3 activity, apoptosis and intracellular ROS production. The interaction between BACE1 and miR-34a-5p or miR-125b-5p was analyzed by luciferase reporter assay. RESULTS miR-34a-5p and miR-125b-5p levels were decreased and BACE1 mRNA expression was increased in AD patients and Aβ-treated MCN and N2a cells. Addition of miR-34a-5p or miR-125b-5p attenuated Aβ-induced apoptosis and oxidative stress. BACE1 acted as a target of miR-34a-5p and miR-125b-5p and its restoration weakened the effect of miR-34a-5p or miR-125b-5p on Aβ-induced neurotoxicity. Moreover, EGCG could mitigate Aβ-induced neurotoxicity, which might be associated with miR-34a-5p and miR-125b-5p. CONCLUSION miR-34a-5p and miR-125b-5p inhibited Aβ-induced neurotoxicity by decreasing apoptosis and oxidative stress via targeting BACE1, providing novel targets for treatment of AD.
Collapse
Affiliation(s)
- Pengxiang Li
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China.
| | - Ying Xu
- Department of Radiotherapy, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Baiping Wang
- Department of Radiology, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Jiali Huang
- Department of Functional, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Qiang Li
- Department of Interventional, Henan Provincial People's Hospital, 450000 Zhengzhou, Henan, China
| |
Collapse
|
23
|
Epigallocatechin-3-gallate Alleviates Cognitive Deficits in APP/PS1 Mice. Curr Med Sci 2020; 40:18-27. [PMID: 32166661 DOI: 10.1007/s11596-020-2142-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) shows cognitive impairments in clinic, which is multifactorial with different etiopathogenic mechanisms such as Aβ deposition, neuroinflammation and neuronal dystrophy involved. Therefore, multi-targets drugs with neuroprotective, anti-amyloidogenic and anti-inflammatory properties will be effective in AD treatment. Epigallocatechin-3-gallate (EGCG) possesses a broad spectrum of pharmacological activities in the prevention and treatment of multiple neurodegenerative diseases. In the present study, we showed that oral administration of EGCG (50 mg/kg) for 4 months significantly attenuated the cognitive deficits in APP/PS1 transgenic mice, which served as AD model. Moreover, EGCG induced an improvement in dendritic integrity and expression levels of synaptic proteins in the brain of APP/PS1 mice. And EGCG exerted obvious anti-inflammatory effects, which was manifested by alleviating microglia activation, decreasing pro-inflammatory cytokine (IL-1β) and increasing anti-inflammatory cytokines (IL-10, IL-13). Furthermore, β-amyloid (Aβ) plaques were markedly reduced in the hippocampus of 6-month old APP/PS1 mice after EGCG treatment. In conclusion, these findings indicate that EGCG improves AD-like cognitive impairments through neuroprotective, anti-amyloidogenic and anti-inflammatory effects, thus is a promising therapeutic candidate for AD.
Collapse
|
24
|
Yamali C, Gul HI, Kazaz C, Levent S, Gulcin I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg Chem 2020; 96:103627. [DOI: 10.1016/j.bioorg.2020.103627] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
|
25
|
Xia S, Wang J, Zhang Y, Whisman N, Bi J, Steenwinkel TE, Wan S, Medford J, Tajiri M, Luck RL, Werner T, Liu H. Ratiometric fluorescent probes based on through-bond energy transfer of cyanine donors to near-infrared hemicyanine acceptors for mitochondrial pH detection and monitoring of mitophagy. J Mater Chem B 2020; 8:1603-1615. [PMID: 32055810 PMCID: PMC7058096 DOI: 10.1039/c9tb02302j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two ratiometric near-infrared fluorescent probes have been developed to selectively detect mitochondrial pH changes based on highly efficient through-bond energy transfer (TBET) from cyanine donors to near-infrared hemicyanine acceptors. The probes consist of identical cyanine donors connected to different hemicyanine acceptors with a spirolactam ring structure linked via a biphenyl linkage. At neutral or basic pH, the probes display only fluorescence of the cyanine donors when they are excited at 520 nm. However, acidic pH conditions trigger spirolactam ring opening, leading to increased π-conjugation of the hemicyanine acceptors, resulting in new near-infrared fluorescence peaks at 740 nm and 780 nm for probes A and B, respectively. This results in ratiometric fluorescence responses of the probes to pH changes indicated by decreases of the donor fluorescence and increases of the acceptor fluorescence under donor excitation at 520 nm due to a highly efficient TBET from the donors to the acceptors. The probes only show cyanine donor fluorescence in alkaline-pH mitochondria. However, the probes show moderate fluorescence decreases of the cyanine donor and considerable fluorescence increases of hemicyanine acceptors during the mitophagy process induced by nutrient starvation or under drug treatment. The probes display rapid, selective, and sensitive responses to pH changes over metal ions, good membrane penetration, good photostability, large pseudo-Stokes shifts, low cytotoxicity, mitochondria-targeting, and mitophagy-tracking capabilities.
Collapse
Affiliation(s)
- Shuai Xia
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Jianbo Wang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA. and College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yibin Zhang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Nick Whisman
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Tessa E Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| | - Shulin Wan
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Jerry Medford
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Momoko Tajiri
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
26
|
Xenobiotics, Trace Metals and Genetics in the Pathogenesis of Tauopathies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041269. [PMID: 32079163 PMCID: PMC7068520 DOI: 10.3390/ijerph17041269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022]
Abstract
Tauopathies are a disease group characterized by either pathological accumulation or release of fragments of hyperphosphorylated tau proteins originating from the central nervous system. The tau hypotheses of Parkinson’s and Alzheimer’s diseases contain a clinically diverse spectrum of tauopathies. Studies of case records of various tauopathies may reveal clinical phenotype characteristics of the disease. In addition, improved understanding of different tauopathies would disclose environmental factors, such as xenobiotics and trace metals, that can precipitate or modify the progression of the disorder. Important for diagnostics and monitoring of these disorders is a further development of adequate biomarkers, including refined neuroimaging, or proteomics. Our goal is to provide an in-depth review of the current literature regarding the pathophysiological roles of tau proteins and the pathogenic factors leading to various tauopathies, with the perspective of future advances in potential therapeutic strategies.
Collapse
|
27
|
Qin L, Xu Q, Li Z, Chen L, Li Y, Yang N, Liu Z, Guo J, Shen L, Allen EG, Chen C, Ma C, Wu H, Zhu X, Jin P, Tang B. Ethnicity-specific and overlapping alterations of brain hydroxymethylome in Alzheimer's disease. Hum Mol Genet 2020; 29:149-158. [PMID: 31814020 PMCID: PMC7001720 DOI: 10.1093/hmg/ddz273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023] Open
Abstract
5-Methylcytosine (5mC), generated through the covalent addition of a methyl group to the fifth carbon of cytosine, is the most prevalent DNA modification in humans and functions as a critical player in the regulation of tissue and cell-specific gene expression. 5mC can be oxidized to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) enzymes, which is enriched in brain. Alzheimer's disease (AD) is the most common neurodegenerative disorder, and several studies using the samples collected from Caucasian cohorts have found that epigenetics, particularly cytosine methylation, could play a role in the etiological process of AD. However, little research has been conducted using the samples of other ethnic groups. Here we generated genome-wide profiles of both 5mC and 5hmC in human frontal cortex tissues from late-onset Chinese AD patients and cognitively normal controls. We identified both Chinese-specific and overlapping differentially hydroxymethylated regions (DhMRs) with Caucasian cohorts. Pathway analyses revealed specific pathways enriched among Chinese-specific DhMRs, as well as the shared DhMRs with Caucasian cohorts. Furthermore, two important transcription factor-binding motifs, hypoxia-inducible factor 2α (HIF2α) and hypoxia-inducible factor 1α (HIF1α), were enriched in the DhMRs. Our analyses provide the first genome-wide profiling of DNA hydroxymethylation of the frontal cortex of AD patients from China, emphasizing an important role of 5hmC in AD pathogenesis and highlighting both ethnicity-specific and overlapping changes of brain hydroxymethylome in AD.
Collapse
Affiliation(s)
- Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Changsha, Hunan 410078, China
| | - Ziyi Li
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Li Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nannan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Changsha, Hunan 410078, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Changsha, Hunan 410078, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chao Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100000, China
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Changsha, Hunan 410078, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
29
|
Wallin C, Friedemann M, Sholts SB, Noormägi A, Svantesson T, Jarvet J, Roos PM, Palumaa P, Gräslund A, Wärmländer SKTS. Mercury and Alzheimer's Disease: Hg(II) Ions Display Specific Binding to the Amyloid-β Peptide and Hinder Its Fibrillization. Biomolecules 2019; 10:E44. [PMID: 31892131 PMCID: PMC7022868 DOI: 10.3390/biom10010044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brains and blood of Alzheimer's disease (AD) patients have shown elevated mercury concentrations, but potential involvement of mercury exposure in AD pathogenesis has not been studied at the molecular level. The pathological hallmark of AD brains is deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils. Aβ peptide fibrillization is known to be modulated by metal ions such as Cu(II) and Zn(II). Here, we study in vitro the interactions between Aβ peptides and Hg(II) ions by multiple biophysical techniques. Fluorescence spectroscopy and atomic force microscopy (AFM) show that Hg(II) ions have a concentration-dependent inhibiting effect on Aβ fibrillization: at a 1:1 Aβ·Hg(II) ratio only non-fibrillar Aβ aggregates are formed. NMR spectroscopy shows that Hg(II) ions interact with the N-terminal region of Aβ(1-40) with a micromolar affinity, likely via a binding mode similar to that for Cu(II) and Zn(II) ions, i.e., mainly via the histidine residues His6, His13, and His14. Thus, together with Cu(II), Fe(II), Mn(II), Pb(IV), and Zn(II) ions, Hg(II) belongs to a family of metal ions that display residue-specific binding interactions with Aβ peptides and modulate their aggregation processes.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Merlin Friedemann
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Sabrina B. Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA;
| | - Andra Noormägi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 16765 Stockholm, Sweden;
- Department of Clinical Physiology, Capio St. Göran Hospital, 11219 Stockholm, Sweden
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| |
Collapse
|
30
|
Bergsland N, Tavazzi E, Schweser F, Jakimovski D, Hagemeier J, Dwyer MG, Zivadinov R. Targeting Iron Dyshomeostasis for Treatment of Neurodegenerative Disorders. CNS Drugs 2019; 33:1073-1086. [PMID: 31556017 PMCID: PMC6854324 DOI: 10.1007/s40263-019-00668-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While iron has an important role in the normal functioning of the brain owing to its involvement in several physiological processes, dyshomeostasis has been found in many neurodegenerative disorders, as evidenced by both histopathological and imaging studies. Although the exact causes have remained elusive, the fact that altered iron levels have been found in disparate diseases suggests that iron may contribute to their development and/or progression. As such, the processes involved in iron dyshomeostasis may represent novel therapeutic targets. There are, however, many questions about the exact interplay between neurodegeneration and altered iron homeostasis. Some insight can be gained by considering the parallels with respect to what occurs in healthy aging, which is also characterized by increased iron throughout many regions in the brain along with progressive neurodegeneration. Nevertheless, the exact mechanisms of iron-mediated damage are likely disease specific to a certain degree, given that iron plays a crucial role in many disparate biological processes, which are not always affected in the same way across different neurodegenerative disorders. Moreover, it is not even entirely clear yet whether iron actually has a causative role in all of the diseases where altered iron levels have been noted. For example, there is strong evidence of iron dyshomeostasis leading to neurodegeneration in Parkinson's disease, but there is still some question as to whether changes in iron levels are merely an epiphenomenon in multiple sclerosis. Recent advances in neuroimaging now offer the possibility to detect and monitor iron levels in vivo, which allows for an improved understanding of both the temporal and spatial dynamics of iron changes and associated neurodegeneration compared to post-mortem studies. In this regard, iron-based imaging will likely play an important role in the development of therapeutic approaches aimed at addressing altered iron dynamics in neurodegenerative diseases. Currently, the bulk of such therapies have focused on chelating excess iron. Although there is some evidence that these treatment options may yield some benefit, they are not without their own limitations. They are generally effective at reducing brain iron levels, as assessed by imaging, but clinical benefits are more modest. New drugs that specifically target iron-related pathological processes may offer the possibility to prevent, or at the least, slow down irreversible neurodegeneration, which represents an unmet therapeutic target.
Collapse
Affiliation(s)
- Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA.
| | - Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
31
|
Ju IG, Kim N, Choi JG, Lee JK, Oh MS. Cuscutae Japonicae Semen Ameliorates Memory Dysfunction by Rescuing Synaptic Damage in Alzheimer's Disease Models. Nutrients 2019; 11:nu11112591. [PMID: 31661844 PMCID: PMC6893468 DOI: 10.3390/nu11112591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. It is characterized by the accumulation of amyloid-beta (Aβ) and progressive cognitive impairment. To alleviate the symptoms of AD, functional foods and nutrients have been used for centuries. In this study, we investigated whether Cuscutae Japonicae Semen (CJS), a medicinal food traditionally used in East Asia, has effects on memory improvement and synapse protection in AD. We orally administered CJS to 5x familiar AD (5xFAD) transgenic mice and performed the Morris water maze test. The results showed that CJS treatment ameliorated the decline of memory function. Then, we demonstrated that CJS attenuated the degeneration of pre- and post-synaptic proteins in the hippocampi of 5xFAD mice. To demonstrate the effects of CJS in vitro, we treated Aβ in primary neuronal culture with CJS and observed that CJS rescued the loss of functional synapses. The protective effects of CJS on the synapse were due to the inhibition of activated caspase-3 expression. Additionally, CJS inhibited the phosphorylation of glycogen synthase kinase-3β and tau proteins, which contribute to synaptic dysfunction. Taken together, our results suggest that CJS is efficient in alleviating memory loss by rescuing caspase-3-mediated synaptic damage in AD treatment.
Collapse
Affiliation(s)
- In Gyoung Ju
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jin Gyu Choi
- BK21 PLUS Integrated Education and Research Center for Nature-inspired Drug Development Targeting Healthy Aging, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|