1
|
Zhao J, Jia H, Ma P, Zhu D, Fang Y. Multidimensional mechanisms of anxiety and depression in Parkinson's disease: Integrating neuroimaging, neurocircuits, and molecular pathways. Pharmacol Res 2025; 215:107717. [PMID: 40157405 DOI: 10.1016/j.phrs.2025.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Anxiety and depression are common non-motor symptoms of Parkinson's disease (PD) that significantly affect patients' quality of life. In recent years, our understanding of PD has advanced through multifaceted studies on the pathological mechanisms associated with anxiety and depression in PD. These classic psychiatric symptoms involve complex pathophysiology, with both distinct features and connections to the mechanisms underlying the aetiology of PD. Furthermore, the co-occurrence of anxiety and depression in PD blurs the boundaries between them. Therefore, a comprehensive summary of the pathogenic mechanisms associated with anxiety and depression will aid in better addressing the emergence of these classic psychiatric symptoms in PD. This article integrates neuroanatomical, neural projection, neurotransmitter, neuroinflammatory, brain-gut axis, neurotrophic, hypothalamic-pituitary-adrenal axis, and genetic perspectives to provide a comprehensive description of the core pathological alterations underlying anxiety and depression in PD, aiming to provide an up-to-date perspective and broader therapeutic prospects for PD patients suffering from anxiety or depression.
Collapse
Affiliation(s)
- Jihu Zhao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Huafang Jia
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, China.
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Deyuan Zhu
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yibin Fang
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Wichmann T, Nelson A, Torres ERS, Svenningsson P, Marongiu R. Leveraging animal models to understand non-motor symptoms of Parkinson's disease. Neurobiol Dis 2025; 208:106848. [PMID: 40023327 DOI: 10.1016/j.nbd.2025.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 03/04/2025] Open
Abstract
Parkinson's disease is diagnosed based on motor symptoms, but non-motor symptoms of the disease, such as cognitive impairment, autonomic dysfunction, hyposmia, sleep disorders, and psychiatric disorders heavily impact patient and caregiver quality of life. It has proven challenging to faithfully reproduce and quantify these non-motor phenotypes. Indeed, many non-motor signs in animals that may phenotypically resemble features in patients may be caused by different mechanisms or may not be consistent within the same or similar models. In this review, we survey the existing literature on the assessment of non-motor signs in parkinsonian rodents and non-human primates. We highlight the gaps in our understanding and suggest how researchers might improve experimental designs to produce more meaningful results with the hope of better understanding the disease and developing better therapies.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30329, USA; Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alexandra Nelson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Eileen Ruth S Torres
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Per Svenningsson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Roberta Marongiu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Genetic Medicine, New-York Hospital-Cornell Medical College, New York, NY, USA; Feil Family Brain and Mind Institute, New-York Hospital-Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
El-Shiekh RA, Mohamed AF, Mandour AA, Adel IM, Atwa AM, Elgindy AM, Esmail MM, Senna MM, Ebid N, Mustafa AM. Hesperidin in Chronic Fatigue Syndrome: An Integrated Analysis of Traditional Pharmacology and Machine Learning-Based Therapeutic Predictions. Chem Biodivers 2025:e202403506. [PMID: 40234200 DOI: 10.1002/cbdv.202403506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
Hesperidin, a bioflavonoid abundantly found in citrus fruits, offers a myriad of health benefits. With the food industry extensively utilizing citrus fruits, particularly for juice production, substantial quantities of by-products such as peels, seeds, cells, and membrane residues accumulate. Remarkably, these by-products serve as a valuable source of hesperidin. Consequently, the extraction of hesperidin from these by-products has garnered significant scientific interest, aiming to harness its potential as a natural antioxidant. By shedding light on these aspects, this review provides a comprehensive review of hesperidin's role in enhancing human well-being, particularly in the context of chronic fatigue syndrome (CFS). By synthesizing current research, we elucidate the compound's antioxidant, anti-inflammatory, and neuroprotective effects, which may mitigate symptoms associated with CFS. Furthermore, we introduce machine learning methodologies to predict hesperidin's efficacy in clinical settings, offering a novel perspective on personalized nutrition strategies. Our findings underscore the need for further empirical studies to validate these predictions and explore hesperidin's mechanisms of action. This review not only bridges the gap between nutrition science and pharmacology but also highlights the promising future of hesperidin as a nutraceutical in combating chronic health conditions.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Asmaa A Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Islam M Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M Atwa
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Manar M Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Nouran Ebid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
4
|
She R, Zhang Z, Han M, Zhao D, Li X, Zhou J, Chang Y, Zhang X, Li X. Luteolin Exhibits Anxiolytic and Antidepressant Potential in Parkinson's Disease Rat: Antioxidant and Anti-Inflammatory Effects. Rejuvenation Res 2025; 28:67-82. [PMID: 39729251 DOI: 10.1089/rej.2024.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Parkinson's disease (PD) is accompanied by a complex array of nonmotor and motor manifestations. The exploration of anti-inflammatory and antioxidant active ingredient as potential therapeutic interventions in PD-associated mood alterations has gained significant attention. This study aimed to assess the antidepressant and anxiolytic properties of luteolin (LTN), a potent antioxidant and anti-inflammatory component, using a 6-hydroxydopamine (6-OHDA)-induced animal model of PD. Rats were administered LTN (10, 25, and 50 mg/kg, per oral) and fluoxetine (10 mg/kg/per oral) over a 28-day period. Behavioral tests were employed to estimate the depression- and anxiety-like behaviors. Rats treated with LTN exhibited significant improvement in 6-OHDA-induced mood alterations, as per behavioral tests. Additionally, LTN treatment led to increased hippocampal levels of catalase and superoxide dismutase, and a reduction in malondialdehyde. LTN downregulated the gene expression of nuclear factor kappa B (NF-κB)/nod-like receptor (NLR) pyrin domain-containing 3 (NLRP3) axis components, including NF-κB, NLRP3, ASC, and Caspase1 and reduced the protein level of pro-inflammatory cytokines, including interleukin (IL)-6, interleukin (IL)-1β, and tumor necrosis factor alpha (TNF-α), in addition to augmenting the protein levels of TNF-α, IL-1β, and IL-6. Furthermore, LTN exhibited an upregulatory effect on the anti-inflammatory cytokine IL-10 within the hippocampus of 6-OHDA-induced PD rats. Also, molecular docking showed higher affinity between LTN and NF-κB/NLRP3 axis components. These findings highlight the potential anxiolytic and antidepressant impacts of LTN through its antioxidant and anti-inflammatory mechanisms against 6-OHDA-induced alterations in a rat PD model.
Collapse
Affiliation(s)
- Ruifang She
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan City, People's Republic of China
- Department of Neurology, The Affiliated Taian City Central Hospital of Qingdao University, Taian City, People's Republic of China
| | - Zhaoting Zhang
- Department of Neurology, The Second People's Hospital of Lianyungang City, Lianyungang City, People's Republic of China
| | - Miaomiao Han
- Encephalopathy Department, Zibo Hospital of Integrated Traditional Chinese and Western Medicine, Zibo City, People's Republic of China
| | - Dapeng Zhao
- Department of Neurology, The Affiliated Taian City Central Hospital of Qingdao University, Taian City, People's Republic of China
| | - Xiangting Li
- Department of Pulmonary and Critical Care Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian City, People's Republic of China
| | - Jian Zhou
- Department of Radiology, The Affiliated Taian City Central Hospital of Qingdao University, Taian City, People's Republic of China
| | - Yanyan Chang
- Department of Neurology, The Affiliated Taian City Central Hospital of Qingdao University, Taian City, People's Republic of China
| | - Xinping Zhang
- Department of Neurology, The Affiliated Taian City Central Hospital of Qingdao University, Taian City, People's Republic of China
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan City, People's Republic of China
| |
Collapse
|
5
|
Jie S, Fu A, Wang C, Rajabi S. A comprehensive review on the impact of polyphenol supplementation and exercise on depression and brain function parameters. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:10. [PMID: 40140839 PMCID: PMC11948876 DOI: 10.1186/s12993-025-00273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
The objective of this review study is to examine the combined antidepressant effects of exercise and polyphenol supplementation, with a focus on specific polyphenolic compounds such as crocin, curcumin, and quercetin, as well as different forms of physical exercise, including aerobic and resistance training. The research examines how these interventions influence depressive-like behaviors, cognitive function, and neurochemical markers in animal models and human participants. The findings demonstrate that both exercise and polyphenols independently contribute to mood enhancement, reduced anxiety, and improved cognitive function through mechanisms such as neurogenesis, neurotransmitter modulation, and anti-inflammatory effects. Notably, the combined interventions showed a synergistic effect, providing more significant benefits in reducing symptoms of depression and anxiety, enhancing cognitive performance, and supporting overall mental well-being. These results suggest that integrating exercise and polyphenol supplementation could be a promising non-pharmacological approach to managing depression and related disorders.
Collapse
Affiliation(s)
- Shihong Jie
- Institute of Physical Education, Woosuk University, Jeollabuk-do, 55338, Korea
| | - Aili Fu
- Physical Education and Research Section, Basic Teaching Department, Guangdong Maoming Health Vocational College, Maoming, Guangdong, 525400, China
| | - Chuan Wang
- Physical Education Teaching and Research Office, Dalian University of Foreign Languages, Dalian, Liaoning, 116044, China.
| | - Sogand Rajabi
- Department of Cellular and Molecular Biology, Islamic Azad University, Sirjan Branch, Iran.
| |
Collapse
|
6
|
Bianchetti ME, Ferreira AFF, Britto LRG. Inhibition of neuroinflammation by GIBH-130 (AD-16) reduces neurodegeneration, motor deficits, and proinflammatory cytokines in a hemiparkinsonian model. Front Neuroanat 2024; 18:1511951. [PMID: 39736920 PMCID: PMC11684390 DOI: 10.3389/fnana.2024.1511951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) of the brain, manifesting itself with both motor and non-motor symptoms. A critical element of this pathology is neuroinflammation, which triggers a harmful neurotoxic cycle, exacerbating cell death within the central nervous system. AD-16 (also known as GIBH-130) is a recently identified compound capable of reducing the expression of pro-inflammatory cytokines while increasing the expression of anti-inflammatory cytokines in Alzheimer's disease models. Here, for the first time, we sought to comprehend the potential impact of orally administered AD-16 in mitigating neurodegeneration and subsequent disease progression in PD. To accomplish this, 6- hydroxydopamine (6-OHDA) unilateral striatal injections were employed to induce a PD model in male C57BL/6 mice. Cylinder and apomorphine-induced rotation behavior tests were conducted to assess motor behavior and validate the PD model 3 days after the injection. AD-16 was administered via gavage daily between days 3 and 9 after surgery. On the last day of treatment, motor tests were performed again. All animals were euthanized on day 10 and immunohistochemistry techniques were performed to detect tyrosine hydroxylase (TH) and Iba-1 and thus label dopaminergic neurons and microglia in the SNc and striatum (CPu). These same regions were collected for ELISA assays to assess different cytokine concentrations. Our results revealed an enhancement in the motor function of the AD-16-treated animals, as well as reduced nigrostriatal neurodegeneration. In addition, AD-16 reduced the increase in microglia density and prevented the changes in its morphology observed in the PD animal models. Furthermore, AD-16 was able to avoid the increase of pro-inflammatory cytokines levels that were present in 6-OHDA-injected animals who received vehicle. Consequently, AD-16 emerges as a compound with significant potential for negative modulation of neurodegeneration and neuroinflammation suppression in the 6-OHDA animal model of Parkinson's disease.
Collapse
|
7
|
Azizifar N, Mohaddes G, Keyhanmanesh R, Athari SZ, Alimohammadi S, Farajdokht F. Intranasal AdipoRon Mitigated Anxiety and Depression-Like Behaviors in 6-OHDA-Induced Parkinson 's Disease Rat Model: Going Beyond Motor Symptoms. Neurochem Res 2024; 49:3030-3042. [PMID: 39096412 DOI: 10.1007/s11064-024-04223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Depression and anxiety are prevalent neuropsychiatric conditions among patients with Parkinson's disease (PD), which may manifest prior to motor symptoms. As levodopa, a prominent treatment for PD motor symptoms, provides few benefits for mood-related abnormalities, tackling non-motor symptoms is particularly important. AdipoRon (Ad), an adiponectin agonist, has demonstrated neuroprotective effects by suppressing neuroinflammatory responses and activating the AMPK/Sirt-1 signaling pathway. This study looked at the potential advantages and underlying mechanisms of intranasal Ad in a rat model of PD induced by 6-hydroxydopamine (6-OHDA). We found that Ad at doses of 1 and 10 µg for 21 days exhibited anxiolytic- and antidepressant effects in the open field (OF) test, elevated plus maze (EPM), sucrose splash test, and forced swimming test in a PD model caused by a unilateral 6-OHDA injection into the medial forebrain bundle (MFB). The Ad also lowered the levels of corticosterone in the blood, decreased inflammasome components (NLRP3, caspase 1, and IL-1β), and increased Sirt-1 protein levels in the prefrontal cortex (PFC) of PD rats. We conclude that Ad ameliorates anxious and depressive-like behaviors in the PD rat model through stimulating the AMPK/Sirt-1 signaling and blocking the NLRP3 inflammasome pathways in the PFC.
Collapse
Affiliation(s)
- Negin Azizifar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, College of Osteopathic Medicine, California Health Sciences University, Clovis, CA, USA
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Zanyar Athari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Alimohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Olasehinde TA, Ekundayo TC, Ijabadeniyi OA, Olaniran AO. The Impact of Hesperidin on Cognitive Deficit and Neurobehavioural Disorders: A Systematic Review and Meta-Analysis of Preclinical Individual Studies. Curr Behav Neurosci Rep 2024; 11:246-259. [DOI: 10.1007/s40473-024-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 01/03/2025]
Abstract
AbstractPurpose of Review Experimental evidence suggests that flavonoids prevent neurodegeneration and improves cognitive function. In this study, we systematically reviewed the effect of hesperidin on cognitive deficits and neurobehavioural outcomes in in vivo studies.Recent Findings: A systematic search of PubMed, EBSCOhost, Web of Science, Scopus and ProQuest was conducted. Meta-analysis was performed on the effect of hesperidin on cognitive and neurobehavioural parameters (Morris Water Maze, Y-Maze, elevated plus maze, rotarod test, locomotion activity, passive avoidance test, open field test and forced swimming test). The mixed effect model was used to compute the standard mean difference (SMD). A total of 1069 documents were retrieved. However, 46 studies were included in the systematic review and meta-analysis. Our findings revealed that hesperidin did not significantly affect cognitive performance in normal rats compared with placebo. Moreover, hesperidin improved memory and learning, sensorimotor function and locomotion activity in cognitive impaired rats. Hesperidin did not show any significant effect on anxiety-related outcomes in the diseased model.Summary: Hesperidin improved cognitive function and neurocognitive effects could be associated with its neuroprotective effects against neuroinflammation, oxidative stress-induced neuronal damage, inhibition of cholinergic deficit and mitochondrial dysfunction. These results correlate with available scientific evidence on the effect of hesperidin on cognitive dysfunction and neurobehavioural deficits in cognitive-impaired rats.
Collapse
|
9
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
10
|
Akyazı O, Korkmaz D, Cevher SC. Experimental Parkinson models and green chemistry approach. Behav Brain Res 2024; 471:115092. [PMID: 38844056 DOI: 10.1016/j.bbr.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Parkinson's is the most common neurodegenerative disease after Alzheimer's. Motor findings in Parkinson's occur as a result of the degeneration of dopaminergic neurons starting in the substantia nigra pars compacta and ending in the putamen and caudate nucleus. Loss of neurons and the formation of inclusions called Lewy bodies in existing neurons are characteristic histopathological findings of Parkinson's. The disease primarily impairs the functional capacity of the person with cardinal findings such as tremor, bradykinesia, etc., as a result of the loss of dopaminergic neurons in the substantia nigra. Experimental animal models of Parkinson's have been used extensively in recent years to investigate the pathology of this disease. These models are generally based on systemic or local(intracerebral) administration of neurotoxins, which can replicate many features of Parkinson's mammals. The development of transgenic models in recent years has allowed us to learn more about the modeling of Parkinson's. Applying animal modeling, which shows the most human-like effects in studies, is extremely important. It has been demonstrated that oxidative stress increases in many neurodegenerative diseases such as Parkinson's and various age-related degenerative diseases in humans and that neurons are sensitive to it. In cases where oxidative stress increases and antioxidant systems are inadequate, natural molecules such as flavonoids and polyphenols can be used as a new antioxidant treatment to reduce neuronal reactive oxygen species and improve the neurodegenerative process. Therefore, in this article, we examined experimental animal modeling in Parkinson's disease and the effect of green chemistry approaches on Parkinson's disease.
Collapse
Affiliation(s)
- Ozge Akyazı
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey.
| | - Dılara Korkmaz
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey
| | - Sule Coskun Cevher
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
11
|
Tang G, Guo Y, Li R, Wang Y, Yang J, Gao S, Liu J. Lateral habenula 5-HT 1B receptors are involved in regulation of anxiety-like behaviors in parkinsonian rats. Neurochem Int 2024; 177:105766. [PMID: 38750961 DOI: 10.1016/j.neuint.2024.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 06/04/2024]
Abstract
Although the output of the lateral habenula (LHb) controls the activity of midbrain dopaminergic and serotonergic systems, which are implicated in the pathophysiology of anxiety, it is not clear the role of LHb 5-HT1B receptors in regulation of anxiety-like behaviors, particularly in Parkinson's disease-related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, led to decreased normalized δ power and increased normalized θ power in the LHb, and decreased dopamine (DA) level in the prelimbic cortex (PrL) compared with sham rats. Down-regulation of LHb 5-HT1B receptors by RNA interference produced anxiety-like effects, decreased normalized δ power and increased normalized θ power in the LHb in both sham and lesioned rats. Further, intra-LHb injection of 5-HT1B receptor agonist CP93129 induced anxiolytic-like responses, increased normalized δ power and decreased normalized θ power in the LHb, and increased DA and serotonin (5-HT) release in the PrL; conversely, 5-HT1B receptor antagonist SB216641 produced anxiety-like effects, decreased normalized δ power and increased normalized θ power in the LHb, and decreased DA and 5-HT release in the PrL in sham and lesioned rats. Additionally, effects of CP93129 and SB216641 on the behaviors, normalized δ and θ power in the LHb, and DA and 5-HT release in the PrL were decreased in lesioned rats, which were consistent with down-regulation of LHb 5-HT1B receptors after DA depletion. Collectively, these findings suggest that 5-HT1B receptors in the LHb are involved in the regulation of anxiety-like behaviors.
Collapse
Affiliation(s)
- Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Shasha Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
12
|
Li R, Tang G, Yang J, Gao S, Wang Y, Wu X, Bai Y, Liu J. The avBNST GABA-VTA and avBNST GABA-DRN pathways are respectively involved in the regulation of anxiety-like behaviors in parkinsonian rats. Neurochem Int 2024; 175:105720. [PMID: 38458538 DOI: 10.1016/j.neuint.2024.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The anteroventral bed nucleus of stria terminalis (avBNST) is a key brain region which involves negative emotional states, such as anxiety. The most neurons in the avBNST are GABAergic, and it sends GABAergic projections to the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN), respectively. The VTA and DRN contain dopaminergic and serotonergic cell groups in the midbrain which regulate anxiety-like behaviors. However, it is unclear the role of GABAergic projections from the avBNST to the VTA and the DRN in the regulation of anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and decreased level of dopamine (DA) in the basolateral amygdala (BLA). Chemogenetic activation of avBNSTGABA-VTA or avBNSTGABA-DRN pathway induced anxiety-like behaviors and decreased DA or 5-HT release in the BLA in sham and 6-OHDA rats, while inhibition of avBNSTGABA-VTA or avBNSTGABA-DRN pathway produced anxiolytic-like effects and increased level of DA or 5-HT in the BLA. These findings suggest that avBNST inhibitory projections directly regulate dopaminergic neurons in the VTA and serotonergic neurons in the DRN, and the avBNSTGABA-VTA and avBNSTGABA-DRN pathways respectively exert impacts on PD-related anxiety-like behaviors.
Collapse
Affiliation(s)
- Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Shasha Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiang Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yihua Bai
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
13
|
Bustelli IB, Oliveira LM, Correa-Netto NF, Stilhano RS, Caetano AL. Behavioral effects of 6-hydroxydopamine-induced damage to nigro-striatal pathway and Locus coeruleus as a rodent model of Parkinson's disease. Behav Brain Res 2024; 462:114873. [PMID: 38266776 DOI: 10.1016/j.bbr.2024.114873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc), which leads to motor and non-motor symptoms (NMS). NMS can appear many years before the classical motor symptoms and are associated with the neurodegeneration of several nuclei; in this work, we highlight the neurodegeneration of Locus coeruleus (LC) in PD. The aim was to investigate the effects of depleting SNpc and LC catecholaminergic neurons on behavioral and neurobiological endpoints. Here we used 6-hydroxydopamine (6-OHDA) in order to induced neurotoxic damage in three independent experimental groups: SNpc lesion group, which 6-OHDA was injected into CPu (CPu-6-OHDA), LC lesion group, which 6-OHDA was injected directly on LC to selectively caused a damage on this nucleus (LC-6-OHDA), and the combined SNpc and LC lesion group (CL-6-OHDA). Next, the behavioral studies were performed using the Morris water maze (MWM), open field (OF), and elevated plus maze (EPM). After stereotaxic surgeries, the animals showed a loss of 67% and 77% of Tyrosine hydroxylase (TH) reactive neurons in the SNpc and LC, respectively. The behavioral analysis showed the anxiety-like behavior in CL-6-OHDA group in the EPM test; in the MWM test, the combined lesions (CL-6-OHDA) showed an impairment in memory acquisition and spatial memory; and no changes were observed in locomotor activity in all the tests. Furthermore, our investigation demonstrating the effects of depleting SN and LC catecholaminergic neurons on behavioral and neurobiological parameters. All these data together lead us to believe that a bilateral PD model including a LC bilateral degeneration is potentially a more accurate model to evaluate the NMS in the pathological development of the disease in rodents.
Collapse
Affiliation(s)
- Isabella B Bustelli
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP 01221-020, Brazil
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Nelson F Correa-Netto
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP 01221-020, Brazil
| | - Roberta S Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP 01221-020, Brazil
| | - Ariadiny L Caetano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP 01221-020, Brazil.
| |
Collapse
|
14
|
Ji Z, Deng W, Chen D, Liu Z, Shen Y, Dai J, Zhou H, Zhang M, Xu H, Dai B. Recent understanding of the mechanisms of the biological activities of hesperidin and hesperetin and their therapeutic effects on diseases. Heliyon 2024; 10:e26862. [PMID: 38486739 PMCID: PMC10937595 DOI: 10.1016/j.heliyon.2024.e26862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids are natural phytochemicals that have therapeutic effects and act in the prevention of several pathologies. These phytochemicals can be found in lemon, sweet orange, bitter orange, clementine. Hesperidin and hesperetin are citrus flavonoids from the flavanones subclass that have anti-inflammatory, antioxidant, antitumor and antibacterial potential. Preclinical studies and clinical trials demonstrated therapeutical effects of hesperidin and its aglycone hesperetin in various diseases, such as bone diseases, cardiovascular diseases, neurological diseases, respiratory diseases, digestive diseases, urinary tract diseases. This review provides a comprehensive overview of the biological activities of hesperidin and hesperetin, their therapeutic potential in various diseases and their associated molecular mechanisms. This article also discusses future considerations for the clinical applications of hesperidin and hesperetin.
Collapse
Affiliation(s)
| | | | - Dong Chen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Zhidong Liu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Yucheng Shen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Jiuming Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hai Zhou
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Miao Zhang
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hucheng Xu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Bin Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| |
Collapse
|
15
|
Adedara AO, Bressan GN, Dos Santos MM, Fachinetto R, Abolaji AO, Barbosa NV. Antioxidant responses driven by Hesperetin and Hesperidin counteract Parkinson's disease-like phenotypes in Drosophila melanogaster. Neurotoxicology 2024; 101:117-127. [PMID: 38423185 DOI: 10.1016/j.neuro.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The study investigated the protective effects of Hesperetin (HSP) and Hesperidin (HSD) on 1 methyl, 4 phenyl, 1,2,3,6 tetrahydropyridine hydrochloride (MPTP)-induced Parkinsonism in Drosophila melanogaster (D. melanogaster). After a lifespan study to select exposure time and concentrations, flies were co-exposed to MPTP (0.4 mg/g diet), Hesperetin (0.2 and 0.4 mg/g diet), and Hesperidin (0.1 and 0.4 mg/g) for 7 days. In addition to in vivo parameters, we assayed some markers of oxidative stress and antioxidant status (lipid peroxidation, protein carbonylation, thiol content, hydrogen peroxide, and nitrate/nitrite levels, mRNA expression of Keap-1 (Kelch-like ECH associated protein 1), /Nrf2 (Nuclear factor erythroid 2 related factor 2), catalase, and glutathione-S-transferase (GST) activities), and cholinergic (acetyl cholinesterase activity (AChE) and dopaminergic signaling content and the mRNA expression of tyrosine hydroxylase (TH), monoamine oxidase (MAO-like) activity). In addition to increasing the lifespan of flies, we found that both flavonoids counteracted the adverse effects of MPTP on survival, offspring emergence, and climbing ability of flies. Both flavonoids also reduced the oxidative damage on lipids and proteins and reestablished the basal levels of pro-oxidant species and activities of antioxidant enzymes in MPTP-exposed flies. These responses were accompanied by the normalization of the mRNA expression of Keap1/Nrf2 disrupted in flies exposed to MPTP. MPTP exposure also elicited changes in mRNA expression and content of TH as well as in MAO and AChE activity, which were reversed by HST and HSD. By efficiently hindering the oxidative stress in MPTP-exposed flies, our findings support the promising role of Hesperetin and Hesperidin as adjuvant therapy to manage Parkinsonism induced by chemicals such as MPTP.
Collapse
Affiliation(s)
- Adeola Oluwatosin Adedara
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil; Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Getúlio Nicola Bressan
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Matheus Mulling Dos Santos
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Roselei Fachinetto
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Amos Olalekan Abolaji
- Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Nilda Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
16
|
Zhang F, Lv T, Li J, Lian J, Wu H, Jin Y, Jia F, Zhang X. Citrate synthase lysine K215 hypoacetylation contributes to microglial citrate accumulation and pro-inflammatory functions after traumatic brain injury. CNS Neurosci Ther 2024; 30:e14567. [PMID: 38421106 PMCID: PMC10851320 DOI: 10.1111/cns.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS This study aimed to investigate the relationship between microglial metabolism and neuroinflammation by examining the impact of citrate accumulation in microglia and its potential regulation through Cs K215 hypoacetylation. METHODS Experimental approaches included assessing Cs enzyme activity through Cs K215Q mutation and investigating the inhibitory effects of hesperidin, a natural flavanone glycoside, on citrate synthase. Microglial phagocytosis and expression of pro-inflammatory cytokines were also examined in relation to Cs K215Q mutation and hesperidin treatment. RESULTS Cs K215Q mutation and hesperidin exhibited significant inhibitory effects on Cs enzyme activity, microglial citrate accumulation, phagocytosis, and pro-inflammatory cytokine expression. Interestingly, Sirt3 knockdown aggravated microglial pro-inflammatory functions during neuroinflammation, despite its proven role in Cs deacetylation. CONCLUSION Cs K215Q mutation and hesperidin effectively inhibited microglial pro-inflammatory functions without reversing the metabolic reprogramming. These findings suggest that targeting Cs K215 hypoacetylation and utilizing hesperidin may hold promise for modulating neuroinflammation in microglia.
Collapse
Affiliation(s)
- Fengchen Zhang
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tao Lv
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Li
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Lian
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wu
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yichao Jin
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Jia
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of NeurosurgeryNantong First People's Hospital, Affiliated Hospital 2 of Nantong UniversityNantongChina
| | - Xiaohua Zhang
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
17
|
Bansal K, Singh V, Singh S, Mishra S. Neuroprotective Potential of Hesperidin as Therapeutic Agent in the Treatment of Brain Disorders: Preclinical Evidence-based Review. Curr Mol Med 2024; 24:316-326. [PMID: 36959141 DOI: 10.2174/1566524023666230320144722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/25/2023]
Abstract
Neurodegenerative disorders (NDs) are progressive morbidities that represent a serious health issue in the aging world population. There is a contemporary upsurge in worldwide interest in the area of traditional remedies and phytomedicines are widely accepted by researchers due to their health-promoted effects and fewer side effects. Hesperidin, a flavanone glycoside present in the peels of citrus fruits, possesses various biological activities including anti-inflammatory and antioxidant actions. In various preclinical studies, hesperidin has provided significant protective actions in a variety of brain disorders such as Alzheimer's disease, epilepsy, Parkinson's disease, multiple sclerosis, depression, neuropathic pain, etc. as well as their underlying mechanisms. The findings indicate that the neuroprotective effects of hesperidin are mediated by modulating antioxidant defence activities and neural growth factors, diminishing apoptotic and neuro-inflammatory pathways. This review focuses on the potential role of hesperidin in managing and treating diverse brain disorders.
Collapse
Affiliation(s)
- Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Sakshi Singh
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Samiksha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
18
|
Flores-Bazán T, Betanzos-Cabrera G, Guerrero-Solano JA, Negrete-Díaz JV, German-Ponciano LJ, Olivo-Ramírez D. Pomegranate (Punica granatum L.) and its phytochemicals as anxiolytic; an underreported effect with therapeutic potential: A systematic review. Brain Res 2023; 1820:148554. [PMID: 37640097 DOI: 10.1016/j.brainres.2023.148554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Anxiety is a mental disorder characterized by excessive concern about possible future threats that, if prolonged, becomes a pathology that must be controlled through psychotherapy and medication. Currently, the pharmacological treatment for anxiety involves the use of antidepressants and benzodiazepines; however, these treatments often come with adverse effects. Thus, there is a need to seek natural compounds that can help alleviate anxiety and reduce these side effects. On the other hand, pomegranate (PG) fruit is known to have important health benefits, which have been compiled in several reviews. However, its anxiolytic effect has not been thoroughly studied, and clinical research on this topic is lacking. The aim of this work was to conduct a systematic review of studies exploring the anxiolytic-like effect of PG and its phytochemicals. Databases such as Pubmed, ScienceDirect, Springer link, Google scholar, Worldwide science, and Web of science were searched for articles using predetermined terms. Inclusion criteria were established, and original articles that met these criteria were selected. The data collected included information on PG part and variety, species, sample size, anxiety model, dose, route and time of administration, reference drug, main results, and the mechanisms of action. Fifty-nine studies were found that reported the anxiolytic-like effect of PG and its phytochemicals such as anthocyanins, flavonoids, tannins, organic acids, and xanthonoids. The literature suggests that the mechanisms of action behind this effect involved the inhibition of the GABAergic receptor, NMDA, CaMKII/CREB pathway; the reduction of oxidative stress, inhibiting TLR4 and nNOS; modulation of cytokines and the expression of NFkB, GAD67, and iNOS, as well as the activation of Nrf2 and AMPK. PG and some of its phytochemicals could be considered as a novel alternative for the treatment of pathological anxiety. This review is the first to document the anxiolytic-like effect of PG.
Collapse
Affiliation(s)
- Tania Flores-Bazán
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Hidalgo 42160, Mexico.
| | - Gabriel Betanzos-Cabrera
- Academic Area of Nutrition, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Hidalgo 42160, Mexico.
| | - José A Guerrero-Solano
- Graduate School of Tlahuelilpan, Academic Area of Nursing, Autonomous University of Hidalgo State, Tlahuelilpan, Hidalgo 42780, Mexico.
| | - José Vicente Negrete-Díaz
- Laboratory of Brain Plasticity and Integrative Neuroscience, Program of Clinical Psychology, University of Guanajuato. Guanajuato 38060, Mexico.
| | | | - Diana Olivo-Ramírez
- Academic Area of Nutrition, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Hidalgo 42160, Mexico.
| |
Collapse
|
19
|
Nishida T, Horita C, Imagawa M, Hibarino M, Tateno S, Kubo Y, Kawabe M, Morishita N, Endo S, Shiozaki K. Glucosyl hesperidin exhibits more potent anxiolytic activity than hesperidin accompanied by the attenuation of noradrenaline induction in a zebrafish model. Front Pharmacol 2023; 14:1213252. [PMID: 37663268 PMCID: PMC10470464 DOI: 10.3389/fphar.2023.1213252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Anxiety is a symptom of various mental disorders, including depression. Severe anxiety can significantly affect the quality of life. Hesperidin (Hes), a flavonoid found in the peel of citrus fruits, reportedly has various functional properties, one of which is its ability to relieve acute and chronic stress. However, Hes is insoluble in water, resulting in a low absorption rate in the body and low bioavailability. Glucosyl hesperidin (GHes) is produced by adding one glucose molecule to hesperidin. Its water solubility is significantly higher than that of Hes, which is expected to improve its absorption into the body and enhance its effects. However, its efficacy in alleviating anxiety has not yet been investigated. Therefore, in this study, the anxiolytic effects of GHes were examined in a zebrafish model of anxiety. Long-term administration of diets supplemented with GHes did not cause any toxicity in the zebrafish. In the novel tank test, zebrafish in the control condition exhibited an anxious behavior called freezing, which was significantly suppressed in GHes-fed zebrafish. In the black-white preference test, which also induces visual stress, GHes-fed zebrafish showed significantly increased swimming time in the white side area. Furthermore, in tactile (low water-level stress) and olfactory-mediated stress (alarm substance administration test) tests, GHes suppressed anxious behavior, and these effects were stronger than those of Hes. Increased noradrenaline levels in the brain generally cause freezing; however, in zebrafish treated with GHes, the amount of noradrenaline after stress was lower than that in the control group. Activation of c-fos/ERK/Th, which is upstream of the noradrenaline synthesis pathway, was also suppressed, while activation of the CREB/BDNF system, which is vital for neuroprotective effects, was significantly increased. These results indicate that GHes has a more potent anxiolytic effect than Hes in vivo, which may have potential applications in drug discovery and functional food development.
Collapse
Affiliation(s)
- Takumi Nishida
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Chihoko Horita
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Mikiya Imagawa
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Momoka Hibarino
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Sayaka Tateno
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Yurina Kubo
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Momoko Kawabe
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Shin Endo
- R&D Division, Hayashibara Co., Ltd., Okayama, Japan
| | - Kazuhiro Shiozaki
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
20
|
Li R, Wang Y, Yang Y, Wu Z, Wang L, Tang G, Yang J, Liu J. The α1 and γ2 subunit-containing GABA A receptor-mediated inhibitory transmission in the anteroventral bed nucleus of stria terminalis is involved in the regulation of anxiety in rats with substantia nigra lesions. Neuropharmacology 2023:109645. [PMID: 37392819 DOI: 10.1016/j.neuropharm.2023.109645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
The anteroventral bed nucleus of the stria terminalis (avBNST) is widely acknowledged as a key brain structure that regulates negative emotional states, such as anxiety. At present, it is still unclear whether GABAA receptor-mediated inhibitory transmission in the avBNST is involved in Parkinson's disease (PD)-related anxiety. In this study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) in rats induced anxiety-like behaviors, increased GABA synthesis and release, and upregulated expression of GABAA receptor subunits in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). In both sham and 6-OHDA rats, intra-avBNST injection of GABAA receptor agonist muscimol induced the following changes: (i) anxiolytic-like responses, (ii) inhibition of the firing activity of GABAergic neurons in the avBNST, (iii) excitation of dopaminergic neurons in the ventral tegmental area (VTA) and serotonergic neurons in the dorsal raphe nucleus (DRN), and (iv) increase of DA and 5-HT release in the BLA, whereas antagonist bicuculline induced the opposite effects. Collectively, these findings suggest that degeneration of the nigrostriatal pathway enhances GABAA receptor-mediated inhibitory transmission in the avBNST, which is involved in PD-related anxiety. Further, activation and blockade of avBNST GABAA receptors affect the firing activity of VTA dopaminergic and DRN serotonergic neurons, and then change release of BLA DA and 5-HT, thereby regulating anxiety-like behaviors.
Collapse
Affiliation(s)
- Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yaxin Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhongheng Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
21
|
Lai TT, Gericke B, Feja M, Conoscenti M, Zelikowsky M, Richter F. Anxiety in synucleinopathies: neuronal circuitry, underlying pathomechanisms and current therapeutic strategies. NPJ Parkinsons Dis 2023; 9:97. [PMID: 37349373 DOI: 10.1038/s41531-023-00547-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by alpha-synuclein (αSyn) accumulation in neurons or glial cells, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). αSyn-related pathology plays a critical role in the pathogenesis of synucleinopathies leading to the progressive loss of neuronal populations in specific brain regions and the development of motor and non-motor symptoms. Anxiety is among the most frequent non-motor symptoms in patients with PD, but it remains underrecognized and undertreated, which significantly reduces the quality of life for patients. Anxiety is defined as a neuropsychiatric complication with characteristics such as nervousness, loss of concentration, and sweating due to the anticipation of impending danger. In patients with PD, neuropathology in the amygdala, a central region in the anxiety and fear circuitry, may contribute to the high prevalence of anxiety. Studies in animal models reported αSyn pathology in the amygdala together with alteration of anxiety or fear learning response. Therefore, understanding the progression, extent, and specifics of pathology in the anxiety and fear circuitry in synucleinopathies will suggest novel approaches to the diagnosis and treatment of neuropsychiatric symptoms. Here, we provide an overview of studies that address neuropsychiatric symptoms in synucleinopathies. We offer insights into anxiety and fear circuitry in animal models and the current implications for therapeutic intervention. In summary, it is apparent that anxiety is not a bystander symptom in these disorders but reflects early pathogenic mechanisms in the cortico-limbic system which may even contribute as a driver to disease progression.
Collapse
Affiliation(s)
- Thuy Thi Lai
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | | | | | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
22
|
Gamage E, Orr R, Travica N, Lane MM, Jacka F, Dissanayaka T, Kim JH, Grosso G, Godos J, Marx W. Polyphenols as novel interventions for depression: exploring the efficacy, mechanisms of action, and implications for future research. Neurosci Biobehav Rev 2023; 151:105225. [PMID: 37164045 DOI: 10.1016/j.neubiorev.2023.105225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Numerous animal and human studies have assessed the relationship between polyphenols and outcomes related to depression. However, no comprehensive synthesis of the main findings has been conducted. The aim of this manuscript was to systematically review the available evidence from animal and human studies on the association and the effects of dietary polyphenols on depression and provide recommendations for future research. We based our review on 163 preclinical animal, 16 observational and 44 intervention articles assessing the relationship between polyphenols and outcomes related to depression. Most animal studies demonstrated that exposure to polyphenols alleviated behaviours reported to be associated with depression. However, human studies are less clear, with some studies reporting and inverse relationship between the intake of some polyphenols, and polyphenol rich foods and depression risk and symptoms, while others reporting no association or effect. Hence, while there has been extensive research conducted in animals and there is some supporting evidence in humans, further human studies are required, particularly in younger and clinical populations.
Collapse
Affiliation(s)
- Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Rebecca Orr
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Melissa M Lane
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Thusharika Dissanayaka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Jee H Kim
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| |
Collapse
|
23
|
Hayley S, Vahid-Ansari F, Sun H, Albert PR. Mood disturbances in Parkinson's disease: From prodromal origins to application of animal models. Neurobiol Dis 2023; 181:106115. [PMID: 37037299 DOI: 10.1016/j.nbd.2023.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Parkinson's disease (PD) is a complex illness with a constellation of environmental insults and genetic vulnerabilities being implicated. Strikingly, many studies only focus on the cardinal motor symptoms of the disease and fail to appreciate the major non-motor features which typically occur early in the disease process and are debilitating. Common comorbid psychiatric features, notably clinical depression, as well as anxiety and sleep disorders are thought to emerge before the onset of prominent motor deficits. In this review, we will delve into the prodromal stage of PD and how early neuropsychiatric pathology might unfold, followed by later motor disturbances. It is also of interest to discuss how animal models of PD capture the complexity of the illness, including depressive-like characteristics along with motor impairment. It remains to be determined how the underlying PD disease processes contributes to such comorbidity. But some of the environmental toxicants and microbial pathogens implicated in PD might instigate pro-inflammatory effects favoring α-synuclein accumulation and damage to brainstem neurons fueling the evolution of mood disturbances. We posit that comprehensive animal-based research approaches are needed to capture the complexity and time-dependent nature of the primary and co-morbid symptoms. This will allow for the possibility of early intervention with more novel and targeted treatments that fit with not only individual patient variability, but also with changes that occur over time with the evolution of the disease.
Collapse
Affiliation(s)
- S Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada.
| | - F Vahid-Ansari
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - H Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - P R Albert
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| |
Collapse
|
24
|
Li X, Huang W, Tan R, Xu C, Chen X, Li S, Liu Y, Qiu H, Cao H, Cheng Q. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect. Biomed Pharmacother 2023; 159:114222. [PMID: 36628819 DOI: 10.1016/j.biopha.2023.114222] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Disorders of central nervous system (CNS) disorders are considered serious health issues. The most common CNS diseases include neurodegenerative diseases, mental disorders, demyelinating disease, ischemia-reperfusion injury, and neuroinflammation. As a natural phenolic compound, hesperidin is a flavanone glycoside with various biological effects. Increasing evidence show that the growth of CNS diseases is hindered by hesperidin. Here, we have reviewed the related literature on neuropharmacological mechanisms for the preventive and therapeutic effects of hesperidin on CNS diseases. Several cellular and animal models have been developed to evaluate the underlying neuropharmacological mechanisms of hesperidin. Additionally, clinical evidence has confirmed its neuroprotective function. Hesperidin exerts its neuroprotective properties by decreasing neuro-inflammatory and apoptotic pathways. Hesperidin function has been studied in preclinical models for CNS diseases, but little is known about its definite effect in humans. Hesperidin can effectively alleviate depression and improve cognition and memory. It is urgent to explore and discover clinical trials for further confirmation of the neuroprotective efficacy of hesperidin and to evaluate its safety profile.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rongrong Tan
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Caijuan Xu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Xi Chen
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China.
| |
Collapse
|
25
|
Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel) 2023; 12:antiox12020280. [PMID: 36829840 PMCID: PMC9951959 DOI: 10.3390/antiox12020280] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Neurological and neurodegenerative diseases, particularly those related to aging, are on the rise, but drug therapies are rarely curative. Functional disorders and the organic degeneration of nervous tissue often have complex causes, in which phenomena of oxidative stress, inflammation and cytotoxicity are intertwined. For these reasons, the search for natural substances that can slow down or counteract these pathologies has increased rapidly over the last two decades. In this paper, studies on the neuroprotective effects of flavonoids (especially the two most widely used, hesperidin and quercetin) on animal models of depression, neurotoxicity, Alzheimer's disease (AD) and Parkinson's disease are reviewed. The literature on these topics amounts to a few hundred publications on in vitro and in vivo models (notably in rodents) and provides us with a very detailed picture of the action mechanisms and targets of these substances. These include the decrease in enzymes that produce reactive oxygen and ferroptosis, the inhibition of mono-amine oxidases, the stimulation of the Nrf2/ARE system, the induction of brain-derived neurotrophic factor production and, in the case of AD, the prevention of amyloid-beta aggregation. The inhibition of neuroinflammatory processes has been documented as a decrease in cytokine formation (mainly TNF-alpha and IL-1beta) by microglia and astrocytes, by modulating a number of regulatory proteins such as Nf-kB and NLRP3/inflammasome. Although clinical trials on humans are still scarce, preclinical studies allow us to consider hesperidin, quercetin, and other flavonoids as very interesting and safe dietary molecules to be further investigated as complementary treatments in order to prevent neurodegenerative diseases or to moderate their deleterious effects.
Collapse
|
26
|
Changes in the Neuronal Architecture of the Hippocampus in a 6-Hydroxydopamine-Lesioned Rat Model of Parkinson Disease. Int Neurourol J 2022; 26:S94-105. [PMID: 36503212 PMCID: PMC9767684 DOI: 10.5213/inj.2244252.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Parkinson disease (PD) is a progressive neurodegenerative disorder in which dopaminergic (DAergic) systems are destroyed (particularly in the nigrostriatal system), causing both motor and nonmotor symptoms. Hippocampal neuroplasticity is altered in PD animal models, resulting in nonmotor dysfunctions. However, little is known about the precise mechanism underlying the hippocampal dysfunctions in PD. METHODS Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in adult Sprague Dawley rats. Both motor and nonmotor symptoms alongside the expression of tyrosine hydroxylase (TH) in the substantia nigra and striatum were confirmed in 6-OHDA-lesioned rats. The neuronal architecture in the hippocampus was analyzed by Golgi staining. RESULTS During the 7-8 weeks after infusion, the 6-OHDA-lesioned rats exhibited motor and nonmotor dysfunctions (especially anxiety/depression-like behaviors). Rats with unilateral 6-OHDA infusion displayed reduced TH+ immunoreactivity in the ipsilateral nigrostriatal pathway of the brain. Golgi staining revealed that striatal 6-OHDA infusion significantly decreased the dendritic complexity (i.e., number of crossing dendrites, total dendritic length, and branch points) in the ipsilateral hippocampal conus ammonis 1 (CA1) apical/basal and dentate gyrus (DG) subregions. Additionally, the dendritic spine density and morphology were significantly altered in the CA1 apical/basal and DG subregions following striatal 6-OHDA infusion. However, alteration of microglial and astrocytic distributions did not occur in the hippocampus following striatal 6-OHDA infusion. CONCLUSION The present study provides anatomical evidence that the structural plasticity in the hippocampus is altered in the late phase following striatal 6-OHDA infusion in rats, possibly as a result of the prolonged suppression of the DAergic system, and independent of neuroinflammation.
Collapse
|
27
|
de Gomes MG, Goes ATR, Del Fabbro L, Souza LC, Lobo Ladd AAB, Ladd FVL, Boeira SP, Jesse CR. Chrysin supplementation mitigated neurobehavioral changes in a animal model of Parkinson’s disease: Influence on TH+ neurons. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2022.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
28
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
29
|
Tayab MA, Islam MN, Chowdhury KAA, Tasnim FM. Targeting neuroinflammation by polyphenols: A promising therapeutic approach against inflammation-associated depression. Pharmacotherapy 2022; 147:112668. [DOI: 10.1016/j.biopha.2022.112668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
|
30
|
Improvement of non-motor and motor behavioral alterations associated with Parkinson-like disease in Drosophila melanogaster: comparative effects of treatments with hesperidin and L-dopa. Neurotoxicology 2022; 89:174-183. [DOI: 10.1016/j.neuro.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022]
|
31
|
Costas C, Faro LR. Do Naturally Occurring Antioxidants Protect Against Neurodegeneration of the Dopaminergic System? A Systematic Revision in Animal Models of Parkinson's Disease. Curr Neuropharmacol 2022; 20:432-459. [PMID: 33882808 PMCID: PMC9413795 DOI: 10.2174/1570159x19666210421092725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by a significant decrease in dopamine levels, caused by progressive degeneration of the dopaminergic neurons in the nigrostriatal pathway. Multiple mechanisms have been implicated in its pathogenesis, including oxidative stress, neuroinflammation, protein aggregation, mitochondrial dysfunction, insufficient support for neurotrophic factors and cell apoptosis. The absence of treatments capable of slowing or stopping the progression of PD has increased the interest in the natural antioxidant substances present in the diet, since they have multiple beneficial properties and it is possible that they can influence the mechanisms responsible for the dysfunction and death of dopaminergic neurons. Thus, the purpose of this systematic review is to analyze the results obtained in a set of studies carried out in the last years, which describe the neuroprotective, antioxidant and regenerative functions of some naturally occurring antioxidants in experimental models of PD. The results show that the exogenous no enzymatic antioxidants can significantly modify the biochemical and behavioral mechanisms that contribute to the pathophysiology of Parkinsonism in experimental animals. Therefore, it is possible that they may contribute to effective neuroprotection by providing a significant improvement in neuropathological markers. In conclusion, the results of this review suggest that exogenous antioxidants can be promising therapeutic candidates for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Carmen Costas
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - Lilian R.F. Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
32
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
33
|
Peres DS, Theisen MC, Fialho MFP, Dalenogare DP, Rodrigues P, Kudsi SQ, Bernardes LDB, Ruviaro da Silva NA, Lückemeyer DD, Sampaio TB, Pereira GC, Mello FK, Ferreira J, Bochi GV, Oliveira SM, de David Antoniazzi CT, Trevisan G. TRPA1 involvement in depression- and anxiety-like behaviors in a progressive multiple sclerosis model in mice. Brain Res Bull 2021; 175:1-15. [PMID: 34280479 DOI: 10.1016/j.brainresbull.2021.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
Progressive multiple sclerosis (PMS) is a neurological disease associated with the development of depression and anxiety, but treatments available are unsatisfactory. The transient receptor potential ankyrin 1 (TRPA1) is a cationic channel activated by reactive compounds, and the blockage of this receptor can reduce depression- and anxiety-like behaviors in naive mice. Thus, we investigated the role of TRPA1 in depression- and anxiety-like behaviors in a PMS model in mice. PMS model was induced in C57BL/6 female mice by the experimental autoimmune encephalomyelitis (EAE). Nine days after the PMS-EAE induction, behavioral tests (tail suspension and elevated plus maze tests) were performed to verify the effects of sertraline (positive control), selective TRPA1 antagonist (A-967,079), and antioxidants (α-lipoic acid and apocynin). The prefrontal cortex and hippocampus were collected to evaluate biochemical and inflammatory markers. PMS-EAE induction did not cause locomotor changes but triggered depression- and anxiety-like behaviors, which were reversed by sertraline, A-967,079, α-lipoic acid, or apocynin treatments. The neuroinflammatory markers (AIF1, GFAP, IL-1β, IL-17, and TNF-α) were increased in mice's hippocampus. Moreover, this model did not alter TRPA1 RNA expression levels in the hippocampus but decrease TRPA1 levels in the prefrontal cortex. Moreover, PMS-EAE induced an increase in NADPH oxidase and superoxide dismutase activities and TRPA1 endogenous agonist levels (hydrogen peroxide and 4-hydroxynonenal). TRPA1 plays a fundamental role in depression- and anxiety-like behaviors in a PMS-EAE model; thus, it could be a possible pharmacological target for treating these symptoms in PMS.
Collapse
Affiliation(s)
- Diulle Spat Peres
- Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | | | | | - Patrícia Rodrigues
- Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Sabrina Qader Kudsi
- Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | | | | | | | | | | | - Juliano Ferreira
- Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | | | - Sara Marchesan Oliveira
- Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Gabriela Trevisan
- Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
34
|
Neuropsychiatric and Cognitive Deficits in Parkinson's Disease and Their Modeling in Rodents. Biomedicines 2021; 9:biomedicines9060684. [PMID: 34204380 PMCID: PMC8234051 DOI: 10.3390/biomedicines9060684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
Parkinson’s disease (PD) is associated with a large burden of non-motor symptoms including olfactory and autonomic dysfunction, as well as neuropsychiatric (depression, anxiety, apathy) and cognitive disorders (executive dysfunctions, memory and learning impairments). Some of these non-motor symptoms may precede the onset of motor symptoms by several years, and they significantly worsen during the course of the disease. The lack of systematic improvement of these non-motor features by dopamine replacement therapy underlines their multifactorial origin, with an involvement of monoaminergic and cholinergic systems, as well as alpha-synuclein pathology in frontal and limbic cortical circuits. Here we describe mood and neuropsychiatric disorders in PD and review their occurrence in rodent models of PD. Altogether, toxin-based rodent models of PD indicate a significant but non-exclusive contribution of mesencephalic dopaminergic loss in anxiety, apathy, and depressive-like behaviors, as well as in learning and memory deficits. Gene-based models display significant deficits in learning and memory, as well as executive functions, highlighting the contribution of alpha-synuclein pathology to these non-motor deficits. Collectively, neuropsychiatric and cognitive deficits are recapitulated to some extent in rodent models, providing partial but nevertheless useful options to understand the pathophysiology of non-motor symptoms and develop therapeutic options for these debilitating symptoms of PD.
Collapse
|
35
|
Petryszyn S, Saidi L, Gagnon D, Parent A, Parent M. The density of calretinin striatal interneurons is decreased in 6-OHDA-lesioned mice. Brain Struct Funct 2021; 226:1879-1891. [PMID: 34018041 DOI: 10.1007/s00429-021-02298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/08/2021] [Indexed: 11/30/2022]
Abstract
Interneurons play a significant role in the functional organization of the striatum and some of them display marked plastic changes in dopamine-depleted conditions. Here, we applied immunohistochemistry on brain sections from 6-hydroxydopamine (6-OHDA) mouse model of Parkinson's disease and sham animals to characterize the regional distribution and the morphological and neurochemical changes of striatal interneurons expressing the calcium-binding protein calretinin (CR). Two morphological subtypes of calretinin-immunostained (CR +) interneurons referred, respectively, as small- and medium-sized CR + interneurons were detected in 6-OHDA- and sham-lesioned animals. The small cells (9-12 µm) prevail in the anterior and dorsal striatal regions; they stain intensely for CR and display a single slightly varicose and moderately arborized process. The medium-sized CR + interneurons (15-20 µm) are more numerous than the small CR + cells and rather uniformly distributed within the striatum; they stain weakly for CR and display 2-3 long, slightly varicose and poorly branched dendrites. The density of medium CR + interneurons is significantly decreased in the dopamine-depleted striatum (158 ± 15 neurons/mm3), when compared to sham animals (370 ± 41 neurons/mm3), whereas that of the small-sized CR + interneurons is unchanged (174 ± 46 neurons/mm3 in 6-OHDA-lesioned striatum and 164 ± 22 neurons/mm3 in sham-lesioned striatum). The nucleus accumbens is populated only by medium-sized CR + interneurons, which are distributed equally among the core and shell compartments and whose density is unaltered after dopamine denervation. Our results provide the first evidence that the medium-sized striatal interneurons expressing low level of CR are specifically targeted by dopamine denervation, while the small and intensely immunoreactive CR + cells remain unaffected. These findings suggest that high expression of the calcium-binding protein CR might protect striatal interneurons against an increase in intracellular calcium level that is believed to arise from altered glutamate corticostriatal transmission in Parkinson's disease.
Collapse
Affiliation(s)
- S Petryszyn
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, 2601, Chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - L Saidi
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, 2601, Chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - D Gagnon
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, 2601, Chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - A Parent
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, 2601, Chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - M Parent
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, 2601, Chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada.
| |
Collapse
|
36
|
Pontifex MG, Malik MMAH, Connell E, Müller M, Vauzour D. Citrus Polyphenols in Brain Health and Disease: Current Perspectives. Front Neurosci 2021; 15:640648. [PMID: 33679318 PMCID: PMC7933480 DOI: 10.3389/fnins.2021.640648] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
In addition to essential micronutrients such as vitamin C, citrus fruits represent a considerably rich source of non-essential bioactive compounds, in particular flavanones which form a sub-set of the flavonoid group. Preclinical studies have demonstrated the neuroprotective potential of citrus flavonoids and have highlighted both the well-established (anti-inflammatory and anti-oxidative properties), and newly emerging (influence upon blood-brain barrier function/integrity) mechanistic actions by which these neurological effects are mediated. Encouragingly, results from human studies, although limited in number, appear to support this preclinical basis, with improvements in cognitive performance and disease risk observed across healthy and disease states. Therefore, citrus fruits - both as whole fruit and 100% juices - should be encouraged within the diet for their potential neurological benefit. In addition, there should be further exploration of citrus polyphenols to establish therapeutic efficacy, particularly in the context of well-designed human interventions.
Collapse
Affiliation(s)
- Matthew G Pontifex
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Mohammad M A H Malik
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Emily Connell
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael Müller
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|