1
|
Zhang K, Wang T, Huang X, Wu P, Shen L, Yang Y, Wan W, Sun S, Zhang Z. Ultrasound-mediated nanomaterials for the treatment of inflammatory diseases. ULTRASONICS SONOCHEMISTRY 2025; 114:107270. [PMID: 39961217 PMCID: PMC11875835 DOI: 10.1016/j.ultsonch.2025.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Sterile and infection-associated inflammatory diseases are becoming increasingly prevalent worldwide. Conventional drug therapies often entail significant drawbacks, such as the risk of drug overdose, the development of drug resistance in pathogens, and systemic adverse reactions, all of which can undermine the effectiveness of treatments for these conditions. Nanomaterials (NMs) have emerged as a promising tool in the treatment of inflammatory diseases due to their precise targeting capabilities, tunable characteristics, and responsiveness to external stimuli. Ultrasound (US), a non-invasive and effective treatment method, has been explored in combination with NMs to achieve enhanced therapeutic outcomes. This review provides a comprehensive overview of the recent advances in the use of US-mediated NMs for treating inflammatory diseases. A comprehensive introduction to the application and classification of US was first presented, emphasizing the advantages of US-mediated NMs and the mechanisms through which US and NMs interact to enhance anti-inflammatory therapy. Subsequently, specific applications of US-mediated NMs in sterile and infection-associated inflammation were summarized. Finally, the challenges and prospects of US-mediated NMs in clinical translation were discussed, along with an outline of future research directions. This review aims to provide insights to guide the development and improvement of US-mediated NMs for more effective therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, PR China; Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, PR China; National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, PR China.
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China.
| | - Zhan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, PR China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
2
|
Cao LL, Liu HR, Ji YJ, Zhang YT, Wang BQ, Xue XH, Wang P, Luo ZH, Wu HG. Research Progress of Vagal Nerve Regulation Mechanism in Acupuncture Treatment of Atrial Fibrillation. Chin J Integr Med 2025; 31:281-288. [PMID: 38990478 DOI: 10.1007/s11655-024-3660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 07/12/2024]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. It has a high prevalence and poor prognosis. The application of antiarrhythmic drugs and even surgery cannot completely treat the disease, and there are many sequelae. AF can be classified into the category of "palpitation" in Chinese medicine according to its symptoms. Acupuncture has a significant effect on AF. The authors find that an important mechanism of acupuncture in AF treatment is to regulate the cardiac vagus nerve. Therefore, this article intends to review the distribution and function of vagus nerve in the heart, the application and the regulatroy effect for the treatment of AF.
Collapse
Affiliation(s)
- Lu-Lu Cao
- Immunology Laboratory, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200232, China
| | - Hui-Rong Liu
- Immunology Laboratory, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200232, China
| | - Ya-Jie Ji
- Breast Disease Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yin-Tao Zhang
- Graduate College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bing-Quan Wang
- Department of Acupuncture and Moxibusion Tuina Traumatology, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Xiao-Hong Xue
- Breast Disease Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Pei Wang
- Graduate College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Hui Luo
- Graduate College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huan-Gan Wu
- Immunology Laboratory, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200232, China.
| |
Collapse
|
3
|
Fraile-Martinez O, García-Montero C, Álvarez-Mon MÁ, Casanova-Martín C, Fernández-Faber D, Presa M, Lahera G, Lopez-Gonzalez L, Díaz-Pedrero R, Saz JV, Álvarez-Mon M, Sáez MA, Ortega MA. Grasping Posttraumatic Stress Disorder From the Perspective of Psychoneuroimmunoendocrinology: Etiopathogenic Mechanisms and Relevance for Integrative Management. Biol Psychiatry 2025:S0006-3223(25)00056-3. [PMID: 39864788 DOI: 10.1016/j.biopsych.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating condition caused by exposure to traumatic events that affects 5% to 10% of the population, with increased prevalence among women and individuals in war zones. Beyond psychological symptoms, PTSD induces significant physiological changes across systems. Psychoneuroimmunoendocrinology (PNIE) offers a framework to explore these complex interactions between the psyche and the nervous, immune, and endocrine systems. Studies have revealed that PTSD entails disruptions in the central and autonomic nervous, immune, and endocrine systems, including gut microbiota imbalances, which impair organ function. Integrative pathways that connect these parts include the microbiota-gut-brain axis, heart-brain axis, neuroinflammation, and hypothalamic-pituitary dysregulation, highlighting bidirectional links between mental and physical health. Viewing PTSD as an entity comprising both psychological and physiological challenges underscores the importance of integrative care strategies that combine pharmacological treatments, psychotherapy, and lifestyle interventions. These approaches are consistent with PNIE principles, which may help identify biomarkers for treatment efficacy. In this review, we discuss the pathophysiology of PTSD through a PNIE lens and its implications for improving patient care, advocating for personalized, multidisciplinary interventions in mental health.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain
| | - Daniel Fernández-Faber
- Psychiatry and Mental Health Service, Central University Hospital of Defence-UAH Madrid, Alcala de Henares, Spain
| | - Marta Presa
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Psychiatry and Mental Health Service, Central University Hospital of Defence-UAH Madrid, Alcala de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Psychiatry Service, Center for Biomedical Research in the Mental Health Network, CIBERSAM, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Raúl Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - José V Saz
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Spain
| | - Miguel A Sáez
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain.
| |
Collapse
|
4
|
Zhou H, Pan H, Li X, Huang L, Zhang R, Yan X, Xu J. Ginsenoside reprogramming microglia through the FGF/FGFR1 inhibits post traumatic stress disorder. Int Immunopharmacol 2025; 145:113763. [PMID: 39672022 DOI: 10.1016/j.intimp.2024.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Post traumatic stress disorder (PTSD) is a serious and persistent mental diseases. Nowadays, Treatment of PTSD patients in clinical practice is mainly based on drug therapy accompanied by psychological therapy. However, the therapeutic effect is unsatisfactory. It is urgent to detect how to treat PTSD patients. Here, we found that ginsenoside can significantly relieve PTSD symptoms in mice model. Rg3, one of the main pharmacological components of ginsenoside, prevents PTSD by promoting alternatively activated M2 phenotype microglia while inhibiting classically activated inflammatory M1 phenotype microglia. Mechanistically, Rg3 up-regulates fibroblast growth factor receptor 1 (FGFR1) expression in microglia to suppress excessive activation of microglia and reduce neuronal apoptosis. Importantly, knocking down FGFR1 expression in BV2 cells promoted a pro-inflammatory phenotype of BV2 cells, while over-expressing FGFR1 reversed this effect. In vivo PTSD mice model results showed that knockdown FGFR1 prevents the therapeutic effect of Rg3, which indicates that FGFR1 is an essential target of PTSD. Our results reveal that Rg3 may be a potential drug to treat PTSD patients.
Collapse
Affiliation(s)
- Huangao Zhou
- Department of emergency medicine, The Jiangyin Clinical College of Xuzhou Medical University. Jiangyin, PR China; Department of emergency medicine, Jiangyin People's Hospital Affiliated to Nantong University. Jiangyin, PR China
| | - Hao Pan
- Department of emergency medicine, The Jiangyin Clinical College of Xuzhou Medical University. Jiangyin, PR China; Department of emergency medicine, Jiangyin People's Hospital Affiliated to Nantong University. Jiangyin, PR China
| | - Xiangwei Li
- Department of emergency medicine, The Jiangyin Clinical College of Xuzhou Medical University. Jiangyin, PR China; Department of emergency medicine, Jiangyin People's Hospital Affiliated to Nantong University. Jiangyin, PR China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Ruiqi Zhang
- Department of emergency medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Xianliang Yan
- Department of emergency medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China.
| | - Jianing Xu
- Department of emergency medicine, The Jiangyin Clinical College of Xuzhou Medical University. Jiangyin, PR China; Department of emergency medicine, Jiangyin People's Hospital Affiliated to Nantong University. Jiangyin, PR China.
| |
Collapse
|
5
|
Propp MA, Paz D, Makhkamov S, Payton ME, Choudhury Q, Nutter M, Ryznar R. A Prospective Cohort Study on the Effects of Repeated Acute Stress on Cortisol Awakening Response and Immune Function in Military Medical Students. Biomedicines 2024; 12:2519. [PMID: 39595087 PMCID: PMC11592205 DOI: 10.3390/biomedicines12112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The cortisol awakening response (CAR) is a pivotal component of the body's stress response, yet its dynamics under repeated acute stress and its interplay with immune biomarkers remain inadequately understood. Methods: This study examined 80 second-year military medical students undergoing a 5-day intensive surgical simulation designed to elicit stress responses. Salivary samples were collected daily upon waking and 30 min thereafter to measure cortisol and a panel of cytokines using bead-based multiplex ELISA. Results: Analysis revealed a significant blunting of the CAR on the third day of training (p = 0.00006), followed by a recovery on the fourth day (p = 0.0005). Concurrently, specific cytokines such as CXCL1 (r = 0.2, p = 0.0005), IL-6 (r = 0.13, p = 0.02), IL-10 (r = 0.14, p = 0.02), and VEGF-A (r = 0.17, p = 0.003) displayed patterns correlating with the CAR, with increased strength of associations observed when assessing cytokine levels against the CAR of the preceding day (CXCL1 r = 0.41, p = 0.0002. IL-6 r = 0.38, p = 0.0006. IL-10 r = 0.3, p = 0.008. VEGF-A r = 0.41, p = 0.0002). Conclusions: These results suggest a temporal relationship between stress-induced cortisol dynamics and immune regulation. The CAR pattern demonstrated in this study may represent induction of and recovery from psychological burnout. Moreover, the observed cytokine associations provide insight into the mechanisms by which stress can influence immune function. The results may have broader implications for managing stress in high-performance environments, such as military and medical professions, and for identifying individuals at risk of stress-related immune suppression.
Collapse
Affiliation(s)
- Madison A. Propp
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
| | - Dean Paz
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
- Department of Emergency Medicine, University of Texas at Austin Dell, 1500 Red River St, Austin, TX 78701, USA
| | - Sukhrob Makhkamov
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
| | - Mark E. Payton
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| | - Qamrul Choudhury
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| | - Melodie Nutter
- Arizona College of Nursing, 8363 West Sunset Road, Las Vegas, NV 89113, USA;
| | - Rebecca Ryznar
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| |
Collapse
|
6
|
Lawrence S, Scofield RH. Post traumatic stress disorder associated hypothalamic-pituitary-adrenal axis dysregulation and physical illness. Brain Behav Immun Health 2024; 41:100849. [PMID: 39280087 PMCID: PMC11401111 DOI: 10.1016/j.bbih.2024.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
Conventional human stress responses are mediated by the sympathetic adrenal medullar (SAM) axis and the hypothalamic pituitary adrenal (HPA) axis. The SAM axis mediates the immediate response to stress through norepinephrine and epinephrine while the HPA axis mediates the slow response through corticosteroids, primarily cortisol, to effect systemic changes. Post Traumatic Stress Disorder (PTSD), a psychiatric disorder that develops in a small subset of people exposed to a traumatic event, may dysregulate these systems and result in increased risk of various clinical conditions. These conditions include but are not limited to cardiovascular disease, metabolic conditions, autoimmune diseases, neurocognitive disorders, and women's health complications such as preterm birth, polycystic ovarian syndrome, and endometriosis to name a few. This review focuses on how PTSD dysregulates the HPA axis, and further, how these alterations affect the immune system and physical health outcomes.
Collapse
Affiliation(s)
- Stephanie Lawrence
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - R Hal Scofield
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
7
|
Cavicchioli M, Santoni A, Chiappetta F, Deodato M, Di Dona G, Scalabrini A, Galli F, Ronconi L. Psychological dissociation and temporal integration/segregation across the senses: An experimental study. Conscious Cogn 2024; 124:103731. [PMID: 39096823 DOI: 10.1016/j.concog.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
There are no studies that have experimentally tested how temporal integration/segregation of sensory inputs might be linked to the emergence of dissociative experiences and alterations of emotional functioning. Thirty-six participants completed 3 sensory integration tasks. Psychometric thresholds were estimated as indexes of temporal integration/segregation processes. We collected self-report measures of pre-task trait levels of dissociation, as well as pre- post-task changes in both dissociation and emotionality. An independent sample of 21 subjects completed a control experiment administering the Attention Network Test. Results showed: (i) a significant increase of dissociative experiences after the completion of sensory integration tasks, but not after the ANT task; (ii) that subjective thresholds predicted the emergence of dissociative states; (iii) temporal integration efforts affected positive emotionality, which was explained by the extent of task-dependent dissociative states. The present findings reveal that dissociation could be understood in terms of an imbalance between "hyper-segregation" and "hyper-integration" processes.
Collapse
Affiliation(s)
- Marco Cavicchioli
- Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, SAPIENZA University of Rome, Italy; Faculty of Psychology, Sigmund Freud University, Ripa di Porta Ticinese 77, Milan, Italy.
| | - Alessia Santoni
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Michele Deodato
- Psychology Program, Division of Science, New York University Abu Dhabi, United Arab Emirates
| | - Giuseppe Di Dona
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Scalabrini
- Department of Human and Social Science, University of Bergamo, Mental Health, Bergamo, Italy
| | - Federica Galli
- Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, SAPIENZA University of Rome, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
Du L, Fan X, Yang Y, Wu S, Liu Y. Quercetin Ameliorates Cognitive Impairment in Depression by Targeting HSP90 to Inhibit NLRP3 Inflammasome Activation. Mol Neurobiol 2024; 61:6628-6641. [PMID: 38329680 DOI: 10.1007/s12035-024-03926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Cognitive dysfunction was a common symptom of major depressive disorder (MDD). In previous studies, psychological stress leads to activation and proliferation of microglial cells in different brain regions. Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory effects in various diseases. To demonstrate the role of quercetin in the hippocampal inflammatory response in depress mice. The chronic unpredictable stress (CUS) depressive mice model built is used to explore the protective effects of quercetin on depression. Neurobehavioral test, protein expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and heat shock protein 90 (HSP90), and cytokines (IL-6, IL-1β, MCP-1, and TNF-α) were assessed. Quercetin ameliorated depressive-like behavior and cognitive impairment, and quercetin attenuates neuroinflammation and by targeting HSP90 to inhibit NLRP3 inflammasome activation. Quercetin inhibited the increase of HSP90 levels in the hippocampus and reverses inflammation-induced cognitive impairment. Besides, quercetin inhibited the increased level of cytokines (IL-6, IL-1β, MCP-1, and TNF-α) in the hippocampus of the depressive model mouse and the increased level of cytokines (IL-6, IL-1β, and MCP-1) in microglia. The current study indicated that quercetin mitigated depressive-like behavior and by targeting HSP90 to inhibit NLRP3 inflammasome activation in microglia and depressive mice model, meanwhile ameliorated cognitive impairment in depression. Quercetin has huge potential for the novel pharmacological efficacy of antidepressant therapy.
Collapse
Affiliation(s)
- Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Xuyuan Fan
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yi Yang
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
- Department of the Central Laboratory, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Shusheng Wu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Yuan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| |
Collapse
|
9
|
Li P, Liu L, Liu S, Lu Z, Halushka PV, Sidles SJ, LaRue AC, Wang Z, Fan H. FLI1 in PBMCs contributes to elevated inflammation in combat-related posttraumatic stress disorder. Front Psychiatry 2024; 15:1436690. [PMID: 39140108 PMCID: PMC11320135 DOI: 10.3389/fpsyt.2024.1436690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition with significant public health implications that arise following exposure to traumatic events. Recent studies highlight the involvement of immune dysregulation in PTSD, characterized by elevated inflammatory markers. However, the precise mechanisms underlying this immune imbalance remain unclear. Previous research has implicated friend leukemia virus integration 1 (FLI1), an erythroblast transformation-specific (ETS) transcription factor, in inflammatory responses in sepsis and Alzheimer's disease. Elevated FLI1 levels in peripheral blood mononuclear cells (PBMCs) have been linked to lupus severity. Yet, FLI1's role in PTSD-related inflammation remains unexplored. In our study, PBMCs were collected from Veterans with and without PTSD. We found significantly increased FLI1 expression in PBMCs from PTSD-afflicted Veterans, particularly in CD4+ T cells, with no notable changes in CD8+ T cells. Stimulation with LPS led to heightened FLI1 expression and elevated levels of inflammatory cytokines IL-6 and IFNγ in PTSD PBMCs compared to controls. Knockdown of FLI1 using Gapmers in PTSD PBMCs resulted in a marked reduction in inflammatory cytokine levels, restoring them to control group levels. Additionally, co-culturing PBMCs from both control and PTSD Veterans with the human brain microglia cell line HMC3 revealed increased inflammatory mediator levels in HMC3. Remarkably, HMC3 cells co-cultured with PTSD PBMCs treated with FLI1 Gapmers exhibited significantly lower inflammatory mediator levels compared to control Gapmer-treated PTSD PBMCs. These findings suggest that suppressing FLI1 may rebalance immune activity in PBMCs and mitigate microglial activation in the brain. Such insights could provide novel therapeutic strategies for PTSD.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
| | - Liu Liu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Shufeng Liu
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Zhongyang Lu
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Perry V. Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, United States
| | - Sara J. Sidles
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
| | - Amanda C. LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
| | - Zhewu Wang
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
10
|
Valenza M, Facchinetti R, Torazza C, Ciarla C, Bronzuoli MR, Balbi M, Bonanno G, Popoli M, Steardo L, Milanese M, Musazzi L, Bonifacino T, Scuderi C. Molecular signatures of astrocytes and microglia maladaptive responses to acute stress are rescued by a single administration of ketamine in a rodent model of PTSD. Transl Psychiatry 2024; 14:209. [PMID: 38796504 PMCID: PMC11127980 DOI: 10.1038/s41398-024-02928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Stress affects the brain and alters its neuroarchitecture and function; these changes can be severe and lead to psychiatric disorders. Recent evidence suggests that astrocytes and microglia play an essential role in the stress response by contributing to the maintenance of cerebral homeostasis. These cells respond rapidly to all stimuli that reach the brain, including stressors. Here, we used a recently validated rodent model of post-traumatic stress disorder in which rats can be categorized as resilient or vulnerable after acute inescapable footshock stress. We then investigated the functional, molecular, and morphological determinants of stress resilience and vulnerability in the prefrontal cortex, focusing on glial and neuronal cells. In addition, we examined the effects of a single subanesthetic dose of ketamine, a fast-acting antidepressant recently approved for the treatment of resistant depression and proposed for other stress-related psychiatric disorders. The present results suggest a prompt glial cell response and activation of the NF-κB pathway after acute stress, leading to an increase in specific cytokines such as IL-18 and TNF-α. This response persists in vulnerable individuals and is accompanied by a significant change in the levels of critical glial proteins such as S100B, CD11b, and CX43, brain trophic factors such as BDNF and FGF2, and proteins related to dendritic arborization and synaptic architecture such as MAP2 and PSD95. Administration of ketamine 24 h after the acute stress event rescued many of the changes observed in vulnerable rats, possibly contributing to support brain homeostasis. Overall, our results suggest that pivotal events, including reactive astrogliosis, changes in brain trophic factors, and neuronal damage are critical determinants of vulnerability to acute traumatic stress and confirm the therapeutic effect of acute ketamine against the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Claudia Ciarla
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Maria Rosanna Bronzuoli
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Matilde Balbi
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Maurizio Popoli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Kondashevskaya MV, Artemyeva KA, Aleksankina VV, Mikhaleva LM. Heparin as a Potential Therapeutic Substance for Post-Traumatic Stress Disorder. Bull Exp Biol Med 2024; 177:1-9. [PMID: 38954296 DOI: 10.1007/s10517-024-06120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 07/04/2024]
Abstract
In sexually mature male Wistar rats with modeled post-traumatic stress disorder, personalized characteristics of neurobiological reactions in the population of predator-induced stress-resilient and stress-susceptible heparinized animals were determined. Characteristics of the systemic response of immune mechanisms, hypothalamic-pituitary-adrenal axis, behavioral manifestations, as well as basic properties of the CNS (excitation/inhibition) are presented. The study demonstrated encouraging positive results of the course administration of unfractionated heparin at a dose below the therapeutic and prophylactic doses. The inclusion of heparin drugs into the clinical practice for the treatment of post-traumatic stress disorder will not require large-scale clinical trials, because many effects of heparin as a nonspecific adaptogen are well studied. Moreover, these properties were confirmed at a higher technological level during the COVID-19 pandemic.
Collapse
Affiliation(s)
- M V Kondashevskaya
- Petrovsky National Research Center of Surgery, Avtsyn Research Institute of Human Morphology, Moscow, Russia.
| | - K A Artemyeva
- Petrovsky National Research Center of Surgery, Avtsyn Research Institute of Human Morphology, Moscow, Russia
| | - V V Aleksankina
- Petrovsky National Research Center of Surgery, Avtsyn Research Institute of Human Morphology, Moscow, Russia
| | - L M Mikhaleva
- Petrovsky National Research Center of Surgery, Avtsyn Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
12
|
Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS, Lisboa SF. "NO" Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD. Molecules 2023; 29:89. [PMID: 38202672 PMCID: PMC10779493 DOI: 10.3390/molecules29010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Bruna F. Ferreira
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Isabela Pavan-Silva
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Francisco S. Guimarães
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Sabrina F. Lisboa
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| |
Collapse
|
13
|
Nkiliza A, Huguenard CJ, Aldrich GJ, Ferguson S, Cseresznye A, Darcey T, Evans JE, Dretsch M, Mullan M, Crawford F, Abdullah L. Levels of Arachidonic Acid-Derived Oxylipins and Anandamide Are Elevated Among Military APOE ɛ4 Carriers With a History of Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder Symptoms. Neurotrauma Rep 2023; 4:643-654. [PMID: 37786567 PMCID: PMC10541938 DOI: 10.1089/neur.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Currently approved blood biomarkers detect intracranial lesions in adult patients with mild to moderate traumatic brain injury (TBI) acutely post-injury. However, blood biomarkers are still needed to help with a differential diagnosis of mild TBI (mTBI) and post-traumatic stress disorder (PTSD) at chronic post-injury time points. Owing to the association between phospholipid (PL) dysfunction and chronic consequences of TBI, we hypothesized that examining bioactive PL metabolites (oxylipins and ethanolamides) would help identify long-term lipid changes associated with mTBI and PTSD. Lipid extracts of plasma from active-duty soldiers deployed to the Iraq/Afghanistan wars (control = 52, mTBI = 21, PTSD = 34, and TBI + PTSD = 13) were subjected to liquid chromatography/mass spectrometry analysis to examine oxylipins and ethanolamides. Linear regression analyses followed by post hoc comparisons were performed to assess the association of these lipids with diagnostic classifications. Significant differences were found in oxylipins derived from arachidonic acid (AA) between controls and mTBI, PTSD, and mTBI + PTSD groups. Levels of AA-derived oxylipins through the cytochrome P450 pathways and anandamide were significantly elevated among mTBI + PTSD patients who were carriers of the apolipoprotein E E4 allele. These studies demonstrate that AA-derived oxylipins and anandamide may be unique blood biomarkers of PTSD and mTBI + PTSD. Further, these AA metabolites may be indicative of an underlying inflammatory process that warrants further investigation. Future validation studies in larger cohorts are required to determine a potential application of this approach in providing a differential diagnosis of mTBI and PTSD in a clinical setting.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Claire J.C. Huguenard
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | - Scott Ferguson
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | | | | | - Michael Dretsch
- U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Washington, USA
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, Alabama, USA
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Laila Abdullah
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| |
Collapse
|