1
|
Mahmud M, Munjal A, Savani M, Win H, Rozell U, Arshad J. Biomarker Testing and Role of Tyrosine Kinase Inhibitors and Immunotherapy for Esophageal Squamous Cell Carcinoma. FOREGUT: THE JOURNAL OF THE AMERICAN FOREGUT SOCIETY 2024; 4:467-474. [DOI: 10.1177/26345161241238748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) constitutes an aggressive subset of esophageal cancers that portends a poor prognosis. Management of ESCC has been historically challenging due to the limited effective therapeutic options. Broadening our understanding of the molecular landscape and identifying reliable biomarkers are essential in early detection, monitoring disease response and advancing treatment strategies. Recently, immunotherapy and tyrosine kinase inhibitors have changed the treatment algorithm of ESCC. In this review, we explore the molecular landscape and biomarkers that can aid in the management of ESCC and discuss the role of immunotherapy and tyrosine kinase inhibitors in the treatment of ESCC.
Collapse
Affiliation(s)
| | | | - Malvi Savani
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Hninyee Win
- University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Junaid Arshad
- University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
2
|
Wang J, He X, Corpe C. Molecular Mechanisms and Clinical Implications of Noncoding RNAs in Cancer. Noncoding RNA 2024; 10:37. [PMID: 39051371 PMCID: PMC11270368 DOI: 10.3390/ncrna10040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Noncoding RNAs (ncRNAs), which include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are RNA molecules that arise from genomic regions without protein-coding potential and display a variety of mechanisms and functions by regulating gene expression at the transcriptional, RNA processing, and translational levels and participating in virtually all cellular processes [...].
Collapse
Affiliation(s)
- Jin Wang
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Christopher Corpe
- Department of Nutritional Sciences, King’s College London, 150 Stamford Street, Waterloo, London SE1 9NH, UK
| |
Collapse
|
3
|
Bhat GR, Sethi I, Sadida HQ, Rah B, Mir R, Algehainy N, Albalawi IA, Masoodi T, Subbaraj GK, Jamal F, Singh M, Kumar R, Macha MA, Uddin S, Akil ASAS, Haris M, Bhat AA. Cancer cell plasticity: from cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer Metastasis Rev 2024; 43:197-228. [PMID: 38329598 PMCID: PMC11016008 DOI: 10.1007/s10555-024-10172-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Cancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon. Cancer cell plasticity is intertwined with processes such as epithelial-mesenchymal transition and the acquisition of stem cell-like features. These processes are pivotal in the development and progression of tumors, contributing to the multifaceted nature of cancer and the challenges associated with its treatment. Despite significant advancements in targeted therapies, cancer cell adaptability and subsequent therapy-induced resistance remain persistent obstacles in achieving consistent, successful cancer treatment outcomes. Our review delves into the array of mechanisms cancer cells exploit to maintain plasticity, including epigenetic modifications, alterations in signaling pathways, and environmental interactions. We discuss strategies to counteract cancer cell plasticity, such as targeting specific cellular pathways and employing combination therapies. These strategies promise to enhance the efficacy of cancer treatments and mitigate therapy resistance. In conclusion, this review offers a holistic, detailed exploration of cancer cell plasticity, aiming to bolster the understanding and approach toward tackling the challenges posed by tumor heterogeneity and drug resistance. As articulated in this review, the delineation of cellular, molecular, and genetic mechanisms underlying tumor heterogeneity and drug resistance seeks to contribute substantially to the progress in cancer therapeutics and the advancement of precision medicine, ultimately enhancing the prospects for effective cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Gh Rasool Bhat
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Itty Sethi
- Institute of Human Genetics, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Bilal Rah
- Iron Biology Group, Research Institute of Medical and Health Science, University of Sharjah, Sharjah, UAE
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | | | - Farrukh Jamal
- Dr. Rammanohar, Lohia Avadh University, Ayodhya, India
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Institute of Medical Sciences (AIIMS), Dr. BRAIRCH, All India, New Delhi, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mohammad Haris
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
4
|
Săsăran MO, Bănescu C. Role of salivary miRNAs in the diagnosis of gastrointestinal disorders: a mini-review of available evidence. Front Genet 2023; 14:1228482. [PMID: 37456668 PMCID: PMC10346860 DOI: 10.3389/fgene.2023.1228482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
MiRNAs are short, non-coding RNA molecules, which are involved in the regulation of gene expression and which play an important role in various biological processes, including inflammation and cell cycle regulation. The possibility of detecting their extracellular expression, within body fluids, represented the main background for their potential use as non-invasive biomarkers of various diseases. Salivary miRNAs particularly gained interest recently due to the facile collection of stimulated/unstimulated saliva and their stability among healthy subjects. Furthermore, miRNAs seem to represent biomarker candidates of gastrointestinal disorders, with miRNA-based therapeutics showing great potential in those conditions. This review aimed to highlight available evidence on the role of salivary miRNAs in different gastrointestinal conditions. Most salivary-based miRNA studies available in the literature that focused on pathologies of the gastrointestinal tract have so far been conducted on pancreatic cancer patients and delivered reliable results. A few studies also showed the diagnostic utility of salivary miRNAs in conditions such as esophagitis, esophageal cancer, colorectal cancer, or inflammatory bowel disease. Moreover, several authors showed that salivary miRNAs may confidently be used as biomarkers of gastric cancer, but the use of salivary miRNA candidates in gastric inflammation and pre-malignant lesions, essential stages of Correa's cascade, is still put into question. On the other hand, besides miRNAs, other salivary omics have shown biomarker potential in gastro-intestinal conditions. The limited available data suggest that salivary miRNAs may represent reliable biomarker candidates for gastrointestinal conditions. However, their diagnostic potential requires validation through future research, performed on larger cohorts.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics 3, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Târgu Mureș, Romania
| | - Claudia Bănescu
- Genetics Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Targu Mures, Romania
| |
Collapse
|
5
|
Omar MA, Omran MM, Farid K, Tabll AA, Shahein YE, Emran TM, Petrovic A, Lucic NR, Smolic R, Kovac T, Smolic M. Biomarkers for Hepatocellular Carcinoma: From Origin to Clinical Diagnosis. Biomedicines 2023; 11:1852. [PMID: 37509493 PMCID: PMC10377276 DOI: 10.3390/biomedicines11071852] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) and HCC-related deaths has increased over the last few decades. There are several risk factors of HCC such as viral hepatitis (B, C), cirrhosis, tobacco and alcohol use, aflatoxin-contaminated food, pesticides, diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and metabolic and genetic diseases. Diagnosis of HCC is based on different methods such as imaging ultrasonography (US), multiphasic enhanced computed tomography (CT), magnetic resonance imaging (MRI), and several diagnostic biomarkers. In this review, we examine the epidemiology of HCC worldwide and in Egypt as well as risk factors associated with the development of HCC and, finally, provide the updated diagnostic biomarkers for the diagnosis of HCC, particularly in the early stages of HCC. Several biomarkers are considered to diagnose HCC, including downregulated or upregulated protein markers secreted during HCC development, circulating nucleic acids or cells, metabolites, and the promising, recently identified biomarkers based on quantitative proteomics through the isobaric tags for relative and absolute quantitation (iTRAQ). In addition, a diagnostic model used to improve the sensitivity of combined biomarkers for the diagnosis of early HCC is discussed.
Collapse
Affiliation(s)
- Mona A. Omar
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt;
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Khaled Farid
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35524, Egypt;
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, National Research Centre, Cairo 12622, Egypt
- Immunology Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Yasser E. Shahein
- Molecular Biology Department, National Research Centre, Cairo 12622, Egypt
| | - Tarek M. Emran
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, New Damietta 34517, Egypt;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Nikola R. Lucic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Tanja Kovac
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| |
Collapse
|
6
|
Compagnoni C, Capelli R, Zelli V, Corrente A, Vecchiotti D, Flati I, Di Vito Nolfi M, Angelucci A, Alesse E, Zazzeroni F, Tessitore A. MiR-182-5p Is Upregulated in Hepatic Tissues from a Diet-Induced NAFLD/NASH/HCC C57BL/6J Mouse Model and Modulates Cyld and Foxo1 Expression. Int J Mol Sci 2023; 24:ijms24119239. [PMID: 37298191 DOI: 10.3390/ijms24119239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered a relevant liver chronic disease. Variable percentages of NAFLD cases progress from steatosis to steatohepatitis (NASH), cirrhosis and, eventually, hepatocellular carcinoma (HCC). In this study, we aimed to deepen our understanding of expression levels and functional relationships between miR-182-5p and Cyld-Foxo1 in hepatic tissues from C57BL/6J mouse models of diet-induced NAFL/NASH/HCC progression. A miR-182-5p increase was detected early in livers as NAFLD damage progressed, and in tumors compared to peritumor normal tissues. An in vitro assay on HepG2 cells confirmed Cyld and Foxo1, both tumor-suppressor, as miR-182-5p target genes. According to miR-182-5p expression, decreased protein levels were observed in tumors compared to peritumor tissues. Analysis of miR-182-5p, Cyld and Foxo1 expression levels, based on datasets from human HCC samples, showed results consistent with those from our mouse models, and also highlighted the ability of miR-182-5p to distinguish between normal and tumor tissues (AUC 0.83). Overall, this study shows, for the first time, miR-182-5p overexpression and Cyld-Foxo1 downregulation in hepatic tissues and tumors from a diet-induced NAFLD/HCC mouse model. These data were confirmed by the analysis of datasets from human HCC samples, highlighting miR-182-5p diagnostic accuracy and demonstrating the need for further studies to assess its potential role as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, Via Petrini, 67100 L'Aquila, Italy
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, Via Petrini, 67100 L'Aquila, Italy
| |
Collapse
|
7
|
Zhou Y, Liu F, Ma C, Cheng Q. Involvement of microRNAs and their potential diagnostic, therapeutic, and prognostic role in hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24673. [PMID: 36036748 PMCID: PMC9551129 DOI: 10.1002/jcla.24673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) accounts for 85%-90% of primary liver cancer. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting the 3'UTR of mRNA. Abnormal expression and regulation of miRNAs are involved in the occurrence and progression of HCC, and miRNAs can also play a role in the diagnosis and treatment of HCC as oncogenes or tumor suppressors. METHODS In the past decades, a large number of studies have shown that miRNAs play an essential regulatory role in HCC and have potential as biomarkers for HCC. We reviewed the literature to summarize these studies. RESULTS By reviewing the literature, we retrospected the roles of miRNAs in the development, diagnosis, treatment, and prognosis of HCC, and put forward prospects for the further research on miRNAs in the precision treatment of HCC. CONCLUSION MicroRNAs are important regulators and biomarkers in the occurrence, progression, outcome, and treatment of HCC, and can provide new targets and strategies for improving the therapeutic effect of HCC.
Collapse
Affiliation(s)
- Yilong Zhou
- Department of Surgery, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Fan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chunyang Ma
- Department of Surgery, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
8
|
Eshkoor SA, Ghodsian N, Akhtari-Zavare M. MicroRNAs influence and longevity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
MiRNAs play critical roles in the regulation of cellular function, life span, and the aging process. They can affect longevity positively and negatively through different aging pathways.
Main text
MiRNAs are a group of short non-coding RNAs that regulate gene expressions at post-transcriptional levels. The different types of alterations in miRNAs biogenesis, mRNA expressions, and activities of miRNA-protein complexes can affect the regulation of normal post-transcriptional gene process, which may lead to aging, age-related diseases, and an earlier death. It seems that the influence of deregulation of miRNAs on senescence and age-related diseases occurring by targeting aging molecular pathways can be used for diagnosis and prognosis of them. Therefore, the expression and function of miRNAs should be studied more accurately with new applicable and validated experimental tools. However, the current review wishes to highlight simply a connection among miRNAs, senescence and some age-related diseases.
Conclusion
Despite several research indicating the key roles of miRNAs in aging and longevity, further investigations are still needed to elucidate the essential roles of miRNAs in controlling mRNA regulation, cell proliferation, death and/or protection during stress and health problems. Besides, more research on miRNAs will help to identify new targets for alternative strategies regarding effectively screen, treat, and prevent diseases as well as make slow the aging process.
Collapse
|
9
|
Kabiraj L, Kundu A. Potential role of microRNAs in pancreatic cancer manifestation: a review. J Egypt Natl Canc Inst 2022; 34:26. [PMID: 35718815 DOI: 10.1186/s43046-022-00127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer cells are different from normal cells in regard to phenotypic and functional expression. Cancer is the outcome of aberrant gene expression affecting various cellular signaling pathways. MicroRNAs (MiRs) are small, non-coding RNAs regulating the expression of various protein-coding genes post-transcriptionally and are known to play critical roles in the complicated cellular pathways leading to cell growth, proliferation, development, and apoptosis. MiRs are involved in various cancer-related pathways and function both as tumor suppressor and cancer-causing genes. There is a need for significant biomarkers, and better prognostication of response to a particular treatment and liquid biopsy could be useful to appraise such potential biomarkers. This review has focused on the involvement of anomalous expression of miRs in human pancreatic cancer and the investigation of miR-based biomarkers for disease diagnosis and better therapeutic selection.
Collapse
Affiliation(s)
- Lisa Kabiraj
- Department of Microbiology, Techno India University, EM-4, Sector-V, Salt Lake City, Kolkata, 700091, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, EM-4, Sector-V, Salt Lake City, Kolkata, 700091, India.
| |
Collapse
|
10
|
Yang B, Bao W, Chen B, Song D. Single_cell_GRN: gene regulatory network identification based on supervised learning method and Single-cell RNA-seq data. BioData Min 2022; 15:13. [PMID: 35690842 PMCID: PMC9188720 DOI: 10.1186/s13040-022-00297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/22/2022] [Indexed: 11/30/2022] Open
Abstract
Single-cell RNA-seq overcomes the shortcomings of conventional transcriptome sequencing technology and could provide a powerful tool for distinguishing the transcriptome characteristics of various cell types in biological tissues, and comprehensively revealing the heterogeneity of gene expression between cells. Many Intelligent Computing methods have been presented to infer gene regulatory network (GRN) with single-cell RNA-seq data. In this paper, we investigate the performances of seven classifiers including support vector machine (SVM), random forest (RF), Naive Bayesian (NB), GBDT, logical regression (LR), decision tree (DT) and K-Nearest Neighbor (KNN) for solving the binary classification problems of GRN inference with single-cell RNA-seq data (Single_cell_GRN). In SVM, three different kernel functions (linear, polynomial and radial basis function) are utilized, respectively. Three real single-cell RNA-seq datasets from mouse and human are utilized. The experiment results prove that in most cases supervised learning methods (SVM, RF, NB, GBDT, LR, DT and KNN) perform better than unsupervised learning method (GENIE3) in terms of AUC. SVM, RF and KNN have the better performances than other four classifiers. In SVM, linear and polynomial kernels are more fit to model single-cell RNA-seq data.
Collapse
Affiliation(s)
- Bin Yang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Wenzheng Bao
- School of Information and Electrical Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Baitong Chen
- Xuzhou First People's Hospital, Xuzhou, 221000, China
| | - Dan Song
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China.
| |
Collapse
|
11
|
Zhang Y, Lai Y, Zhou X, Zhu F. The Role of microRNA-133 in Hemocyte Proliferation and Innate Immunity of Scylla paramamosain. Front Immunol 2022; 12:812717. [PMID: 35154084 PMCID: PMC8828940 DOI: 10.3389/fimmu.2021.812717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/28/2021] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are important signaling regulators that are involved in regulating the innate immunity of crustacean. However, few studies focus on the role of crustacean miRNAs in the cellular immunity have been reported. In this study, we showed that the expression of miR-133 was significantly up-regulated in the mud crab Scylla paramamosain after infection by white spot syndrome virus (WSSV) or Vibrio parahaemolyticus. The anti-miRNA oligonucleotide AMO-miR-133 was used to knock down miR-133 expression in S. paramamosain. The number of WSSV copies increased significantly in WSSV-infected crabs after miR-133 knockdown. Knockdown of miR-133 also enhanced the mortality rates of WSSV-infected and V. parahaemolyticus-infected mud crabs, and it significantly enhanced the expression of the astakine, which was confirmed by real-time quantitative PCR and western blot analysis. The data also indicate that miR-133 may affect hemocyte proliferation in S. paramamosain by regulating astakine expression. miR-133 Knockdown enhanced the apoptosis or phagocytosis of crab hemocytes, and increased the mortality of mud crabs after WSSV or V. parahaemolyticus infection. These results indicate that miR-133 is involved in the host immune response to WSSV and V. parahaemolyticus infection in mud crabs. Taken together, our research provides new insights for the control of viral or vibrio diseases in S. paramamosain.
Collapse
Affiliation(s)
- Yunfei Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yongyong Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
12
|
Karagur ER, Akgun S, Akca H. Computational and Bioinformatics Methods for MicroRNA Gene Prediction. Methods Mol Biol 2022; 2257:349-373. [PMID: 34432287 DOI: 10.1007/978-1-0716-1170-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) are 20-24-nucleotide-long noncoding RNAs that bind to the untranslated region (3' UTR) of their target mRNAs. The importance of miRNAs in medicine has grown rapidly in the 20 years since the discovery of them. As the regulatory function of miRNAs on biological processes was discovered, they were advocated to play a role in the underlying mechanisms of human pathogenesis. Functional studies have confirmed that miRNAs are promising in preclinical development through deregulation of genes targeted by miRNAs in many cancer cases. In this chapter, we summarize the miRNAs identified for some specific types of cancer and their functions. Besides, miRNAs function as cancer biomarker and their benefits to diagnosis and treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Ege Riza Karagur
- Department of Medical Genetic, School of Medicine, Pamukkale University, Denizli, Turkey
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Sakir Akgun
- Department of Medical Biology, School of Medicine, Kafkas University, Kars, Turkey
| | - Hakan Akca
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
13
|
Pfeiffer CT, Wang J, Paulo JA, Jiang X, Gygi SP, Rockman HA. Mapping Angiotensin II Type 1 Receptor-Biased Signaling Using Proximity Labeling and Proteomics Identifies Diverse Actions of Biased Agonists. J Proteome Res 2021; 20:3256-3267. [PMID: 33950683 DOI: 10.1021/acs.jproteome.1c00080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II type 1 receptors (AT1Rs) are one of the most widely studied G-protein-coupled receptors. To fully appreciate the diversity in cellular signaling profiles activated by AT1R transducer-biased ligands, we utilized peroxidase-catalyzed proximity labeling to capture proteins in close proximity to AT1Rs in response to six different ligands: angiotensin II (full agonist), S1I8 (partial agonist), TRV055 and TRV056 (G-protein-biased agonists), and TRV026 and TRV027 (β-arrestin-biased agonists) at 90 s, 10 min, and 60 min after stimulation (ProteomeXchange Identifier PXD023814). We systematically analyzed the kinetics of AT1R trafficking and determined that distinct ligands lead AT1R to different cellular compartments for downstream signaling activation and receptor degradation/recycling. Distinct proximity labeling of proteins from a number of functional classes, including GTPases, adaptor proteins, and kinases, was activated by different ligands suggesting unique signaling and physiological roles of the AT1R. Ligands within the same class, that is, either G-protein-biased or β-arrestin-biased, shared high similarity in their labeling profiles. A comparison between ligand classes revealed distinct signaling activation such as greater labeling by G-protein-biased ligands on ESCRT-0 complex proteins that act as the sorting machinery for ubiquitinated proteins. Our study provides a comprehensive analysis of AT1R receptor-trafficking kinetics and signaling activation profiles induced by distinct classes of ligands.
Collapse
Affiliation(s)
- Conrad T Pfeiffer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xue Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
14
|
Chu LY, Peng YH, Weng XF, Xie JJ, Xu YW. Blood-based biomarkers for early detection of esophageal squamous cell carcinoma. World J Gastroenterol 2020; 26:1708-1725. [PMID: 32351288 PMCID: PMC7183865 DOI: 10.3748/wjg.v26.i15.1708] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive system worldwide, especially in China. Due to the lack of effective early detection methods, ESCC patients often present at an advanced stage at the time of diagnosis, which seriously affects the prognosis of patients. At present, early detection of ESCC mainly depends on invasive and expensive endoscopy and histopathological biopsy. Therefore, there is an unmet need for a non-invasive method to detect ESCC in the early stages. With the emergence of a large class of non-invasive diagnostic tools, serum tumor markers have attracted much attention because of their potential for detection of early tumors. Therefore, the identification of serum tumor markers for early detection of ESCC is undoubtedly one of the most effective ways to achieve early diagnosis and treatment of ESCC. This article reviews the recent advances in the discovery of blood-based ESCC biomarkers, and discusses the origins, clinical applications, and technical challenges of clinical validation of various types of biomarkers.
Collapse
Affiliation(s)
- Ling-Yu Chu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xue-Fen Weng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
15
|
Zheng B, Zhou J, Wang H. Host microRNAs and exosomes that modulate influenza virus infection. Virus Res 2020; 279:197885. [PMID: 31981772 DOI: 10.1016/j.virusres.2020.197885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate over half of human protein-coding genes and play a vital role in cellular development, proliferation, metabolism, and homeostasis. Exosomes are rounded or cup-like extracellular vesicles that carry proteins, mRNAs, miRNAs, and lipids for release and exchange messages between cells involved in various cellular processes. Influenza virus is a substantial public health challenge. The expression of host miRNAs is altered in response to stimulation by influenza virus. These dysregulated miRNAs directly or indirectly target viral genes to regulate viral replication and stimulate or suppress innate immune responses and cell apoptosis during viral infection. Exosomes released by infected cells are associated with the transfer of antigens and key molecules that activate and modulate immune function. Dysregulation of miRNAs and secretion of exosomes are associated with pathogenicity and immune regulation during influenza infection. This review provides a comprehensive summary of the information available regarding host miRNAs and exosomes that are involved in the modulation of influenza virus infection and will facilitate the development of preventative or therapeutic strategies against influenza virus.
Collapse
Affiliation(s)
- Baojia Zheng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632, China
| | - Junmei Zhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education, and Deparment of Medical Microbiology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Hui Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
16
|
Mok L, Kim Y, Lee S, Choi S, Lee S, Jang JY, Park T. HisCoM-PAGE: Hierarchical Structural Component Models for Pathway Analysis of Gene Expression Data. Genes (Basel) 2019; 10:E931. [PMID: 31739607 PMCID: PMC6896173 DOI: 10.3390/genes10110931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Although there have been several analyses for identifying cancer-associated pathways, based on gene expression data, most of these are based on single pathway analyses, and thus do not consider correlations between pathways. In this paper, we propose a hierarchical structural component model for pathway analysis of gene expression data (HisCoM-PAGE), which accounts for the hierarchical structure of genes and pathways, as well as the correlations among pathways. Specifically, HisCoM-PAGE focuses on the survival phenotype and identifies its associated pathways. Moreover, its application to real biological data analysis of pancreatic cancer data demonstrated that HisCoM-PAGE could successfully identify pathways associated with pancreatic cancer prognosis. Simulation studies comparing the performance of HisCoM-PAGE with other competing methods such as Gene Set Enrichment Analysis (GSEA), Global Test, and Wald-type Test showed HisCoM-PAGE to have the highest power to detect causal pathways in most simulation scenarios.
Collapse
Affiliation(s)
- Lydia Mok
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Seoul 08826, Korea
| | - Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Sungkyoung Choi
- Department of Applied Mathematics, Hanyang University (ERICA), Ansan 15588, Korea
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Department of Statistics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Qian L, Li Q, Baryeh K, Qiu W, Li K, Zhang J, Yu Q, Xu D, Liu W, Brand RE, Zhang X, Chen W, Liu G. Biosensors for early diagnosis of pancreatic cancer: a review. Transl Res 2019; 213:67-89. [PMID: 31442419 DOI: 10.1016/j.trsl.2019.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is characterized by extremely high mortality and poor prognosis and is projected to be the leading cause of cancer deaths by 2030. Due to the lack of early symptoms and appropriate methods to detect pancreatic carcinoma at an early stage as well as its aggressive progression, the disease is often quite advanced by the time a definite diagnosis is established. The 5-year relative survival rate for all stages is approximately 8%. Therefore, detection of pancreatic cancer at an early surgically resectable stage is the key to decrease mortality and to improve survival. The traditional methods for diagnosing pancreatic cancer involve an imaging test, such as ultrasound or magnetic resonance imaging, paired with a biopsy of the mass in question. These methods are often expensive, time consuming, and require trained professionals to use the instruments and analyze the imaging. To overcome these issues, biosensors have been proposed as a promising tool for the early diagnosis of pancreatic cancer. The present review critically discusses the latest developments in biosensors for the early diagnosis of pancreatic cancer. Protein and microRNA biomarkers of pancreatic cancer and corresponding biosensors for pancreatic cancer diagnosis have been reviewed, and all these cases demonstrate that the emerging biosensors are becoming an increasingly relevant alternative to traditional techniques. In addition, we discuss the existing problems in biosensors and future challenges.
Collapse
Affiliation(s)
- Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qiaobin Li
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Kwaku Baryeh
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Wanwei Qiu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Jing Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qingcai Yu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Dongqin Xu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Wenju Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Randall E Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xueji Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, PR China.
| | - Wei Chen
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Food Science & Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota.
| |
Collapse
|
18
|
Jin Y, Wei J, Xu S, Guan F, Yin L, Zhu H. miR‑210‑3p regulates cell growth and affects cisplatin sensitivity in human ovarian cancer cells via targeting E2F3. Mol Med Rep 2019; 19:4946-4954. [PMID: 30957179 DOI: 10.3892/mmr.2019.10129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/19/2019] [Indexed: 11/06/2022] Open
Abstract
The potential role of microRNA (miR)‑210‑3p in carcinogenesis and the cisplatin sensitivity of ovarian cancer were evaluated in the present study. The relative expression levels of miR‑210‑3p in cisplatin‑sensitive SKOV‑3 cells and cisplatin‑resistant SKOV‑3/DDP cells were determined using reverse transcription‑quantitative polymerase chain reaction analysis. miR‑210‑3p mimics and inhibitors were transfected into SKOV‑3/DDP cells. Cell Counting Kit‑8, scratch and Transwell invasion assays and flow cytometry were conducted to evaluate the role of miR‑210‑3p in ovarian cancer cells. A luciferase reporter assay was used to verify the association between miR‑210‑3p and E2F transcription factor 3 (E2F3). Drug sensitivity was evaluated by treating the cells with cisplatin. The expression level of miR‑210‑3p was lower in SKOV‑3/DDP cells than in SKOV‑3 cells. Compared with the untransfected control, SKOV‑3 cells transfected with miR‑210‑3p exhibited a significantly higher survival rate. The overexpression of miR‑210‑3p inhibited SKOV‑3/DDP cell proliferation, migration and invasion, and promoted cell apoptosis. By contrast, the inhibition of miR‑210‑3p promoted cell migration and invasion. The luciferase reporter assay confirmed that E2F3 was a direct target gene of miR‑210‑3p. Cisplatin treatment resulted in a sharp decrease in the survival rate of SKOV‑3/DDP cells transfected with the miR‑210‑3p mimics. The decrease in cell survival rate caused by the overexpression of miR‑210‑3p was rescued by the overexpression of E2F3 in SKOV‑3/DDP cells. Taken together, these results suggest that miR‑210‑3p may act as a tumor suppressor in ovarian cancer cells and affect the sensitivity of cells to cisplatin by directly targeting E2F3. This indicates its potential use as a therapeutic target for improving drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Yue Jin
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Wei
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shaoting Xu
- Department of Gynecology, Shulan Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Fang Guan
- Department of Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lijun Yin
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haibin Zhu
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
19
|
Rofi E, Vivaldi C, Del Re M, Arrigoni E, Crucitta S, Funel N, Fogli S, Vasile E, Musettini G, Fornaro L, Falcone A, Danesi R. The emerging role of liquid biopsy in diagnosis, prognosis and treatment monitoring of pancreatic cancer. Pharmacogenomics 2019; 20:49-68. [PMID: 30520336 DOI: 10.2217/pgs-2018-0149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor DNA, circulating tumor cells and tumor-related exosomes may offer new opportunities to provide insights into the biological and clinical characteristics of a neoplastic disease. They represent alternative routes for diagnostic and prognostic purposes, and for predicting and longitudinally monitoring response to treatment and disease progression. Hence, circulating biomarkers represent promising noninvasive tools in the scenario of pancreatic cancer, where neither molecular nor clinical predictors of treatment benefit have been identified yet. This review aims to provide an overview of the current status of circulating biomarker research in pancreatic cancer, and discusses their potential clinical utility to facilitate clinical decision-making.
Collapse
Affiliation(s)
- Eleonora Rofi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Elena Arrigoni
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Niccola Funel
- Department of Translational Research & The New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Enrico Vasile
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Gianna Musettini
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
20
|
Differential expression of miRNA199b-5p as a novel biomarker for sporadic and hereditary parathyroid tumors. Sci Rep 2018; 8:12016. [PMID: 30104706 PMCID: PMC6089933 DOI: 10.1038/s41598-018-30484-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/31/2018] [Indexed: 11/15/2022] Open
Abstract
MicroRNAs (miRNAs) are dysregulated in many tumors; however, miRNA regulation in parathyroid tumors remains poorly understood. To identify differentially expressed miRNAs between sporadic and hereditary parathyroid tumors and to analyze their correlation with clinicopathological features, a microarray containing 887 miRNAs was performed; then, the differentially expressed miRNAs were validated by qRT-PCR using 25 sporadic and 12 hereditary parathyroid tumors and 24 normal parathyroid tissue samples. A receiver operating characteristic curve (ROC) analysis was applied to evaluate the utility of the miRNAs for distinguishing parathyroid tumor types. Compared to the miRNAs in the normal parathyroid tissues, 10 miRNAs were differentially expressed between the sporadic and hereditary parathyroid tumors. Seven of these miRNAs (let-7i, miR-365, miR-125a-3p, miR-125a-5p, miR-142-3p, miR-193b, and miR-199b-5p) were validated in the parathyroid tumor samples. Among these miRNAs, only miR-199b-5p was differentially expressed (P < 0.001); miR-199b-5p was significantly downregulated and negatively associated with PTH levels (γ = −0.579, P = 0.002) in the sporadic tumors but was upregulated in the hereditary tumors. This miRNA showed 67% sensitivity and 100% specificity for distinguishing sporadic and hereditary parathyroid tumors. These results reveal altered expression of a miRNA between sporadic and hereditary parathyroid tumors and the potential role of miR-199b-5p as a novel biomarker for distinguishing these two types of parathyroid tumors.
Collapse
|
21
|
Szigyarto CAK, Spitali P. Biomarkers of Duchenne muscular dystrophy: current findings. Degener Neurol Neuromuscul Dis 2018; 8:1-13. [PMID: 30050384 PMCID: PMC6053903 DOI: 10.2147/dnnd.s121099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous biomarkers have been unveiled in the rapidly evolving biomarker discovery field, with an aim to improve the clinical management of disorders. In rare diseases, such as Duchenne muscular dystrophy, this endeavor has created a wealth of knowledge that, if effectively exploited, will benefit affected individuals, with respect to health care, therapy, improved quality of life and increased life expectancy. The most promising findings and molecular biomarkers are inspected in this review, with an aim to provide an overview of currently known biomarkers and the technological developments used. Biomarkers as cells, genetic variations, miRNAs, proteins, lipids and/or metabolites indicative of disease severity, progression and treatment response have the potential to improve development and approval of therapies, clinical management of DMD and patients’ life quality. We highlight the complexity of translating research results to clinical use, emphasizing the need for biomarkers, fit for purpose and describe the challenges associated with qualifying biomarkers for clinical applications.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Division of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden, .,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden,
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands,
| |
Collapse
|
22
|
Pei X, Yin H, Lai T, Zhang J, Liu F, Xu X, Li N. Multiplexed Detection of Attomoles of Nucleic Acids Using Fluorescent Nanoparticle Counting Platform. Anal Chem 2018; 90:1376-1383. [DOI: 10.1021/acs.analchem.7b04551] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | | | | | | | - Xiao Xu
- Division
of Nano Metrology and Materials Measurement, National Institute of Metrology, Beijing 100029, P. R. China
| | | |
Collapse
|
23
|
Shan M, Xia Q, Yan D, Zhu Y, Zhang X, Zhang G, Guo J, Hou J, Chen W, Zhu T, Zhang X, Xu J, Wang J, Ding T, Zheng J. Molecular analyses of prostate tumors for diagnosis of malignancy on fine-needle aspiration biopsies. Oncotarget 2017; 8:104761-104771. [PMID: 29285211 PMCID: PMC5739598 DOI: 10.18632/oncotarget.22289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/15/2017] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is a common cancer and remains the second-leading cause of cancer-associated mortality in men, but diagnosis of PCa remains a main clinical challenge. To investigate the involvement of differentially expressing genes in PCa with deregulated pathways to allow earlier diagnosis of the disease, transcriptomic analyses of differential expression genes in fine-needle aspiration (FNA) biopsies helped to discriminate PCa from benign prostatic hyperplasia (BPH). We identified 255 genes that were deregulated in prostate tumors compared with BPH tissues. qRT-PCR was conducted to examine the expression levels of the four genes in FNA biopsies and confirmed that ITGBL1 was significantly up-regulated and HOXA7, KRT15 and TGM4 were down-regulated in the PCa compared to the BPH, with a sensitivity of 87.1% and a specificity of 87.8%; the area under the receiver operating characteristic curve was estimated at 0.94, which was significantly improved compared with PSA alone (AUC = 0.82). Moreover, the increased expression of ITGBL1 correlated with total cholesterol, triglyceride and PSA. Our results demonstrated that transcriptomic analyses in FNA biopsies could facilitate rapid identification of potential targets for therapy and diagnosis of PCa.
Collapse
Affiliation(s)
- Menglin Shan
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Qianlin Xia
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Dong Yan
- Department of Medical Oncology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, P.R. China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Yangpu, Shanghai, P.R. China
| | - Xuan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Guihong Zhang
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Yangpu, Shanghai, P.R. China
| | - Jun Hou
- Pathology, Zhongshan Hospital, Fudan University, Yangpu, Shanghai, P.R. China
| | - Weiping Chen
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongyu Zhu
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Tao Ding
- Department of Urology, The Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Fengxian, Shanghai, P.R. China
| | - Jianghua Zheng
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
- Department of Laboratory Medicine, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Pudong New Area, Shanghai, P.R. China
| |
Collapse
|
24
|
Khalyfa A, Kheirandish-Gozal L, Gozal D. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity. Respir Physiol Neurobiol 2017; 256:143-156. [PMID: 28676332 DOI: 10.1016/j.resp.2017.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea (OSA), the most severe form of sleep disordered breathing, is characterized by intermittent hypoxia during sleep (IH), sleep fragmentation, and episodic hypercapnia. OSA is associated with increased risk for morbidity and mortality affecting cardiovascular, metabolic, and neurocognitive systems, and more recently with non-alcoholic fatty liver disease (NAFLD) and cancer-related deaths. Substantial variability in OSA outcomes suggests that genetically-determined and environmental and lifestyle factors affect the phenotypic susceptibility to OSA. Furthermore, OSA and obesity often co-exist and manifest activation of shared molecular end-organ injury mechanisms that if properly identified may represent potential therapeutic targets. A challenge in the development of non-invasive diagnostic assays in body fluids is the ability to identify clinically relevant biomarkers. Circulating extracellular vesicles (EVs) include a heterogeneous population of vesicular structures including exosomes, prostasomes, microvesicles (MVs), ectosomes and oncosomes, and are classified based on their size, shape and membrane surface composition. Of these, exosomes (30-100nm) are very small membrane vesicles derived from multi-vesicular bodies or from the plasma membrane and play important roles in mediating cell-cell communication via cargo that includes lipids, proteins, mRNAs, miRNAs and DNA. We have recently identified a unique cluster of exosomal miRNAs in both humans and rodents exposed to intermittent hypoxia as well as in patients with OSA with divergent morbid phenotypes. Here we summarize such recent findings, and will focus on exosomal miRNAs in both adult and children which mediate intercellular communication relevant to OSA and endothelial dysfunction, and their potential value as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (21-23 nucleotides in length) that regulate gene expression at translational or posttranslational levels. The major regulatory mechanisms include translational repression or mRNA degradation (Filipowicz et al., Curr Opin Struct Biol 15:331-341, 2005).Aberrant expression of miRNAs has been found to be associated with a variety of human diseases such as cancers/tumors, diabetes, viral infections, cardiovascular diseases, neurodegenerative diseases, and other diseases (Wang et al., J Cell Physiol 23:25-30, 2016; Lawrie, MicroRNAs in medicine, 2013). The expression of miRNAs is tissue specific and can be used to identify tumor type and its origin (Mishra and Merlino, J Clin Invest 119:2119-2123, 2009). Many investigations suggest that the miRNA-expression profiles are novel diagnostic and prognostic biomarkers for multiple human diseases. Manipulating relevant miRNA expression or function may serve as potential therapeutic strategies for different diseases.
Collapse
Affiliation(s)
- Weili Huang
- Miracle Query, Incorporated, 456 W. 29th Ave., Eugene, OR, 97405, USA.
| |
Collapse
|
26
|
Soini Y. Epigenetic and genetic changes in soft tissue sarcomas: a review. APMIS 2016; 124:925-934. [PMID: 27670825 DOI: 10.1111/apm.12600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/03/2016] [Indexed: 11/26/2022]
Abstract
Soft tissue sarcomas are a versatile group of tumors with a proposed origin from mesenchymal stem cells. During recent years, the molecular biologic mechanisms behind the histogenesis of these tumors have become clearer. In addition to translocations and other genomic changes, epigenetic mechanisms have been shown to be greatly involved in the histogenesis of sarcomas as well as other cancers. Even though the molecular mechanisms behind sarcomas appear to be more complex than previously expected, epigenetic mechanisms bring new opportunities and means for the treatment of these complex diseases.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Pathology and Forensic Medicine, University of Eastern Finland, Kuopio and Cancer Center of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
27
|
Pei Z, Zhang X, Ji C, Liu SM, Wang J. Transcriptomic and functional pathways analysis of ascorbate-induced cytotoxicity and resistance of Burkitt lymphoma. Oncotarget 2016; 7:63950-63959. [PMID: 27590508 PMCID: PMC5325416 DOI: 10.18632/oncotarget.11740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Ascorbate is a pro-oxidant that generates hydrogen peroxide-dependent cytotoxity in cancer cells without adversely affecting normal cells. To determine the mechanistic basis for this phenotype, we selected Burkitt lymphoma cells resistant to ascorbate (JLPR cells) and their ascorbate-sensitive parental cells (JLPS cells). Compared with JLPS cells, the increased glucose uptake in JLPR cells (with upregulated glucose transporters, increased antioxidant enzyme activity, and altered cell cycling) conferred ascorbate-induced cytotoxicity and resistance. Transcriptomic profiles and function pathway analysis identified differentially expressed gene signatures for JLPR cells and JLPS cells, which differential expression levels of five genes (ATF5, CD79B, MHC, Myosin, and SAP18) in ascorbate-resistant cells were related to phosphoinositide 3 kinase, cdc42, DNA methylation and transcriptional repression, polyamine regulation, and integrin-linked kinase signaling pathways. These results suggested that coordinated changes occurred in JLPR cells to enable their survival when exposed to the cytotoxic pro-oxidant stress elicited by pharmacologic ascorbate treatment.
Collapse
Affiliation(s)
- Zenglin Pei
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| | - Xuan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| | - Chunxia Ji
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Jin Wang
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| |
Collapse
|
28
|
Cretoiu D, Xu J, Xiao J, Suciu N, Cretoiu SM. Circulating MicroRNAs as Potential Molecular Biomarkers in Pathophysiological Evolution of Pregnancy. DISEASE MARKERS 2016; 2016:3851054. [PMID: 27493447 PMCID: PMC4967453 DOI: 10.1155/2016/3851054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs represent nonprotein coding small RNA molecules that are very stable to degradation and responsible for gene silencing in most eukaryotic cells. Increased evidence has been accumulating over the years about their potential value as biomarkers for several diseases. MicroRNAs were predicted to be involved in nearly all biological processes from development to oncogenesis. In this review, we address the importance of circulating microRNAs in different conditions associated with pregnancy starting with the implantation period to preeclampsia and we shortly describe the correlation between placental circulating miRNAs and pregnancy status. We also discuss the importance of microRNAs in recurrent abortion and ectopic pregnancy.
Collapse
Affiliation(s)
- Dragos Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Nicolae Suciu
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 011062 Bucharest, Romania
- Alessandrescu-Rusescu National Institute of Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
29
|
Sollome J, Martin E, Sethupathy P, Fry RC. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression. Toxicol Appl Pharmacol 2016; 312:61-66. [PMID: 27292125 DOI: 10.1016/j.taap.2016.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n=847) were identified and promoter regions were defined as -1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n=128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants.
Collapse
Affiliation(s)
- James Sollome
- Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Elizabeth Martin
- Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Praveen Sethupathy
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
Wang J, Chen J, Sen S. MicroRNA as Biomarkers and Diagnostics. J Cell Physiol 2016; 231:25-30. [PMID: 26031493 PMCID: PMC8776330 DOI: 10.1002/jcp.25056] [Citation(s) in RCA: 553] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that are involved in regulating a range of developmental and physiological processes; their dysregulation has been associated with development of diseases including cancer. Circulating miRNAs and exosomal miRNAs have also been proposed as being useful in diagnostics as biomarkers for diseases and different types of cancer. In this review, miRNAs are discussed as biomarkers for cancer and other diseases, including viral infections, nervous system disorders, cardiovascular disorders, and diabetes. We summarize some of the clinical evidence for the use of miRNAs as biomarkers in diagnostics and provide some general perspectives on their use in clinical situations. The analytical challenges in using miRNAs in cancer and disease diagnostics are evaluated and discussed. Validation of specific miRNA signatures as biomarkers is a critical milestone in diagnostics.
Collapse
Affiliation(s)
- Jin Wang
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jinyun Chen
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Subrata Sen
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Program in Human and Molecular Genetics, The University of Texas Graduate school of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
31
|
Abstract
Accumulating evidence has shown the presence of cancer stem cells in a wide spectrum of human cancers, which have the ability to self-renew and differentiate, thus leading to tumorigenesis, proliferation, cancer dissemination, drug resistance, and tumor relapse. Cancer cell plasticity allows tumor to invade and grow at primary or distant sites. Epithelial-mesenchymal transition (EMT) is the most important mechanism of cancer cell plasticity and cancer stem cells. Substantial evidence has supported a noncoding RNA network, especially miRNA, in regulating cancer cell plasticity and cancer stem cell biology. Besides, lncRNA is also found to participate in cancer development. Understanding the mechanisms of these processes might be valuable for developing accurate targeted therapies to tackle cancer progression and cancer stem cells.
Collapse
|
32
|
SUBRAMANI RAMADEVI, GANGWANI LAXMAN, NANDY SUSHMITABOSE, ARUMUGAM ARUNKUMAR, CHATTOPADHYAY MUNMUN, LAKSHMANASWAMY RAJKUMAR. Emerging roles of microRNAs in pancreatic cancer diagnosis, therapy and prognosis (Review). Int J Oncol 2015; 47:1203-1210. [PMID: 26314882 PMCID: PMC4583517 DOI: 10.3892/ijo.2015.3129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer related death. Increasing incidence and mortality indicates a lack of detection and post diagnostic management of this disease. Recent evidences suggest that, miRNAs are very attractive target molecules that can serve as biomarkers for predicting development and progression of pancreatic cancer. Furthermore, miRNAs are also promising therapeutic targets for pancreatic cancer. The objective of the present review is to discuss the significance of miRNA in pancreatic cancer development, diagnosis, therapy and prognosis. We extracted and compiled the useful information from PubMed database, which satisfied our criteria for analysis of miRNAs in pancreatic cancer diagnosis, therapy and prognosis. A summary of the most important miRNAs known to regulate pancreatic tumorigenesis is provided. The review also provides a collection of evidence that show miRNA profiles of biofluids hold much promise for use as biomarkers to predict and detect development of pancreatic cancer in its early stages. Identification of key miRNA networks in pancreatic cancer will provide long-awaited diagnostic/therapeutic/prognostic tools for early detection, better treatment options, and extended life expectancy and quality of life in PDAC patients.
Collapse
Affiliation(s)
- RAMADEVI SUBRAMANI
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - LAXMAN GANGWANI
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - SUSHMITA BOSE NANDY
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - ARUNKUMAR ARUMUGAM
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - MUNMUN CHATTOPADHYAY
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - RAJKUMAR LAKSHMANASWAMY
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, 5001 El Paso Drive, El Paso, TX 79905, USA
| |
Collapse
|
33
|
Cho SH, Ko JJ, Kim JO, Jeon YJ, Yoo JK, Oh J, Oh D, Kim JW, Kim NK. 3'-UTR Polymorphisms in the MiRNA Machinery Genes DROSHA, DICER1, RAN, and XPO5 Are Associated with Colorectal Cancer Risk in a Korean Population. PLoS One 2015; 10:e0131125. [PMID: 26147304 PMCID: PMC4492935 DOI: 10.1371/journal.pone.0131125] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs play an important role in cancer initiation and development. The aim of this study was to investigate whether polymorphisms in miRNA machinery genes are associated with the development of colorectal cancer (CRC). RAN rs14035 CT heterozygotes and T allele carriers (CT + TT) genotypes had lower risk of CRC, while the DICER1 rs3742330, DROSHA rs10719, and XPO5 rs11077 polymorphisms were not associated with CRC in the full study sample. Specifically, male RAN rs14035 CT heterozygotes and XPO5 rs11077 AA genotype (CT/AA) carriers experienced reduced CRC susceptibility (both colon and rectal). Subgroup analysis demonstrated that the combined RAN rs14035 CT + TT genotype was associated with rectal cancer, but not colon cancer. In addition, the DICER1 rs3742330 AG genotype was associated with a significantly increased risk of colon cancer. Stratified analysis revealed the RAN rs14035 combined CT+TT genotype was associated with decreased CRC risk in male patients without diabetes mellitus (DM) and in patients with rectal cancer. In addition, we found the RAN rs14035 CC genotype was related to a decreased risk of CRC with respect to tumor size and metabolism of homocysteine and folate. Furthermore, patients diagnosed with hypertension or DM who carried the DROSHA rs10719 CC genotype showed increased CRC risk, while the XPO5 rs11077 AC+CC genotype led to increased CRC risk in patients with hypertension only. Our results indicate variations in RAN rs14035, DICER1 rs3742330, XPO5 rs11077, and DROSHA rs10719 of Korean patients are significantly associated with their risk of CRC.
Collapse
Affiliation(s)
- Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jung Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Young Joo Jeon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jung Ki Yoo
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Jisu Oh
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Doyeun Oh
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jong Woo Kim
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
- * E-mail: (NKK); (JWK)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
- * E-mail: (NKK); (JWK)
| |
Collapse
|
34
|
Hou BH, Jian ZX, Cui P, Li SJ, Tian RQ, Ou JR. miR-216a may inhibit pancreatic tumor growth by targeting JAK2. FEBS Lett 2015; 589:2224-32. [DOI: 10.1016/j.febslet.2015.06.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022]
|
35
|
miR-744 is a potential prognostic marker in patients with hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2015; 39:359-65. [PMID: 25543521 DOI: 10.1016/j.clinre.2014.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/21/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Identification of new biomarkers for aggressiveness of hepatocellular carcinoma (HCC) to supplement the current group of prognosis algorithms is a significant clinical need. To clarify expression levels of microRNA-744 (miR-744) in HCC tissues and to explore its clinicopathological significance in HCC patients following liver transplantation (LT), we quantified miR-744 using real-time quantitative reverse transcription polymerase chain reaction in 96 paired cancerous tissues and para-cancerous normal liver tissues. We investigated relationships among miR-744 expression, clinicopathological parameters, and overall survival (OS). Of 96 paired samples, 68 cancer tissues expressed low miR-744 compared with their matched normal liver tissues. Patients with microvascular invasion or multi-tumor nodules showed significantly lower miR-744 expression; miR-744 was further decreased in patients with post-LT HCC recurrence compared with non-recurring patients. Patients with lower miR-744 expression showed significantly poorer recurrence-free survival and OS than individuals with higher miR-744 levels. Multivariate analysis revealed that lower miR-744 was an independent predictor of poor prognosis. Our results associate decreased miR-744 expression with HCC recurrence and prognosis, and also suggest that miR-744 is an independent predictor of survival in HCC patients after LT and may therefore be a potential biomarker for their prognosis.
Collapse
|
36
|
Abstract
OBJECTIVES Pancreatic cancer is an aggressive cancer with high mortality. Conventional treatments have little impact on its progression. Limited research investigating the role of oncogene miR-150 specifically in pancreatic cancer has been published. The purpose of this study was to determine the tumorigenesis of miR-150 in pancreatic cancer. METHODS One hundred six pancreatic ductal adenocarcinomas were analyzed together with their adjacent benign pancreatic tissues. The associations of miR-150, c-Myb, and MUC4 expression with survival rates were determined. Functional studies on miR-150 in pancreatic cancer were used to assess its effect on proliferation and malignancy in several pancreatic cell lines. RESULTS miR-150 expression was significantly down-regulated in pancreatic ductal adenocarcinoma tissues compared with adjacent benign pancreatic tissues. Patients with low miR-150 expression had significantly higher mortality rates than those with high miR-150 expression. The in vitro and in vivo assays of pancreatic cancer cells showed that miR-150 overexpression leads to reduced cell growth, clonogenicity, migration, invasion, modular cell cycles, and induced apoptosis. Moreover, miR-150 expression was inversely correlated with c-Myb and MUC4 activities in pancreatic tissue, cell lines, and nude mouse model. CONCLUSIONS miR-150 is an important suppressor of pancreatic ductal carcinoma and acts as a regulator of c-Myb and MUC4 in aggressive progress.
Collapse
|
37
|
H-ferritin-regulated microRNAs modulate gene expression in K562 cells. PLoS One 2015; 10:e0122105. [PMID: 25815883 PMCID: PMC4376865 DOI: 10.1371/journal.pone.0122105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/17/2015] [Indexed: 01/13/2023] Open
Abstract
In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, “Cell Death and Survival, Hematological System Development and Function, Hematopoiesis”, is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.
Collapse
|
38
|
Wang J, Paris PL, Chen J, Ngo V, Yao H, Frazier ML, Killary AM, Liu CG, Liang H, Mathy C, Bondada S, Kirkwood K, Sen S. Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer Lett 2015; 356:404-409. [PMID: 25304377 PMCID: PMC6200344 DOI: 10.1016/j.canlet.2014.09.029] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/21/2014] [Accepted: 09/14/2014] [Indexed: 12/14/2022]
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is a precursor cystic lesion to pancreatic cancer. With the goal of classifying IPMN cases by risk of progression to pancreatic cancer, we undertook an exploratory next generation sequencing (NGS) based profiling study of miRNAs (miRNome) in the cyst fluids from low grade-benign and high grade-invasive pancreatic cystic lesions. Thirteen miRNAs (miR-138, miR-195, miR-204, miR-216a, miR-217, miR-218, miR-802, miR-155, miR-214, miR-26a, miR-30b, miR-31, and miR-125) were enriched and two miRNAs (miR-451a and miR-4284) were depleted in the cyst fluids derived from invasive carcinomas. Quantitative real-time polymerase chain reaction analysis confirmed that the relative abundance of tumor suppressor miR-216a and miR-217 varied significantly in these cyst fluid samples. Ingenuity Pathway Analysis (IPA) analysis indicated that the genes targeted by the differentially enriched cyst fluid miRNAs are involved in five canonical signaling pathways, including molecular mechanisms of cancer and signaling pathways implicated in colorectal, ovarian and prostate cancers. Our findings make a compelling case for undertaking in-depth analyses of cyst fluid miRNomes for developing informative early detection biomarkers of pancreatic cancer developing from pancreatic cystic lesions.
Collapse
Affiliation(s)
- Jin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela L Paris
- Department of Urology and Division of Hematology-Oncology, Diller Cancer Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Jinyun Chen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vy Ngo
- Department of Urology and Division of Hematology-Oncology, Diller Cancer Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marsha L Frazier
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Ann M Killary
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Mathy
- Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Sandhya Bondada
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kimberly Kirkwood
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
39
|
Banwait JK, Bastola DR. Contribution of bioinformatics prediction in microRNA-based cancer therapeutics. Adv Drug Deliv Rev 2015; 81:94-103. [PMID: 25450261 DOI: 10.1016/j.addr.2014.10.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/13/2014] [Accepted: 10/30/2014] [Indexed: 12/15/2022]
Abstract
Despite enormous efforts, cancer remains one of the most lethal diseases in the world. With the advancement of high throughput technologies massive amounts of cancer data can be accessed and analyzed. Bioinformatics provides a platform to assist biologists in developing minimally invasive biomarkers to detect cancer, and in designing effective personalized therapies to treat cancer patients. Still, the early diagnosis, prognosis, and treatment of cancer are an open challenge for the research community. MicroRNAs (miRNAs) are small non-coding RNAs that serve to regulate gene expression. The discovery of deregulated miRNAs in cancer cells and tissues has led many to investigate the use of miRNAs as potential biomarkers for early detection, and as a therapeutic agent to treat cancer. Here we describe advancements in computational approaches to predict miRNAs and their targets, and discuss the role of bioinformatics in studying miRNAs in the context of human cancer.
Collapse
Affiliation(s)
- Jasjit K Banwait
- College of Information Science and Technology, University of Nebraska at Omaha, 1110 South 67th Street, PKI 172, Omaha, NE 68106, USA.
| | - Dhundy R Bastola
- College of Information Science and Technology, University of Nebraska at Omaha, 1110 South 67th Street, PKI 172, Omaha, NE 68106, USA.
| |
Collapse
|
40
|
Sun H, Ma H, Hong G, Sun H, Wang J. Survival improvement in patients with pancreatic cancer by decade: a period analysis of the SEER database, 1981-2010. Sci Rep 2014; 4:6747. [PMID: 25339498 PMCID: PMC5381379 DOI: 10.1038/srep06747] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/29/2014] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer (PaCa) is an aggressive malignancy with a high mortality rate and a poor prognosis. To evaluate treatment outcomes of patients with pancreatic cancer over the past three decades, data from the Surveillance, Epidemiology, and End Results (SEER) registries were used to assess the survival of patients with PaCa. A total of 63,530 patients diagnosed with pancreatic cancer between 1981 and 2010 were identified from nine original SEER registries. The 1-year relative survival rates (RSRs) improved each decade, from 17.0% to 19.9% to 28.2% (p < 0.0001), with a larger increase during the third decade than during the second decade. However, the long-term survival rates have remained very low. The 5-year RSRs increased from 3.1% to 4.4% to 6.9% over these three decades--i.e., still only few patients with PaCa survive more than 5 years. Furthermore, our analysis demonstrated that the survival rates for all the patients with pancreatic cancer were lower in patients of lower socioeconomic status and black race. These results will help predict future trends in PaCa incidence and survival, contribute to better-designed clinical trials by eliminating disparities that may affect the results, and thereby improve the clinical management and outcomes of PaCa.
Collapse
Affiliation(s)
- Huanhuan Sun
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Haiqing Ma
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Guobin Hong
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Hongliu Sun
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, United States
| | - Jin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| |
Collapse
|
41
|
Wang J, Raimondo M, Guha S, Chen J, Diao L, Dong X, Wallace MB, Killary AM, Frazier ML, Woodward TA, Wang J, Sen S. Circulating microRNAs in Pancreatic Juice as Candidate Biomarkers of Pancreatic Cancer. J Cancer 2014; 5:696-705. [PMID: 25258651 PMCID: PMC4174514 DOI: 10.7150/jca.10094] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/21/2014] [Indexed: 12/23/2022] Open
Abstract
Development of sensitive and specific biomarkers, preferably those circulating in body fluids is critical for early diagnosis of cancer. This study performed profiling of microRNAs (miRNAs) in exocrine pancreatic secretions (pancreatic juice) by microarray analysis utilizing pancreatic juice from 6 pancreatic ductal adenocarcinoma (PDAC) patients and two pooled samples from 6 non-pancreatic, non-healthy (NPNH) as controls. Differentially circulating miRNAs were subsequently validated in 88 pancreatic juice samples from 50 PDAC, 19 chronic pancreatitis (CP) patients and 19 NPNH controls. A marked difference in the profiles of four circulating miRNAs (miR-205, miR-210, miR-492, and miR-1427) was observed in pancreatic juice collected from patients with PDAC and those without pancreatic disease. Elevated levels of the four miRNAs together predicted PDAC with a specificity of 88% and sensitivity of 87%. Inclusion of serum CA19-9 level increased the sensitivity to 91% and the specificity to 100%. Enrichment of the four miRNAs in pancreatic juice was associated with decreased OS, as was the combination of miR-205 and miR-210. Higher contents of miR-205 and miR-210 were also associated with lymph node metastasis. Elevated levels of circulating miR-205, miR-210, miR-492, and miR-1247 in pancreatic juice are, therefore, promising candidate biomarkers of disease and poor prognosis in patients with PDAC.
Collapse
Affiliation(s)
- Jin Wang
- 1. Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Massimo Raimondo
- 2. Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida; The University of Texas Medical School and Health Science Center at Houston, Texas
| | - Sushovan Guha
- 3. Division of Gastroenterology, Hepatology, and Nutrition, The University of Texas Medical School and Health Science Center at Houston, Texas
| | - Jinyun Chen
- 4. Epidemiology, Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston Texas
| | - Lixia Diao
- 5. Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston Texas
| | - Xiaoqun Dong
- 6. Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island
| | - Michael B. Wallace
- 2. Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida; The University of Texas Medical School and Health Science Center at Houston, Texas
| | - Ann M. Killary
- 1. Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- 7. Program in Human and Molecular Genetics, The University of Texas Graduate school of Biomedical Sciences, Houston, Texas
| | - Marsha L. Frazier
- 4. Epidemiology, Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston Texas
- 7. Program in Human and Molecular Genetics, The University of Texas Graduate school of Biomedical Sciences, Houston, Texas
| | - Timothy A. Woodward
- 2. Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida; The University of Texas Medical School and Health Science Center at Houston, Texas
| | - Jing Wang
- 5. Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston Texas
| | - Subrata Sen
- 1. Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- 7. Program in Human and Molecular Genetics, The University of Texas Graduate school of Biomedical Sciences, Houston, Texas
| |
Collapse
|
42
|
Qi JH, Wang J, Chen J, Shen F, Huang JT, Sen S, Zhou X, Liu SM. High-resolution melting analysis reveals genetic polymorphisms in microRNAs confer hepatocellular carcinoma risk in Chinese patients. BMC Cancer 2014; 14:643. [PMID: 25176041 PMCID: PMC4161871 DOI: 10.1186/1471-2407-14-643] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/26/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although several single-nucleotide polymorphisms in microRNA (miRNA) genes have been associated with primary hepatocellular carcinoma, published findings regarding this relationship are inconsistent and inconclusive. METHODS The high-resolution melting (HRM) analysis was used to determine whether the occurrence of the SNPs of miR-146a C > G (rs2910164), miR-196a2 C > T (rs11614913), miR-301b A > G (rs384262), and miR-499 C > T (rs3746444) differs in frequency-matched 314 HCC patients and 407 controls by age and sex. RESULTS The groups' genotype distributions of miR-196a2 C > T and miR-499 C > T differed significantly (P < 0.01), both of them increased the risk of HCC in different dominant genetic models (P < 0.01); compared with individuals carrying one or neither of the unfavorable genotypes, individuals carrying both unfavorable genotypes (CT + CC) had a 3.11-fold higher HCC risk (95% confidence interval (CI), 1.89-5.09; P = 7.18 × 10-6). Moreover, the allele frequency of miR-499 C > T was significantly different between the two groups, and the HCC risk of carriers of the C allele was higher than that of carriers of the T allele (odds ratio, 1.53; 95% CI, 1.15-2.03; P = 0.003). Further, we found that the activated partial thromboplastin time (APTT) in HCC patients with miR-196a2 CC genotype was longer than patients with TT genotypes (P < 0.05), and HCC patients with miR-499 C allele had higher serum levels of direct bilirubin, globulin, γ-glutamyltranspeptidase, alkaline phosphatase, and lower serum cholinesterase (P < 0.05). CONCLUSIONS Our findings suggest that the SNPs in miR-196a2 C > T and miR-499 C > T confer HCC risk and that affect the clinical laboratory characteristics of HCC patients.
Collapse
Affiliation(s)
- Jia-Hui Qi
- />Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071 China
| | - Jin Wang
- />Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054 USA
| | - Jinyun Chen
- />Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas USA
| | - Fan Shen
- />Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071 China
| | - Jing-Tao Huang
- />Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071 China
| | - Subrata Sen
- />Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054 USA
| | - Xin Zhou
- />Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071 China
| | - Song-Mei Liu
- />Center for Gene Diagnosis, Medical Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071 China
| |
Collapse
|
43
|
miR-615-5p is epigenetically inactivated and functions as a tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene 2014; 34:1629-40. [PMID: 24769899 DOI: 10.1038/onc.2014.101] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive cancer with a poor prognosis. Although microRNA (miRNA) transcripts have a crucial role in carcinogenesis and development, little information is known regarding the aberrant DNA methylation of miRNAs in PDAC. Using methylated DNA immunoprecipitation-chip analysis, we found that miR-615-5p was hypermethylated in its putative promoter region, which silenced its expression in PDAC cell lines. In addition, the overexpression of miR-615-5p in pancreatic cancer cells suppressed cell proliferation, migration and invasion. Insulin-like growth factor 2 (IGF2) is an imprinted gene, and its abnormal expression contributes to tumor growth. Here, we identified IGF2 as a target of miR-615-5p using a luciferase reporter assay. IGF2 upregulation in PDAC tissues was not correlated with a loss of imprinting but was inversely correlated with miR-615-5p downregulation. In addition, miR-615-5p suppressed pancreatic cancer cell proliferation, migration and invasion by directly targeting IGF2, and this effect could be reversed by co-transfection with IGF2. Furthermore, the stable overexpression of miR-615-5p inhibited tumor growth in vivo and was correlated with IGF2 expression. Using RNA sequencing, we further identified miR-615-5p as potentially targeting other genes, such as the proto-oncogene JUNB, and interfering with the insulin signaling pathway. Taken together, our results demonstrate that miR-615-5p was abnormally downregulated in PDAC cells due to promoter hypermethylation, which limited its inhibition of IGF2 and other target genes, thereby contributing to tumor growth, invasion and migration. These data demonstrate a novel and important role of miR-615-5p as a tumor suppressor in PDAC.
Collapse
|
44
|
Mishra PK, Raghuram GV, Jain D, Jain SK, Khare NK, Pathak N. Mitochondrial oxidative stress-induced epigenetic modifications in pancreatic epithelial cells. Int J Toxicol 2014; 33:116-129. [PMID: 24563415 DOI: 10.1177/1091581814524064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Emerging studies have linked prooxidative carbamate compound exposures with various human pathologies including pancreatic cancer. In these studies, our aim was to examine mitochondrial oxidative stress-mediated aberrant chromatin responses in human pancreatic ductal epithelial cells. Posttranslational histone modifications, promoter DNA methylation, and micro-RNA (miRNA) expression patterns were evaluated following induction of mitochondrial oxidative stress by N-succinimidyl N-methylcarbamate exposure. In treated cells, perturbation in mitochondrial machinery led to hypermethylation of p16 and smad4 gene promoters and downregulation of respective gene products. Posttranslational histone modifications that include hypoacetylation of acetylated histone (AcH) 3 and AcH4, hypermethylation of monomethylated histone 3 at lysine 9 and trimethylated histone 4 at lysine 20 ubiquitinated histone (uH) 2A/uH2B, and increased phosphorylation of H2AX and H3 were observed in the treated cells. Altered expression of miRNAs denoted possible location of corresponding genes at oxidatively damaged fragile sites. Collectively, our results provide a direct role of mitochondrial oxidative stress-mediated epigenetic imbalance to perturbed genomic integrity in oxygen radical-induced pancreatic injury. Further, identification and characterization of molecular switches that affect these epigenomic signatures and targets thereof will be imperative to understand the complex role of redox-regulatory network in pancreatic milieu.
Collapse
Affiliation(s)
- Pradyumna Kumar Mishra
- Translational Research Lab, School of Biological Sciences, Dr Hari Singh Gour Central University, Sagar, Madhya Pradesh, India.
| | | | | | | | | | | |
Collapse
|
45
|
Wang J, Zhang KY, Liu SM, Sen S. Tumor-associated circulating microRNAs as biomarkers of cancer. Molecules 2014; 19:1912-1938. [PMID: 24518808 PMCID: PMC6271223 DOI: 10.3390/molecules19021912] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs), the 17- to 25-nucleotide long noncoding RNAs that modulate the expression of mRNAs and proteins, have emerged as critical players in cancer initiation and progression processes. Deregulation of tissue miRNA expression levels associated with specific genetic alterations has been demonstrated in cancer, where miRNAs function either as oncogenes or as tumor-suppressor genes and are shed from cancer cells into circulation. The present review summarizes and evaluates recent advances in our understanding of the characteristics of tumor tissue miRNAs, circulating miRNAs, and the stability of miRNAs in tissues and their varying expression profiles in circulating tumor cells, and body fluids including blood plasma. These advances in knowledge have led to intense efforts towards discovery and validation of differentially expressing tumor-associated miRNAs as biomarkers and therapeutic targets of cancer. The development of tumor-specific miRNA signatures as cancer biomarkers detectable in malignant cells and body fluids should help with early detection and more effective therapeutic intervention for individual patients.
Collapse
Affiliation(s)
- Jin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ke-Yong Zhang
- Department of orthopedics, Daye People's Hospital, Daye, Hubei 435100, China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Khurana R, Verma VK, Rawoof A, Tiwari S, Nair RA, Mahidhara G, Idris MM, Clarke AR, Kumar LD. OncomiRdbB: a comprehensive database of microRNAs and their targets in breast cancer. BMC Bioinformatics 2014; 15:15. [PMID: 24428888 PMCID: PMC3926854 DOI: 10.1186/1471-2105-15-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/02/2014] [Indexed: 01/08/2023] Open
Abstract
Background Given the estimate that 30% of our genes are controlled by microRNAs, it is essential that we understand the precise relationship between microRNAs and their targets. OncomiRs are microRNAs (miRNAs) that have been frequently shown to be deregulated in cancer. However, although several oncomiRs have been identified and characterized, there is as yet no comprehensive compilation of this data which has rendered it underutilized by cancer biologists. There is therefore an unmet need in generating bioinformatic platforms to speed the identification of novel therapeutic targets. Description We describe here OncomiRdbB, a comprehensive database of oncomiRs mined from different existing databases for mouse and humans along with novel oncomiRs that we have validated in human breast cancer samples. The database also lists their respective predicted targets, identified using miRanda, along with their IDs, sequences, chromosome location and detailed description. This database facilitates querying by search strings including microRNA name, sequence, accession number, target genes and organisms. The microRNA networks and their hubs with respective targets at 3'UTR, 5'UTR and exons of different pathway genes were also deciphered using the 'R' algorithm. Conclusion OncomiRdbB is a comprehensive and integrated database of oncomiRs and their targets in breast cancer with multiple query options which will help enhance both understanding of the biology of breast cancer and the development of new and innovative microRNA based diagnostic tools and targets of therapeutic significance. OncomiRdbB is freely available for download through the URL link http://tdb.ccmb.res.in/OncomiRdbB/index.htm.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lekha Dinesh Kumar
- Cancer Biology, Centre for Cellular & Molecular Biology, Council of scientific and Industrial Research, Hyderabad, A,P, India.
| |
Collapse
|
47
|
Zhu ZM, Xu YF, Su QJ, Du JD, Tan XL, Tu YL, Tan JW, Jiao HB. Prognostic significance of microRNA-141 expression and its tumor suppressor function in human pancreatic ductal adenocarcinoma. Mol Cell Biochem 2013; 388:39-49. [PMID: 24242138 DOI: 10.1007/s11010-013-1897-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 01/03/2023]
Abstract
Increasing evidence shows that dysregulation of microRNAs is correlated with tumor development. This study was performed to determine the expression of miR-141 and investigate its clinical significance in pancreatic ductal adenocarcinoma (PDAC). Taqman quantitative RT-PCR was used to detect miR-141 expressions in 94 PDAC tissues and 16 nontumorous pancreatic tissues. Correlations between miR-141 expression and clinicopathologic features and prognosis of patients were statistically analyzed. The effects of miR-141 expression on growth and apoptosis of PDAC cell line (PANC-1) were determined by MTT, colony formation, and flow cytometry assays. Potential target genes were identified by luciferase reporter and Western blot assays. The expression level of miR-141 in PDAC tissues was significantly lower than that in corresponding nontumorous tissues. Downregulation of miR-141 correlated with poorer pT and pN status, advanced clinical stage, and lymphatic invasion. Also, low miR-141 expression in PDAC tissues was significantly correlated with shorter overall survival, and multivariate analysis showed that miR-141 was an independent prognostic factor for PDAC patients. Further, functional researches suggested that miR-141 inhibits growth and colony formation, and enhances caspase-3-dependent apoptosis in PANC-1 cells by targeting Yes-associated protein-1 (YAP1). Therefore, miR-141 is an independent prognostic factor for PDAC patients, and functions as a tumor suppressor gene by targeting YAP1.
Collapse
Affiliation(s)
- Zi-Man Zhu
- Department of Hepatobiliary Surgery, First Hospital Affiliated to the Chinese PLA General Hospital, Fucheng Road 51, Haidian District, Beijing, 100048, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Deng J, He M, Chen L, Chen C, Zheng J, Cai Z. The loss of miR-26a-mediated post-transcriptional regulation of cyclin E2 in pancreatic cancer cell proliferation and decreased patient survival. PLoS One 2013; 8:e76450. [PMID: 24116110 PMCID: PMC3792981 DOI: 10.1371/journal.pone.0076450] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 08/27/2013] [Indexed: 12/15/2022] Open
Abstract
Background miR-26a plays a critical role in tumorigenesis, either as a tumor suppressor or as an oncogenic miRNA, depending on different tumor types. However, the function of miR-26a in pancreatic cancer has not been clearly elucidated. The present study was designed to determine the roles of miR-26a in pancreatic cancer and its association with the survival of patients with pancreatic cancer. Methods The expression of miR-26a was examined in 15 pairs of pancreatic duct adenocarcinoma (PDAC) and their adjacent benign pancreatic tissues (ABPT), by qRT-PCR. The results were confirmed by in situ hybridization using two panels of 106 PDACs and their ABPT microarray. The association of miR-26a expression with overall survival was determined. The proliferation and cell cycle distribution of Capan-2, SW-1990, and Panc-1 cells, transfected with miR-26a mimics or a miR-26a inhibitor, were assessed using the Cell Counting Kit-8 assay and flow cytometry, respectively. The cell tumorigenicity was evaluated via murine xenograft experiments. Cyclin D2, E2, EZH2, and PCNA levels were analyzed by Western blot and immunohistochemistry. Results miR-26a was expressed in the cytoplasm of pancreatic ductal epithelial cells, whereas its expression was significantly downregulated in PDAC tissues compared with that of ABPT. Patients with low miR-26a expression had a significantly shorter survival than those with high miR-26a expression. The in vitro and in vivo assays showed that overexpression of miR-26a resulted in cell cycle arrest, inhibited cell proliferation, and decreased tumor growth, which was associated with cyclin E2 downregulation. Conclusions miR-26a is an important suppressor of pancreatic ductal carcinoma, and can prove to be a novel prognostic factor and therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lizao Chen
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Chao Chen
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (JZ); (ZC)
| | - Zailong Cai
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (JZ); (ZC)
| |
Collapse
|
49
|
Pavlakis E, Papaconstantinou I, Gazouli M, Theodosopoulos T, Karamanolis G, Genatas K, Ladas SD. MicroRNA gene polymorphisms in pancreatic cancer. Pancreatology 2013; 13:273-278. [PMID: 23719600 DOI: 10.1016/j.pan.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) act as regulators of gene expression via translational repression. Single nucleotide polymorphisms (SNPs) in miRNAs have been shown to affect the regulatory capacity of miRNAs by influencing miRNA processing and/or miRNA-mRNA interactions. The purpose of this study was to investigate the association between 2 SNPs commonly found in precursor miRNA and the susceptibility and clinicopathological characteristics of pancreatic cancer. The rs11614913/miR-196a2, rs2910164/miR-146a SNPs were genotyped in 93 patients with pancreatic cancer and in 122 healthy controls. No significant differences in genotype distributions between controls and PC patients were observed. However, rs2910164 GG and rs11614913 CC genotypes and the rs2910164C/rs11614913C and rs2910164G/rs11614913C haplotypes were significantly overrepresented in PC patients with T1 and T2 tumor status than in those with T3 and T4. Our findings suggested that the rs2910164 and rs11614913 SNPs might play a role in pancreatic tumorigenesis, but the molecular mechanism underlying the particular sequence variations in miRNA that can cause aberrant expression remains to be determined.
Collapse
Affiliation(s)
- Emmanouel Pavlakis
- 2nd Department of Surgery, Areteion Hospital, School of Medicine, University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
50
|
Mazeh H, Mizrahi I, Ilyayev N, Halle D, Brücher B, Bilchik A, Protic M, Daumer M, Stojadinovic A, Itzhak A, Nissan A. The Diagnostic and Prognostic Role of microRNA in Colorectal Cancer - a Comprehensive review. J Cancer 2013; 4:281-95. [PMID: 23459799 PMCID: PMC3584841 DOI: 10.7150/jca.5836] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 02/14/2013] [Indexed: 02/06/2023] Open
Abstract
The discovery of microRNA, a group of regulatory short RNA fragments, has added a new dimension to the diagnosis and management of neoplastic diseases. Differential expression of microRNA in a unique pattern in a wide range of tumor types enables researches to develop a microRNA-based assay for source identification of metastatic disease of unknown origin. This is just one example of many microRNA-based cancer diagnostic and prognostic assays in various phases of clinical research. Since colorectal cancer (CRC) is a phenotypic expression of multiple molecular pathways including chromosomal instability (CIN), micro-satellite instability (MIS) and CpG islands promoter hypermethylation (CIMP), there is no one-unique pattern of microRNA expression expected in this disease and indeed, there are multiple reports published, describing different patterns of microRNA expression in CRC. The scope of this manuscript is to provide a comprehensive review of the scientific literature describing the dysregulation of and the potential role for microRNA in the management of CRC. A Pubmed search was conducted using the following MeSH terms, "microRNA" and "colorectal cancer". Of the 493 publications screened, there were 57 papers describing dysregulation of microRNA in CRC.
Collapse
Affiliation(s)
- Haggi Mazeh
- 1. Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|