1
|
Kant R, Kaushik R, Chopra M, Saluja D. Structure-based drug discovery to identify SARS-CoV2 spike protein-ACE2 interaction inhibitors. J Biomol Struct Dyn 2025; 43:3652-3670. [PMID: 38174578 DOI: 10.1080/07391102.2023.2300060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
After the emergence of the COVID-19 pandemic in late 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has undergone a dynamic evolution driven by the acquisition of genetic modifications, resulting in several variants that are further classified as variants of interest (VOIs), variants under monitoring (VUM) and variants of concern (VOC) by World Health Organization (WHO). Currently, there are five SARS-CoV-2 VOCs (Alpha, Beta, Delta, Gamma and Omicron), two VOIs (Lambda and Mu) and several other VOIs that have been reported globally. In this study, we report a natural compound, Curcumin, as the potential inhibitor to the interactions between receptor binding domain (RBD(S1)) and human angiotensin-converting enzyme 2 (hACE2) domains and showcased its inhibitory potential for the Delta and Omicron variants through a computational approach by implementing state of the art methods. The study for the first time revealed a higher efficiency of Curcumin, especially for hindering the interaction between RBD(S1) and hACE-2 domains of Delta and Omicron variants as compared to other lead compounds. We investigated that the mutations in the RBD(S1) of VOC especially Delta and Omicron variants affect its structure compared to that of the wild type and other variants and therefore altered its binding to the hACE2 receptor. Molecular docking and molecular dynamics (MD) simulation analyses substantially supported the findings in terms of the stability of the docked complexes. This study offers compelling evidence, warranting a more in-depth exploration into the impact of these alterations on the binding of identified drug molecules with the Spike protein. Further investigation into their potential therapeutic effects in vivo is highly recommended.
Collapse
Affiliation(s)
- Ravi Kant
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research &Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| | - Rahul Kaushik
- Biotechology Research Center, Technology Innovation Institute, Masdar City, UAE
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research &Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Muneeswaran S, Poopathi Raja KM. Modes of Binding of Small Molecules Dictate the Interruption of RBD-ACE2 Complex of SARS-CoV-2. Chemphyschem 2025; 26:e202400751. [PMID: 39644215 DOI: 10.1002/cphc.202400751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The spike protein is a vital target for therapeutic advancement to inhibit viral entrance. Given that the connection between Spike and ACE2 constitutes the initial phase of SARS-CoV-2 pathogenesis, obstructing this interaction presents a promising therapeutic approach. This work aims to find compounds from DrugBank that can modulate the stability of the spike RBD-ACE2 protein-protein complex. Employing a therapeutic repurposing strategy, we conducted molecular docking of over 9000 DrugBank compounds against the Spike RBD-ACE2 complex, on ten variants, including the wild-type. We also evaluated the intricate stability of the RBD-ACE2 proteins by molecular dynamics simulations, hydrogen bond analysis, RMSD analysis, radius of gyration analysis, and the QM-MM approach. We assessed the efficacy of the top ten candidates for each variant as an inhibitor. Our findings demonstrated for the first time that DrugBank small molecules can interact in three distinct modalities inside the extensive protein-protein interface of RBD and ACE2 complexes. The top ten analyses identified specific DrugBank candidates for each variant and molecules capable of binding to multiple variants. This comprehensive computational technique enables the screening and forecasting of hits for any big and shallow protein-protein interface drug targets.
Collapse
Affiliation(s)
- Sithanantham Muneeswaran
- Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, India, 625 021
| | - Karuppiah Muruga Poopathi Raja
- Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, India, 625 021
- Chemical Biology and Biophysics Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Sabarmati Building, Tejaswini Hills, Periye, Kasaragod District, Kerala, India, 671 320
| |
Collapse
|
3
|
Hakmi M, Bouricha EM, Soussi A, Bzioui IA, Belyamani L, Ibrahimi A. Computational Drug Design Strategies for Fighting the COVID-19 Pandemic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1457:199-214. [PMID: 39283428 DOI: 10.1007/978-3-031-61939-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The advent of COVID-19 has brought the use of computer tools to the fore in health research. In recent years, computational methods have proven to be highly effective in a variety of areas, including genomic surveillance, host range prediction, drug target identification, and vaccine development. They were also instrumental in identifying new antiviral compounds and repurposing existing therapeutics to treat COVID-19. Using computational approaches, researchers have made significant advances in understanding the molecular mechanisms of COVID-19 and have developed several promising drug candidates and vaccines. This chapter highlights the critical importance of computational drug design strategies in elucidating various aspects of COVID-19 and their contribution to advancing global drug design efforts during the pandemic. Ultimately, the use of computing tools will continue to play an essential role in health research, enabling researchers to develop innovative solutions to combat new and emerging diseases.
Collapse
Affiliation(s)
- Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco.
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco.
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
| | - Abdellatif Soussi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145, Genova, Italy
| | - Ilias Abdeslam Bzioui
- Department of Gynecology and Obstetrics, Faculty of Medicine, Abdelmalek Essaâdi University Hospital, Tangier, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Emergency Department, Medical and Pharmacy School, Military Hospital Mohammed V, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
4
|
de Oliveira DF. In silico identification of five binding sites on the SARS-CoV-2 spike protein and selection of seven ligands for such sites. J Biomol Struct Dyn 2023; 42:13697-13715. [PMID: 37921757 DOI: 10.1080/07391102.2023.2278077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
To contribute to the development of products capable of complexing with the SARS-CoV-2 spike protein, and thus preventing the virus from entering the host cell, this work aimed at discovering binding sites in the whole protein structure, as well as selecting substances capable of binding efficiently to such sites. Initially, the three-dimensional structure of the protein, with all receptor binding domains in the closed state, underwent blind docking with 38 substances potentially capable of binding to this protein according to the literature. This allowed the identification of five binding sites. Then, those substances with more affinities for these sites underwent pharmacophoric search in the ZINC15 database. The 14,329 substances selected from ZINC15 were subjected to docking to the five selected sites of the spike protein. The ligands with more affinities for the protein sites, as well as the selected sites themselves, were used in the de novo design of new ligands that were also docked to the binding sites of the protein. The best ligands, regardless of their origins, were used to form complexes with the spike protein, which were subsequently used in molecular dynamics simulations and calculations of ligands affinities to the protein through the molecular mechanics/Poisson-Boltzmann surface area method (MMPBSA). Seven substances with good affinities to the spike protein (-12.9 to -20.6 kcal/mol), satisfactory druggability (Bioavailability score: 0.17 to 0.55), and low acute toxicity to mice (LD50: 751 to 1421 mg/kg) were selected as potentially useful for the future development of new products to manage COVID-19 infections.Communicated by Ramaswamy H. Sarma.
Collapse
|
5
|
Zhang M, Liu L, Zhao Y, Cao Y, Zhu Y, Han L, Yang Q, Wang Y, Wang C, Zhang H, Wang Y, Zhang J. Discovery and evaluation of active compounds from Xuanfei Baidu formula against COVID-19 via SARS-CoV-2 M pro. Chin Med 2023; 18:94. [PMID: 37528477 PMCID: PMC10394814 DOI: 10.1186/s13020-023-00790-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) is still a widespread concern. As one of the effective traditional Chinese medicine (TCM) formulae, Xuanfei Baidu formula (XFBD) shows significant efficacy for treatment of COVID-19 patients. However, its antiviral active compounds and mechanism are still unclear. PURPOSE In this study, we explored the bioactive compounds of XFBD and its antiviral mechanism by integrating computational analysis and experimental testing. METHODS Focusing on the SARS-CoV-2 main protease (Mpro), as a key target in virus transcription and replication, the fluorescence resonance energy transfer (FRET) assay was built to screen out satisfactory natural inhibitors in XFBD. The surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) were undertaken to verify the binding affinity of ligand-Mpro. Omicron BA.1.1 and BA.2.3 variants were used to evaluate the antiviral activity of the focused compounds in non-cytotoxicity concentrations. For introducing the molecular mechanism, computational modeling and NMR spectra were employed to characterize the ligand-binding modes and identify the ligand-binding site on Mpro. RESULTS From a library of 83 natural compounds, acteoside, licochalcone B, licochalcone D, linoleic acid, and physcion showed the satisfactory inhibition effects on Mpro with IC50 ranging from 1.93 to 42.96 µM, which were further verified by SPR. Showing the excellent binding affinity, acteoside was witnessed to gain valuable insights into the thermodynamic signatures by ITC and presented antiviral activity on Omicron BA.1.1 and BA.2.3 variants in vitro. The results revealed that acteoside inhibited Mpro via forming the hydrogen bond between 7-H of acteoside and Mpro. CONCLUSION Acteoside is regarded as a representative active natural compound in XFBD to inhibit replication of SARS-CoV-2, which provides the antiviral evidence and some insights into the identification of SARS-CoV-2 Mpro natural inhibitors.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Ministry of Education), Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Liting Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Yipeng Cao
- National Supercomputer Center in Tianjin, Tianjin, 300457, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qi Yang
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Yu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Ministry of Education), Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Changjian Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Ministry of Education), Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yuefei Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Kehinde IA, Egbeyemi A, Kaur M, Onyenaka C, Adebusuyi T, Olaleye OA. Inhibitory mechanism of clioquinol and its derivatives at the exopeptidase site of human angiotensin-converting enzyme-2 and receptor binding domain of SARS-CoV-2 viral spike. J Biomol Struct Dyn 2023; 41:2992-3001. [PMID: 35220925 PMCID: PMC11371071 DOI: 10.1080/07391102.2022.2043938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
The outbreak of SARS-CoV-2 infections around the world has prompted scientists to explore different approaches to develop therapeutics against COVID-19. This study focused on investigating the mechanism of inhibition of clioquinol (CLQ) and its derivatives (7-bromo-5-chloro-8-hydroxyquinoline (CLBQ), 5, 7-Dichloro-8-hydroxyquinoline (CLCQ)) against the viral glycoprotein, and human angiotensin-converting enzyme-2 (hACE-2) involved in SARS-CoV-2 entry. The drugs were docked at the exopeptidase site of hACE-2 and receptor binding domain (RBD) sites of SARS-CoV-2 Sgp to calculate the binding affinity of the drugs. To understand and establish the inhibitory characteristics of the drugs, molecular dynamic (MD) simulation of the best fit docking complex performed. Evaluation of the binding energies of the drugs to hACE-2 after 100 ns MD simulations revealed CLQ to have the highest binding energy value of -40.4 kcal/mol close to MLN-7640 (-45.4 kcal/mol), and higher than the exhibited values for its derivatives: CLBQ (-34.5 kcal/mol) and CLCQ (-24.8 kcal/mol). This suggests that CLQ and CLBQ bind more strongly at the exopeptidase site than CLCQ. Nevertheless, the evaluation of binding affinity of the drugs to SARS-CoV-2 Sgp showed the drugs are weakly bound at the RBD site, with CLBQ, CLCQ, CLQ exhibiting relatively low energy values of -16.8 kcal/mol, -16.34 kcal/mol, -12.5 kcal/mol, respectively compared to the reference drug, Bisoxatin (BSX), with a value of -25.8 kcal/mol. The structural analysis further suggests decrease in systems stability and explain the mechanism of inhibition of clioquinol against SARS-CoV-2 as reported in previous in vitro study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Idowu A Kehinde
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Anu Egbeyemi
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Manvir Kaur
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Collins Onyenaka
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Tolulope Adebusuyi
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Omonike A Olaleye
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| |
Collapse
|
7
|
Ozhmegova EN, Savochkina TE, Prilipov AG, Tikhomirov E, Larichev VF, Sayfullin MA, Grebennikova TV. [Molecular epidemiological analysis of SARS-CoV-2 genovariants in Moscow and Moscow region]. Vopr Virusol 2023; 67:496-505. [PMID: 37264839 DOI: 10.36233/0507-4088-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION SARS-CoV-2, a severe acute respiratory illness virus that emerged in China in late 2019, continues to spread rapidly around the world, accumulating mutations and thus causing serious concern. Five virus variants of concern are currently known: Alpha (lineage B.1.1.7), Beta (lineage B.1.351), Gamma (lineage P.1), Delta (lineage B.1.617.2), and Omicron (lineage B.1.1.529). In this study, we conducted a molecular epidemiological analysis of the most prevalent genovariants in Moscow and the region. The aim of the study is to estimate the distribution of various variants of SARS-CoV-2 in Moscow city and the Moscow Region. MATERIALS AND METHODS 227 SARS-CoV-2 sequences were used for analysis. Isolation of the SARS-CoV-2 virus was performed on Vero E6 cell culture. Sequencing was performed by the Sanger method. Bioinformatic analysis was carried out using software packages: MAFFT, IQ-TREE v1.6.12, jModelTest 2.1.7, Nextstrain, Auspice v2.34. RESULTS As a result of phylogenetic analysis, we have identified the main variants of the virus circulating in Russia that have been of concern throughout the existence of the pandemic, namely: variant B.1.1.7, which accounted for 30% (9/30), AY.122, which accounted for 16.7% (5/30), BA.1.1 with 20% (6/30) and B.1.1 with 33.3% (10/30). When examining Moscow samples for the presence of mutations in SARS-CoV-2 structural proteins of different genovariants, a significant percentage of the most common substitutions was recorded: S protein D614G (86.7%), P681H/R (63.3%), E protein T9I (20.0%); M protein I82T (30.0%), D3G (20.0%), Q19E (20.0%) and finally N protein R203K/M (90.0%), G204R/P (73.3 %). CONCLUSION The study of the frequency and impact of mutations, as well as the analysis of the predominant variants of the virus are important for the development and improvement of vaccines for the prevention of COVID-19. Therefore, ongoing molecular epidemiological studies are needed, as these data provide important information about changes in the genome of circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- E N Ozhmegova
- National Research Center for Epidemiology and Microbiology named after honorary academician N.F. Gamaleya, Ministry of Health of the Russian Federation
| | - T E Savochkina
- National Research Center for Epidemiology and Microbiology named after honorary academician N.F. Gamaleya, Ministry of Health of the Russian Federation
| | - A G Prilipov
- National Research Center for Epidemiology and Microbiology named after honorary academician N.F. Gamaleya, Ministry of Health of the Russian Federation
| | - E Tikhomirov
- National Research Center for Epidemiology and Microbiology named after honorary academician N.F. Gamaleya, Ministry of Health of the Russian Federation
| | - V F Larichev
- National Research Center for Epidemiology and Microbiology named after honorary academician N.F. Gamaleya, Ministry of Health of the Russian Federation
| | - M A Sayfullin
- National Research Center for Epidemiology and Microbiology named after honorary academician N.F. Gamaleya, Ministry of Health of the Russian Federation
- Pirogov Russian National Research Medical University
| | - T V Grebennikova
- National Research Center for Epidemiology and Microbiology named after honorary academician N.F. Gamaleya, Ministry of Health of the Russian Federation
| |
Collapse
|
8
|
R K, Aouti S, Jos S, Prasad TK, K N K, Unni S, Padmanabhan B, Kamariah N, Padavattan S, Mythri RB. High-affinity binding of celastrol to monomeric α-synuclein mitigates in vitro aggregation. J Biomol Struct Dyn 2023; 41:12703-12713. [PMID: 36744543 DOI: 10.1080/07391102.2023.2175379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
α-Synuclein (αSyn) aggregation is associated with Parkinson's disease (PD). The region αSyn36-42 acts as the nucleation 'master controller' and αSyn1-12 as a 'secondary nucleation site'. They drive monomeric αSyn to aggregation. Small molecules targeting these motifs are promising for disease-modifying therapy. Using computational techniques, we screened thirty phytochemicals for αSyn binding. The top three compounds were experimentally validated for their binding affinity. Amongst them, celastrol showed high binding affinity. NMR analysis confirmed stable αSyn-celastrol interactions involving several residues in the N-terminus and NAC regions but not in the C-terminal tail. Importantly, celastrol interacted extensively with the key motifs that drive αSyn aggregation. Thioflavin-T assay indicated that celastrol reduced αSyn aggregation. Thus, celastrol holds promise as a potent drug candidate for PD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kavya R
- Department of Biotechnology, Mount Carmel College, Autonomous, Bengaluru, Karnataka, India
| | - Snehal Aouti
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sneha Jos
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, India
| | - Kumuda K N
- Department of Biotechnology, Mount Carmel College, Autonomous, Bengaluru, Karnataka, India
| | - Sruthi Unni
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, India
| | - Sivaraman Padavattan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Rajeswara Babu Mythri
- Department of Biotechnology, Mount Carmel College, Autonomous, Bengaluru, Karnataka, India
| |
Collapse
|
9
|
Ma L, Li Y, Shi T, Zhu Z, Zhao J, Xie Y, Wen J, Guo S, Wang J, Ding J, Liang C, Shan G, Li Q, Ge M, Cen S. Teicoplanin derivatives block spike protein mediated viral entry as pan-SARS-CoV-2 inhibitors. Biomed Pharmacother 2023; 158:114213. [PMID: 36916436 PMCID: PMC9808420 DOI: 10.1016/j.biopha.2023.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
The rapid emergence of highly transmissible SARS-CoV-2 variants poses serious threat to the efficacy of vaccines and neutralizing antibodies. Thus, there is an urgent need to develop new and effective inhibitors against SARS-CoV-2 and future outbreaks. Here, we have identified a series of glycopeptide antibiotics teicoplanin derivatives that bind to the SARS-CoV-2 spike (S) protein, interrupt its interaction with ACE2 receptor and selectively inhibit viral entry mediated by S protein. Computation modeling predicts that these compounds interact with the residues in the receptor binding domain. More importantly, these teicoplanin derivatives inhibit the entry of both pseudotyped SARS-CoV-2 Delta and Omicron variants. Our study demonstrates the feasibility of developing small molecule entry inhibitors by targeting the interaction of viral S protein and ACE2. Together, considering the proven safety and pharmacokinetics of teicoplanin as a glycopeptide antibiotic, the teicoplanin derivatives hold great promise of being repurposed as pan-SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yali Li
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiling Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jiajia Wen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Chen Liang
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China; CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Ridgway H, Ntallis C, Chasapis CT, Kelaidonis K, Matsoukas MT, Plotas P, Apostolopoulos V, Moore G, Tsiodras S, Paraskevis D, Mavromoustakos T, Matsoukas JM. Molecular Epidemiology of SARS-CoV-2: The Dominant Role of Arginine in Mutations and Infectivity. Viruses 2023; 15:309. [PMID: 36851526 PMCID: PMC9963001 DOI: 10.3390/v15020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Background, Aims, Methods, Results, Conclusions: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global challenge due to its ability to mutate into variants that spread more rapidly than the wild-type virus. The molecular biology of this virus has been extensively studied and computational methods applied are an example paradigm for novel antiviral drug therapies. The rapid evolution of SARS-CoV-2 in the human population is driven, in part, by mutations in the receptor-binding domain (RBD) of the spike (S-) protein, some of which enable tighter binding to angiotensin-converting enzyme (ACE2). More stable RBD-ACE2 association is coupled with accelerated hydrolysis by proteases, such as furin, trypsin, and the Transmembrane Serine Protease 2 (TMPRSS2) that augment infection rates, while inhibition of the 3-chymotrypsin-like protease (3CLpro) can prevent the viral replication. Additionally, non-RBD and non-interfacial mutations may assist the S-protein in adopting thermodynamically favorable conformations for stronger binding. This study aimed to report variant distribution of SARS-CoV-2 across European Union (EU)/European Economic Area (EEA) countries and relate mutations with the driving forces that trigger infections. Variants' distribution data for SARS-CoV-2 across EU/EEA countries were mined from the European Centre for Disease Prevention and Control (ECDC) based on the sequence or genotyping data that are deposited in the Global Science Initiative for providing genomic data (GISAID) and The European Surveillance System (TESSy) databases. Docking studies performed with AutoDock VINA revealed stabilizing interactions of putative antiviral drugs, e.g., selected anionic imidazole biphenyl tetrazoles, with the ACE2 receptor in the RBD-ACE2 complex. The driving forces of key mutations for Alpha, Beta, Gamma, Delta, Epsilon, Kappa, Lambda, and Omicron variants, which stabilize the RBD-ACE2 complex, were investigated by computational approaches. Arginine is the critical amino acid in the polybasic furin cleavage sites S1/S2 (681-PRRARS-686) S2' (814-KRS-816). Critical mutations into arginine residues that were found in the delta variant (L452R, P681R) and may be responsible for the increased transmissibility and morbidity are also present in two widely spreading omicron variants, named BA.4.6 and BQ.1, where mutation R346T in the S-protein potentially contributes to neutralization escape. Arginine binders, such as Angiotensin Receptor Blockers (ARBs), could be a class of novel drugs for treating COVID-19.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne 8001, VIC, Australia
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Charalampos Ntallis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | | | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne 3030, VIC, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne 3021, VIC, Australia
| | - Graham Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 11571 Athens, Greece
| | - John M. Matsoukas
- NewDrug PC, Patras Science Park, 26504 Patras, Greece
- Institute for Health and Sport, Victoria University, Melbourne 3030, VIC, Australia
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
11
|
Devi PB, Asthana Y, Sumitha A, Sagayaraj IR. Molecular Docking and the Pharmacokinetic Properties of the Anti-Viral Compounds Towards SARS-CoV- An In-silico Approach. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/z2mkwovoqc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Rani J, Bhargav A, Khan FI, Ramachandran S, Lai D, Bajpai U. In silico prediction of natural compounds as potential multi-target inhibitors of structural proteins of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:12118-12134. [PMID: 34486935 PMCID: PMC8425474 DOI: 10.1080/07391102.2021.1968497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a colossal loss to human health and lives and has deeply impacted socio-economic growth. Remarkable efforts have been made by the scientific community in containing the virus by successful development of vaccines and diagnostic kits. Initiatives towards drug repurposing and discovery have also been undertaken. In this study, we compiled the known natural anti-viral compounds using text mining of the literature and examined them against four major structural proteins of SARS-CoV-2, namely, spike (S) protein, nucleocapsid (N) protein, membrane (M) protein and envelope (E) protein. Following computational approaches, we identified fangchinoline and versicolactone C as the compounds to exhibit strong binding to the target proteins and causing structural deformation of three structural proteins (N, S and M). We recommend the inhibitory effects of these compounds from our study should be experimentally validated against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India,G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Anasuya Bhargav
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Srinivasan Ramachandran
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Srinivasan Ramchandran ;
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China,Dakun Lai
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India,CONTACT Urmi Bajpai ;
| |
Collapse
|
13
|
Mousavi S, Zare S, Mirzaei M, Feizi A. Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2044282. [PMID: 36199815 PMCID: PMC9527439 DOI: 10.1155/2022/2044282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in discovering potential therapeutic agents for this disease. In this regard, we conducted a systematic review through an overview of drug development (in silico, in vitro, and in vivo) for treating COVID-19. Methods A systematic search was carried out in major databases including PubMed, Web of Science, Scopus, EMBASE, and Google Scholar from December 2019 to March 2021. A combination of the following terms was used: coronavirus, COVID-19, SARS-CoV-2, drug design, drug development, In silico, In vitro, and In vivo. A narrative synthesis was performed as a qualitative method for the data synthesis of each outcome measure. Results A total of 2168 articles were identified through searching databases. Finally, 315 studies (266 in silico, 34 in vitro, and 15 in vivo) were included. In studies with in silico approach, 98 article study repurposed drug and 91 studies evaluated herbal medicine on COVID-19. Among 260 drugs repurposed by the computational method, the best results were observed with saquinavir (n = 9), ritonavir (n = 8), and lopinavir (n = 6). Main protease (n = 154) following spike glycoprotein (n = 62) and other nonstructural protein of virus (n = 45) was among the most studied targets. Doxycycline, chlorpromazine, azithromycin, heparin, bepridil, and glycyrrhizic acid showed both in silico and in vitro inhibitory effects against SARS-CoV-2. Conclusion The preclinical studies of novel drug design for COVID-19 focused on main protease and spike glycoprotein as targets for antiviral development. From evaluated structures, saquinavir, ritonavir, eucalyptus, Tinospora cordifolia, aloe, green tea, curcumin, pyrazole, and triazole derivatives in in silico studies and doxycycline, chlorpromazine, and heparin from in vitro and human monoclonal antibodies from in vivo studies showed promised results regarding efficacy. It seems that due to the nature of COVID-19 disease, finding some drugs with multitarget antiviral actions and anti-inflammatory potential is valuable and some herbal medicines have this potential.
Collapse
Affiliation(s)
- Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Zare
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Vázquez-Jiménez LK, Juárez-Saldivar A, Gómez-Escobedo R, Delgado-Maldonado T, Méndez-Álvarez D, Palos I, Bandyopadhyay D, Gaona-Lopez C, Ortiz-Pérez E, Nogueda-Torres B, Ramírez-Moreno E, Rivera G. Ligand-Based Virtual Screening and Molecular Docking of Benzimidazoles as Potential Inhibitors of Triosephosphate Isomerase Identified New Trypanocidal Agents. Int J Mol Sci 2022; 23:10047. [PMID: 36077439 PMCID: PMC9456061 DOI: 10.3390/ijms231710047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi) is a parasite that affects humans and other mammals. T. cruzi depends on glycolysis as a source of adenosine triphosphate (ATP) supply, and triosephosphate isomerase (TIM) plays a key role in this metabolic pathway. This enzyme is an attractive target for the design of new trypanocidal drugs. In this study, a ligand-based virtual screening (LBVS) from the ZINC15 database using benzimidazole as a scaffold was accomplished. Later, a molecular docking on the interface of T. cruzi TIM (TcTIM) was performed and the compounds were grouped by interaction profiles. Subsequently, a selection of compounds was made based on cost and availability for in vitro evaluation against blood trypomastigotes. Finally, the compounds were analyzed by molecular dynamics simulation, and physicochemical and pharmacokinetic properties were determined using SwissADME software. A total of 1604 molecules were obtained as potential TcTIM inhibitors. BP2 and BP5 showed trypanocidal activity with half-maximal lytic concentration (LC50) values of 155.86 and 226.30 µM, respectively. Molecular docking and molecular dynamics simulation analyzes showed a favorable docking score of BP5 compound on TcTIM. Additionally, BP5 showed a low docking score (-5.9 Kcal/mol) on human TIM compared to the control ligand (-7.2 Kcal/mol). Both compounds BP2 and BP5 showed good physicochemical and pharmacokinetic properties as new anti-T. cruzi agents.
Collapse
Affiliation(s)
- Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Rogelio Gómez-Escobedo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Domingo Méndez-Álvarez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Isidro Palos
- Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma de Tamaulipas, Reynosa 88779, Mexico
| | - Debasish Bandyopadhyay
- Department of Chemistry and SEEMS, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Carlos Gaona-Lopez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México 07320, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
15
|
Tan A. Synthesis, spectroscopic characterization of novel phthalimides derivatives bearing a 1,2,3-triazole unit and examination as potential SARS-CoV-2 inhibitors via in silico studies. J Mol Struct 2022; 1261:132915. [PMID: 35345413 PMCID: PMC8942404 DOI: 10.1016/j.molstruc.2022.132915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
In the present study, novel phthalimide derivatives 8(a-f) and 9(a-f) bearing a 1,2,3-triazole subunit were synthesized via CuAAC reactions and characterized by 1H, 13C NMR, HR-MS, and FT-IR analyses. To support the fight against SARS-CoV-2, in silico molecular docking studies were carried out to examine their interactions with the proteins of SARS-CoV-2 (Mpro and PLpro) and the protein-protein interactions (PPI) between the ACE2-spike (S1) in comparison with various inhibitors reported to be active by in vitro experiments. The ligand-protein stabilities of compounds 8a-Mpro, 8b-PLpro, and 9a-'ACE2-S1' showing the best binding energy and predicted inhibition constant values (Ki) were examined by molecular dynamics simulation studies. Finally, in silico ADMET properties of the target compounds were investigated using the Swiss ADME and ProTox-II web tools. According to in silico results, all phthalimide analogs may block the PPI between S1 and ACE2. The compounds may also inhibit the progression of the Mpro, and PLpro proteins of SARS-CoV-2. Additionally, it has been estimated that the compounds are suitable for oral administration and exhibit low levels of toxicity.
Collapse
Affiliation(s)
- Ayse Tan
- Vocational School of Technical Sciences, Mus Alparslan University, Mus 49250, Turkey
| |
Collapse
|
16
|
Development of a database of RNA helicase inhibitors (VHIMDB) of pathogenic viruses and in silico screening for the potential drug molecules. THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The pathogenic RNA virus that infects human beings contains the RNA helicase enzyme, responsible for the replication of the viral genome. The enzyme is used as a suitable target against which the drug molecule acts. Therefore, the identification and proposal the novel compounds that can be targeted toward the helicase enzymes to stop the functioning of the enzyme is desirable. Although many viral helicase inhibitor molecules have been identified, still yet no unique database is available for these compounds. This research work envisages developing a curated database of RNA helicase inhibitors. The database contains in total of 353 entries that are computationally predicted and experimentally verified RNA helicase inhibitors. The database contains information like compound name, chemical properties, chemical format, and name of the target virus to which it acts against it with a user-friendly menu-driven search engine. Presently, the database is freely available at: https://vhimdb.rsatpathy.in/. Further, in silico screening of the whole database by drug-likeness and toxicity resulted in 14 potential drug molecules. The selected molecules were analyzed for their effectiveness in binding by using molecular docking score and interaction with the helicase enzymes of three categories of pathogenic viruses (SARS-CoV-2, SARS-CoV, and MERS-CoV).
Collapse
|
17
|
Debnath SK, Debnath M, Srivastava R, Omri A. Drugs repurposing for SARS-CoV-2: new insight of COVID-19 druggability. Expert Rev Anti Infect Ther 2022; 20:1187-1204. [PMID: 35615888 DOI: 10.1080/14787210.2022.2082944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The ongoing epidemic of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) creates a massive panic worldwide due to the absence of effective medicines. Developing a new drug or vaccine is time-consuming to pass safety and efficacy testing. Therefore, repurposing drugs have been introduced to treat COVID-19 until effective drugs are developed. AREA COVERED A detailed search of repurposing drugs against SARS-CoV-2 was carried out using the PubMed database, focusing on articles published 2020 years onward. A different class of drugs has been described in this article to target hosts and viruses. Based on the previous pandemic experience of SARS-CoV and MERS, several antiviral and antimalarial drugs are discussed here. This review covers the failure of some repurposed drugs that showed promising activity in the earlier CoV-pandemic but were found ineffective against SARS-CoV-2. All these discussions demand a successful drug development strategy for screening and identifying an effective drug for better management of COVID-19. The drug development strategies described here will serve a new scope of research for academicians and researchers. EXPERT OPINION Repurposed drugs have been used since COVID-19 to eradicate disease propagation. Drugs found effective for MERS and SARS may not be effective against SARS-CoV-2. Drug libraries and artificial intelligence are helpful tools to screen and identify different molecules targeting viruses or hosts.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Monalisha Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug & Vaccine Delivery Systems Facility, Laurentian University, Sudbury, Canada
| |
Collapse
|
18
|
Eskandari V. Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein. J Mol Model 2022; 28:153. [PMID: 35578055 PMCID: PMC9110024 DOI: 10.1007/s00894-022-05138-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/26/2022] [Indexed: 12/03/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) enters the cell by interacting with the human angiotensin-converting enzyme 2 (ACE2) receptor through the receptor-binding domain (RBD) of spike (S) protein. In the cell, the viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme is essential for its life cycle and controls coronavirus replication. Therefore, the S-RBD and 3CLpro are hot targets for drug discovery against SARS-CoV-2. This study was to identify repurposing drugs using in silico screening, docking, and molecular dynamics simulation. The study identified bentiamine, folic acid, benfotiamine, and vitamin B12 against the RBD of S protein and bentiamine, folic acid, fursultiamine, and riboflavin to 3CLpro. The strong and stable binding of these safe and cheap vitamins at the important residues (R403, K417, Y449, Y453, N501, and Y505) in the S-protein–ACE2 interface and 3CLpro binding site residues especially active site residues (His 41 and Cys 145), indicating that they could be valuable repurpose drugs for inhibiting SARS-CoV-2 entry into the host and replication.
Collapse
Affiliation(s)
- Vajiheh Eskandari
- Department of Biology, Faculty of Science, University of Zanjan, Zanjan, Iran.
| |
Collapse
|
19
|
Repurposing of Four Drugs as Anti-SARS-CoV-2 Agents and Their Interactions with Protein Targets. Sci Pharm 2022. [DOI: 10.3390/scipharm90020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although there are existing vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), new COVID-19 cases are increasing due to low immunization coverage and the emergence of new variants. For this reason, new drugs to treat and prevent severe COVID-19 are needed. Here, we provide four different FDA-approved drugs against SARS-CoV-2 proteins involved in the entry and replication process, aiming to identify potential drugs to treat COVID-19. We use the main protease (Mpro), the spike glycoprotein (S protein), and RNA-dependent RNA polymerase (RdRp) as protein targets for anti- SARS-CoV-2 drugs. In our constructed database, we selected different drugs against each target (Mpro, S protein, and RdRp) based on their common interactions with relevant residues involved in viral entry at the host cell and replication. Furthermore, their stability inside the binding pocket, as well as their predicted binding-free energy, allow us to provide new insight into the possible drug repurposing of viomycin (interacting with Mpro) due to its interactions with key residues, such as Asn 143, Glu 166, and Gln 189 at the same time as hesperidin (interacting with the S protein) is interacting with residues Tyr 449, Ser 494, and Thr 500, keeping inside the predicted binding pocket, as well as interacting with residues in different variants of concern. Finally, we also suggest nystatin and elvitegravir (interacting with RdRp) as possible drugs due to their stability within the predicted pocket along the simulation and their interaction with key residues, such as Asp 760, Asp 761, and Asp 618. Altogether our results provide new knowledge about the possible mechanism of the inhibition of viomycin, hesperidin, elvitegravir, and nystatin to inhibit the viral life cycle of SARS-CoV-2 and some of its variants of concern (VOC). Additionally, some iodide-based contrast agents were also found to bind the S protein strongly, i.e., iohexol (−58.99 Kcal/mol), iotrolan (−76.19 Kcal/mol), and ioxilan (−62.37 Kcal/mol). Despite the information we report here as the possible strong interaction between these contrast agents and the SARS-CoV-2′s S protein, Mpro, and RdRp, we believe that further investigation, including chemical modifications in their structures, are needed for COVID-19 treatment.
Collapse
|
20
|
Vázquez-Mendoza LH, Mendoza-Figueroa HL, García-Vázquez JB, Correa-Basurto J, García-Machorro J. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. Int J Mol Sci 2022; 23:3987. [PMID: 35409348 PMCID: PMC8999907 DOI: 10.3390/ijms23073987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The epidemic caused by the SARS-CoV-2 coronavirus, which has spread rapidly throughout the world, requires urgent and effective treatments considering that the appearance of viral variants limits the efficacy of vaccines. The main protease of SARS-CoV-2 (Mpro) is a highly conserved cysteine proteinase, fundamental for the replication of the coronavirus and with a specific cleavage mechanism that positions it as an attractive therapeutic target for the proposal of irreversible inhibitors. A structure-based strategy combining 3D pharmacophoric modeling, virtual screening, and covalent docking was employed to identify the interactions required for molecular recognition, as well as the spatial orientation of the electrophilic warhead, of various drugs, to achieve a covalent interaction with Cys145 of Mpro. The virtual screening on the structure-based pharmacophoric map of the SARS-CoV-2 Mpro in complex with an inhibitor N3 (reference compound) provided high efficiency by identifying 53 drugs (FDA and DrugBank databases) with probabilities of covalent binding, including N3 (Michael acceptor) and others with a variety of electrophilic warheads. Adding the energy contributions of affinity for non-covalent and covalent docking, 16 promising drugs were obtained. Our findings suggest that the FDA-approved drugs Vaborbactam, Cimetidine, Ixazomib, Scopolamine, and Bicalutamide, as well as the other investigational peptide-like drugs (DB04234, DB03456, DB07224, DB7252, and CMX-2043) are potential covalent inhibitors of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Luis Heriberto Vázquez-Mendoza
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
| | - Humberto L. Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
| | - Juan Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
- Cátedras CONACyT-Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
| | - Jazmín García-Machorro
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico;
| |
Collapse
|
21
|
Zarei O, Kleine-Weber H, Hoffmann M, Hamzeh-Mivehroud M. Development and evaluation of peptidomimetic compounds against SARS-CoV-2 spike protein: an in silico and in vitro study. Mol Inform 2022; 41:e2100231. [PMID: 35068079 PMCID: PMC9015386 DOI: 10.1002/minf.202100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/08/2022]
Abstract
Background: Coronavirus disease 2019 (COVID‐19) as global pandemic disease has been adversely affecting public health and social life with considerable loss of human life worldwide. Therefore, there is an urgent need for developing novel therapeutics to combat COVID‐19. The causative agent of COVID‐19 is SARS‐CoV‐2 which targets human angiotensin converting enzyme 2 (ACE2) as cellular receptor via its spike (S) protein. In this context, interfering with the binding of SARS‐CoV‐2 S protein to target molecules could provide a promising strategy to find novel therapeutic agents against SARS‐CoV‐2. The purpose of the current study was to identify potential peptidomimetics against S protein with a combination of structure‐based virtual screening methods and in vitro assays. Methods: The candidates were inspected in terms of ADME properties, drug‐likeness, as well as toxicity profiles. Additionally, molecular docking and dynamics simulations were performed to predict binding of the studied ligands to spike protein. Results: Biological evaluation of the compounds revealed that PM2 molecule exhibits some antiviral activity. Conclusion: In summary, this study highlights the importance of combining in silico and in vitro techniques in order to identify antiviral compound to tackle COVID‐19 and presents a new scaffold that may be structurally optimized for improved antiviral activity.
Collapse
Affiliation(s)
- Omid Zarei
- Kurdistan University of Medical Sciences, IRAN (THE ISLAMIC REPUBLIC OF)
| | | | - Markus Hoffmann
- German Primate Centre Leibniz Institute for Primate Research, GERMANY
| | | |
Collapse
|
22
|
Lochab A, Thareja R, Gadre SD, Saxena R. Potential Protein and Enzyme Targets for In‐silico Development and Repurposing of Drug Against Coronaviruses. ChemistrySelect 2021. [DOI: 10.1002/slct.202103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Lochab
- Department of Chemistry Kirori Mal College University of Delhi Delhi India
| | - Rakhi Thareja
- Department of Chemistry St. Stephens College University of Delhi Delhi India
| | - Sangeeta D. Gadre
- Department of Physics Kirori Mal College University of Delhi Delhi India
| | - Reena Saxena
- Department of Chemistry Kirori Mal College University of Delhi Delhi India
| |
Collapse
|
23
|
Şimşek Y, Baran SS, Aslım B. In silico identification of SARS-CoV-2 cell entry inhibitors from selected natural antivirals. J Mol Graph Model 2021; 109:108038. [PMID: 34607208 PMCID: PMC8479391 DOI: 10.1016/j.jmgm.2021.108038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023]
Abstract
The aim of this study is to identify potential drug-like molecules against SARS-CoV-2 virus among the natural antiviral compounds published in the Encyclopedia of Traditional Chinese Medicine. To test inhibition capability of these compounds first, we docked them with Spike protein, angiotensin-converting enzyme 2 (ACE2) (PDB ID: 6M0J) and neuropilin 1 (NRP1) (PDB ID: 7JJC) receptors, and found significant docking scores with extra precision up to -11 kcal/mol. Then, their stability in the binding pockets were further evaluated with molecular dynamics simulation. Eight natural antiviral compounds were identified as potential inhibitors against SARS-CoV-2 cell entry after 200 ns molecular dynamics simulations. We found CMP-3, CMP-4, CMP-5, CMP-6 and CMP-8 are strong binders for the spike protein, CMP-1, CMP-2, CMP-4, CMP-5 and CMP-7 are strong binders for the neuropilin receptor, and CMP-5 is a strong binder for the ACE2. Quercetin derivatives (CMP-4, CMP-5, CMP-6 and CMP-7) were found highly stable in the active domain of NRP1, ACE2 and Spike protein. Especially, CMP-5 showed an inhibitory activity for all targets. These natural antivirals may be potential drug candidates for the prevention of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yusuf Şimşek
- Vocational School of Health Services, Gazi University, Ankara, Turkey.
| | | | - Belma Aslım
- Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
24
|
Rochette L, Zeller M, Cottin Y, Vergely C. GDF15: an emerging modulator of immunity and a strategy in COVID-19 in association with iron metabolism. Trends Endocrinol Metab 2021; 32:875-889. [PMID: 34593305 PMCID: PMC8423996 DOI: 10.1016/j.tem.2021.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of respiratory and cardiovascular diseases, known as coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes the structural proteins spike (S), envelope (E), membrane (M), and nucleocapsid (N). The receptor-binding domain on the surface subunit S1 is responsible for attachment of the virus to angiotensin (Ang)-converting enzyme 2 (ACE2), which is highly expressed in host cells. The cytokine storm observed in patients with COVID-19 contributes to the endothelial vascular dysfunction, which can lead to acute respiratory distress syndrome, multiorgan failure, alteration in iron homeostasis, and death. Growth and differentiation factor 15 (GDF15), which belongs to the transforming growth factor-β (TGF-β) superfamily of proteins, has a pivotal role in the development and progression of diseases because of its role as a metabolic regulator. In COVID-19, GDF15 activity increases in response to tissue damage. GDF15 appears to be a strong predictor of poor outcomes in patients critically ill with COVID-19 and acts as an 'inflammation-induced central mediator of tissue tolerance' via its metabolic properties. In this review, we examine the potential properties of GDF15 as an emerging modulator of immunity in COVID-19 in association with iron metabolism. The virus life cycle in host cell provides potential targets for drug therapy.
Collapse
Affiliation(s)
- Luc Rochette
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France.
| | - Marianne Zeller
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France
| | - Yves Cottin
- Cardiology Unit, Dijon Bourgogne University Hospital, 21000 Dijon, France
| | - Catherine Vergely
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France
| |
Collapse
|
25
|
Liu Q, Wan J, Wang G. A survey on computational methods in discovering protein inhibitors of SARS-CoV-2. Brief Bioinform 2021; 23:6384382. [PMID: 34623382 PMCID: PMC8524468 DOI: 10.1093/bib/bbab416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
The outbreak of acute respiratory disease in 2019, namely Coronavirus Disease-2019 (COVID-19), has become an unprecedented healthcare crisis. To mitigate the pandemic, there are a lot of collective and multidisciplinary efforts in facilitating the rapid discovery of protein inhibitors or drugs against COVID-19. Although many computational methods to predict protein inhibitors have been developed [
1–
5], few systematic reviews on these methods have been published. Here, we provide a comprehensive overview of the existing methods to discover potential inhibitors of COVID-19 virus, so-called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). First, we briefly categorize and describe computational approaches by the basic algorithms involved in. Then we review the related biological datasets used in such predictions. Furthermore, we emphatically discuss current knowledge on SARS-CoV-2 inhibitors with the latest findings and development of computational methods in uncovering protein inhibitors against COVID-19.
Collapse
Affiliation(s)
- Qiaoming Liu
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150001, China
| | - Jun Wan
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guohua Wang
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150001, China.,Information and Computer Engineering College, Northeast Forestry University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
26
|
Almehdi AM, Khoder G, Alchakee AS, Alsayyid AT, Sarg NH, Soliman SSM. SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection 2021; 49:855-876. [PMID: 34339040 PMCID: PMC8326314 DOI: 10.1007/s15010-021-01677-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE COVID-19 pandemic has emerged as a result of infection by the deadly pathogenic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causing enormous threats to humans. Coronaviruses are distinguished by a clove-like spike (S) protein, which plays a key role in viral pathogenesis, evolutions, and transmission. The objectives of this study are to investigate the distinctive structural features of SARS-CoV-2 S protein, its essential role in pathogenesis, and its use in the development of potential therapies and vaccines. METHODOLOGY A literature review was conducted to summarize, analyze, and interpret the available scientific data related to SARS-CoV-2 S protein in terms of characteristics, vaccines development and potential therapies. RESULTS The data indicate that S protein subunits and their variable conformational states significantly affect the virus pathogenesis, infectivity, and evolutionary mutation. A considerable number of potential natural and synthetic therapies were proposed based on S protein. Additionally, neutralizing antibodies were recently approved for emergency use. Furthermore, several vaccines utilizing the S protein were developed. CONCLUSION A better understanding of S protein features, structure and mutations facilitate the recognition of the importance of SARS-CoV-2 S protein in viral infection, as well as the development of therapies and vaccines. The efficacy and safety of these therapeutic compounds and vaccines are still controversial. However, they may potentially reduce or prevent SARS-CoV-2 infection, leading to a significant reduction of the global health burden of this pandemic.
Collapse
Affiliation(s)
- Ahmed M Almehdi
- College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Ghalia Khoder
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Aminah S Alchakee
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Azizeh T Alsayyid
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Nadin H Sarg
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
27
|
Drugs repurposing against SARS-CoV2 and the new variant B.1.1.7 (alpha strain) targeting the spike protein: molecular docking and simulation studies. Heliyon 2021; 7:e07803. [PMID: 34423145 PMCID: PMC8367657 DOI: 10.1016/j.heliyon.2021.e07803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) is responsible for the global COVID-19 pandemic and millions of deaths worldwide. In December 2020, a new alpha strain of SARS-CoV2 was identified in the United Kingdom. It was referred to as VUI 202012/01 (Alpha strain modelled under investigation, 2020, month 12, number 01). The interaction between spike protein and ACE2 receptor is a prerequisite for entering virion into the host cell. The present study is focussed on the spike protein of the SARS-COV 2, involving the comparison of binding affinity of new alpha strain modelled spike with previous strain spike (PDB ID:7DDN) using in silico molecular docking, dynamics and simulation studies. The molecular docking studies of the alpha strain modelled spike protein confirmed its higher affinity for the ACE2 receptor than the spike protein of the dominant strain. Similar computational approaches have also been used to investigate the potency of FDA approved drugs from the ZINC Database against the spike protein of new alpha strain modelled and old ones. The drug molecules which showed strong affinity for both the spike proteins are then subjected to ADME analysis. The overall binding energy of Conivaptan (-107.503 kJ/mol) and Trosec (-94.029 kJ/mol) is indicative of their strong binding affinities, well supported by interactions with critical residues. We investigated the potential FDA drugs for repurposing against the spike protein of alpha strain modelled of SARS-CoV-2. Spike protein of alpha strain modelled of SARS-CoV-2 has more affinity for the ACE2 receptor of host cell than previous strains and, therefore, is more contagious. Conivaptan, Ecamsule and Trosec are common drugs that bind strongly with spike protein of both the strains . Molecular Docking and simulation studies show that Conivaptan and Trosec emerged as potential inhibitors of the alpha strain modelled spike protein.
Collapse
|
28
|
Abstract
Thus far, in 2021, 219 countries with over 175 million people have been infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a positive sense, single-stranded RNA virus, and is the causal agent for coronavirus disease (COVID-19). Due to the urgency of the situation, virtual screening as a computational modeling method offers a fast and effective modality of identifying drugs that may be effective against SARS-CoV-2. There has been an overwhelming abundance of molecular docking against SARS-CoV-2 in the last year. Due to the massive volume of computational studies, this systematic review has been created to evaluate and summarize the findings of existing studies. Herein, we report on computational articles of drugs which target, (1) viral protease, (2) Spike protein-ACE 2 interaction, (3) RNA-dependent RNA polymerase, and (4) other proteins and nonstructural proteins of SARS-CoV-2. Based on the studies presented, there are 55 identified natural or drug compounds with potential anti-viral activity. The next step is to show anti-viral activity in vitro and translation to determine effectiveness into human clinical trials.
Collapse
|
29
|
Yim SK, Kim I, Warren B, Kim J, Jung K, Ku B. Antiviral Activity of Two Marine Carotenoids against SARS-CoV-2 Virus Entry In Silico and In Vitro. Int J Mol Sci 2021; 22:6481. [PMID: 34204256 PMCID: PMC8235185 DOI: 10.3390/ijms22126481] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023] Open
Abstract
The marine carotenoids fucoxanthin and siphonaxanthin are powerful antioxidants that are attracting focused attention to identify a variety of health benefits and industry applications. In this study, the binding energy of these carotenoids with the SARS-CoV-2 Spike-glycoprotein was predicted by molecular docking simulation, and their inhibitory activity was confirmed with SARS-CoV-2 pseudovirus on HEK293 cells overexpressing angiotensin-converting enzyme 2 (ACE2). Siphonaxanthin from Codium fragile showed significant antiviral activity with an IC50 of 87.4 μM against SARS-CoV-2 pseudovirus entry, while fucoxanthin from Undaria pinnatifida sporophyll did not. The acute toxicities were predicted to be relatively low, and pharmacokinetic predictions indicate GI absorption. Although further studies are needed to elucidate the inhibition of viral infection by siphonaxanthin, these results provide useful information in the application of these marine carotenoids for the treatment and prevention of COVID-19.
Collapse
Affiliation(s)
- Sung-Kun Yim
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (B.W.); (K.J.)
| | - Inhee Kim
- Medical & Bio Decision (MBD) Co. Ltd., #B-8F, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Korea; (I.K.); (J.K.); (B.K.)
| | - Boyd Warren
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (B.W.); (K.J.)
| | - Jungwon Kim
- Medical & Bio Decision (MBD) Co. Ltd., #B-8F, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Korea; (I.K.); (J.K.); (B.K.)
| | - Kyoojin Jung
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (B.W.); (K.J.)
| | - Bosung Ku
- Medical & Bio Decision (MBD) Co. Ltd., #B-8F, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Korea; (I.K.); (J.K.); (B.K.)
| |
Collapse
|
30
|
Liang H, Zhao L, Gong X, Hu M, Wang H. Virtual screening FDA approved drugs against multiple targets of SARS-CoV-2. Clin Transl Sci 2021; 14:1123-1132. [PMID: 33606912 PMCID: PMC8014887 DOI: 10.1111/cts.13007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 01/18/2023] Open
Abstract
The outbreak of the novel coronavirus severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) respiratory disease, led to a global pandemic with high morbidity and mortality. Despite frenzied efforts in therapeutic development, there are currently no effective drugs for treatment, nor are there vaccines for its prevention. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, is one of the most practical treatment options against the outbreak. In this study, we present a novel strategy for in silico molecular modeling screening for potential drugs that may interact with multiple main proteins of SARS-CoV-2. Targeting multiple viral proteins is a novel drug discovery concept in that it enables the potential drugs to act on different stages of the virus' life cycle, thereby potentially maximizing the drug potency. We screened 2631 US Food and Drug Administration (FDA)-approved small molecules against 4 key proteins of SARS-CoV-2 that are known as attractive targets for antiviral drug development. In total, we identified 29 drugs that could actively interact with 2 or more target proteins, with 5 drugs (avapritinib, bictegravir, ziprasidone, capmatinib, and pexidartinib) being common candidates for all 4 key host proteins and 3 of them possessing the desirable molecular properties. By overlaying docked positions of drug candidates onto individual host proteins, it has been further confirmed that the binding site conformations are conserved. The drugs identified in our screening provide potential guidance for experimental confirmation, such as in vitro molecular assays and in vivo animal testing, as well as incorporation into ongoing clinical studies.
Collapse
Affiliation(s)
- Hualou Liang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Liang Zhao
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Xiajing Gong
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Meng Hu
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hongbin Wang
- Center for Biomedical Informatics, College of Medicine, Texas A&M University Health Science Center, Houston, TX, USA
| |
Collapse
|
31
|
Miroshnychenko KV, Shestopalova AV. Combined use of the hepatitis C drugs and amentoflavone could interfere with binding of the spike glycoprotein of SARS-CoV-2 to ACE2: the results of a molecular simulation study. J Biomol Struct Dyn 2021; 40:8672-8686. [PMID: 33896392 PMCID: PMC8074653 DOI: 10.1080/07391102.2021.1914168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
The worldwide rapid spread of the COVID-19 disease necessitates the search for fast and effective treatments. The repurposing of existing drugs seems to be the best solution in this situation. In this study, the molecular docking method was used to test 248 drugs against the receptor-binding domain (RBD) of spike glycoprotein of SARS-CoV-2, which is responsible for viral entry into the host cell. Among the top-ranked ligands are drugs that are used for hepatitis C virus (HCV) treatments (paritaprevir, ledipasvir, simeprevir) and a natural biflavonoid amentoflavone. The binding sites of the HCV drugs and amentoflavone are different. Therefore, the ternary complexes of the HCV drug, amentoflavone, and RBD can be created. For the 5 top-ranked ligands, the validating molecular dynamics simulations of binary and ternary complexes with RBD were performed. According to the MMPBSA-binding free energies, the HCV drugs ledipasvir and paritaprevir (in a neutral form) are the most efficient binders of the RBD when used in combination with amentoflavone.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Anna V. Shestopalova
- O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine, Kharkiv, Ukraine
- V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
32
|
Aatif M, Muteeb G, Alsultan A, Alshoaibi A, Khelif BY. Dieckol and Its Derivatives as Potential Inhibitors of SARS-CoV-2 Spike Protein (UK Strain: VUI 202012/01): A Computational Study. Mar Drugs 2021; 19:242. [PMID: 33922914 PMCID: PMC8145291 DOI: 10.3390/md19050242] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The high risk of morbidity and mortality associated with SARS-CoV-2 has accelerated the development of many potential vaccines. However, these vaccines are designed against SARS-CoV-2 isolated in Wuhan, China, and thereby may not be effective against other SARS-CoV-2 variants such as the United Kingdom variant (VUI-202012/01). The UK SARS-CoV-2 variant possesses D614G mutation in the Spike protein, which impart it a high rate of infection. Therefore, newer strategies are warranted to design novel vaccines and drug candidates specifically designed against the mutated forms of SARS-CoV-2. One such strategy is to target ACE2 (angiotensin-converting enzyme2)-Spike protein RBD (receptor binding domain) interaction. Here, we generated a homology model of Spike protein RBD of SARS-CoV-2 UK strain and screened a marine seaweed database employing different computational approaches. On the basis of high-throughput virtual screening, standard precision, and extra precision molecular docking, we identified BE011 (Dieckol) as the most potent compounds against RBD. However, Dieckol did not display drug-like properties, and thus different derivatives of it were generated in silico and evaluated for binding potential and drug-like properties. One Dieckol derivative (DK07) displayed good binding affinity for RBD along with acceptable physicochemical, pharmacokinetic, drug-likeness, and ADMET properties. Analysis of the RBD-DK07 interaction suggested the formation of hydrogen bonds, electrostatic interactions, and hydrophobic interactions with key residues mediating the ACE2-RBD interaction. Molecular dynamics simulation confirmed the stability of the RBD-DK07 complex. Free energy calculations suggested the primary role of electrostatic and Van der Waals' interaction in stabilizing the RBD-DK07 complex. Thus, DK07 may be developed as a potential inhibitor of the RBD-ACE2 interaction. However, these results warrant further validation by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Abdulrahman Alsultan
- Department of Biomedical Sciences, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Bachir Yahia Khelif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
33
|
Palit P, Mukhopadhyay A, Chattopadhyay D. Phyto-pharmacological perspective of Silymarin: A potential prophylactic or therapeutic agent for COVID-19, based on its promising immunomodulatory, anti-coagulant and anti-viral property. Phytother Res 2021; 35:4246-4257. [PMID: 33817867 PMCID: PMC8250558 DOI: 10.1002/ptr.7084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) triggered by a new viral pathogen, named severe acute respiratory syndrome Coronavirus‐2 (SARS‐CoV‐2), is now a global health emergency. This debilitating viral pandemic not only paralyzed the normal daily life of the global community but also spread rapidly via global travel. To date there are no effective vaccines or specific treatments against this highly contagious virus; therefore, there is an urgent need to advocate novel prophylactic or therapeutic interventions for COVID‐19. This brief opinion critically discusses the potential of Silymarin, a flavonolignan with diverse pharmacological activity having antiinflammatory, antioxidant, antiplatelet, and antiviral properties, with versatile immune‐cytokine regulatory functions, that able to bind with transmembrane protease serine 2 (TMPRSS2) and induce endogenous antiviral cytokine interferon‐stimulated gene 15, for the management of COVID‐19. Silymarin inhibits the expression of host cell surface receptor TMPRSS2 with a docking binding energy corresponding to −1,350.61 kcal/mol and a full fitness score of −8.11. The binding affinity of silymarin with an impressive virtual score exhibits significant potential to interfere with SARS‐CoV‐2 replication. We propose in‐depth pre‐clinical and clinical review studies of silymarin for the development of anti‐COVID‐19 lead, based on its clinical manifestations of COVID‐19 and multifaceted bioactivities.
Collapse
Affiliation(s)
- Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | | | - Debprasad Chattopadhyay
- Division of Microbiology & Virology, ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India.,Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, West Bengal, India
| |
Collapse
|
34
|
Patel CN, Goswami D, Jaiswal DG, Parmar RM, Solanki HA, Pandya HA. Pinpointing the potential hits for hindering interaction of SARS-CoV-2 S-protein with ACE2 from the pool of antiviral phytochemicals utilizing molecular docking and molecular dynamics (MD) simulations. J Mol Graph Model 2021; 105:107874. [PMID: 33647752 PMCID: PMC7897937 DOI: 10.1016/j.jmgm.2021.107874] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2, the viral particle, is responsible for triggering the 2019 Coronavirus disease outbreak (COVID-19). To tackle this situation, a number of strategies are being devised to either create an antidote, a vaccine, or agents capable of preventing its infection. To enable research on these strategies, numerous target proteins are identified where Spike (S) protein is presumed to be of immense potential. S-protein interacts with human angiotensin-converting-enzyme-2 (ACE2) for cell entry. The key region of S-protein that interacts with ACE2 is a portion of it designated as a receptor-binding domain (RBD), following whereby the viral membrane fuses with the alveolar membrane to enter the human cell. The proposition is to recognize molecules from the bundle of phytochemicals of medicinal plants known to possess antiviral potentials as a lead that could interact and mask RBD, rendering them unavailable to form ACE2 interactions. Such a molecule is called the 'S-protein blocker'. A total of 110 phytochemicals from Withania somnifera, Asparagus racemosus, Zinziber officinalis, Allium sativum, Curcuma longa and Adhatoda vasica were used in the study, of which Racemoside A, Ashwagandhanolide, Withanoside VI, Withanoside IV and Racemoside C were identified as top five hits using molecular docking. Further, essential Pharmacophore features and their ADMET profiles of these compounds were studied following to which the best three hits were analyzed for their interaction with RBD using Molecular Dynamics (MD) simulation. Binding free energy calculations were performed using MM/GBSA, proving these phytochemicals can serve as S-protein blocker.
Collapse
Affiliation(s)
- Chirag N Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dharmesh G Jaiswal
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Robin M Parmar
- Department of Zoology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Hitesh A Solanki
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Himanshu A Pandya
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
35
|
Targeting the Complement Serine Protease MASP-2 as a Therapeutic Strategy for Coronavirus Infections. Viruses 2021; 13:v13020312. [PMID: 33671334 PMCID: PMC7923061 DOI: 10.3390/v13020312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
MASP-2, mannose-binding protein-associated serine protease 2, is a key enzyme in the lectin pathway of complement activation. Hyperactivation of this protein by human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 has been found to contribute to aberrant complement activation in patients, leading to aggravated lung injury with potentially fatal consequences. This hyperactivation is triggered in the lungs through a conserved, direct interaction between MASP-2 and coronavirus nucleocapsid (N) proteins. Blocking this interaction with monoclonal antibodies and interfering directly with the catalytic activity of MASP-2, have been found to alleviate coronavirus-induced lung injury both in vitro and in vivo. In this study, a virtual library of 8736 licensed drugs and clinical agents has been screened in silico according to two parallel strategies. The first strategy aims at identifying direct inhibitors of MASP-2 catalytic activity, while the second strategy focusses on finding protein-protein interaction inhibitors (PPIs) of MASP-2 and coronaviral N proteins. Such agents could represent promising support treatment options to prevent lung injury and reduce mortality rates of infections caused by both present and future-emerging coronaviruses. Forty-six drug repurposing candidates were purchased and, for the ones selected as potential direct inhibitors of MASP-2, a preliminary in vitro assay was conducted to assess their interference with the lectin pathway of complement activation. Some of the tested agents displayed a dose-response inhibitory activity of the lectin pathway, potentially providing the basis for a viable support strategy to prevent the severe complications of coronavirus infections.
Collapse
|