1
|
Girisa S, Aswani BS, Manickasamy MK, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Restoring FXR expression as a novel treatment strategy in liver cancer and other liver disorders. Expert Opin Ther Targets 2025; 29:193-221. [PMID: 40169227 DOI: 10.1080/14728222.2025.2487465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
INTRODUCTION Liver cancer is a leading cause of cancer-associated mortality and is often linked to preexisting liver conditions. Emerging research demonstrates FXR dysregulation, particularly its reduced expression, in the pathogenesis of liver diseases, including inflammation, fibrosis, cholestatic disorders, metabolic dysregulation, and liver cancer. Therefore, this review explores the role of FXR and its agonists in mitigating these conditions. AREAS COVERED This article summarizes FXR's involvement in liver disorders, primarily emphasizing on hepatic neoplasms, and examines the potential of FXR agonists in restoring FXR activity in liver diseases, thereby preventing their progression to liver cancer. The information presented is drawn from existing preclinical and clinical studies specific to each liver disorder, sourced from PubMed. EXPERT OPINION It is well established that FXR expression is downregulated in liver disorders, contributing to disease progression. Notably, FXR agonists have demonstrated therapeutic potential in ameliorating liver diseases, including hepatocellular carcinoma. We believe that activating or restoring FXR expression with agonists offers significant promise for the treatment of liver cancer and other liver conditions. Therefore, FXR modulation by agonists, particularly in combination with other therapeutic agents, could lead to more targeted treatments, improving efficacy while reducing side effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| |
Collapse
|
2
|
Liu Z, You C. The bile acid profile. Clin Chim Acta 2025; 565:120004. [PMID: 39419312 DOI: 10.1016/j.cca.2024.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
As a large and structurally diverse family of small molecules, bile acids play a crucial role in regulating lipid, glucose, and energy metabolism. In the human body, bile acids share a similar chemical structure with many isomers, exhibit little difference in polarity, and possess various physiological activities. The types and contents of bile acids present in different diseases vary significantly. Therefore, comprehensive and accurate detection of the content of various types of bile acids in different biological samples can not only provide new insights into the pathogenesis of diseases but also facilitate the exploration of novel strategies for disease diagnosis, treatment, and prognosis. The detection of disease-induced changes in bile acid profiles has emerged as a prominent research focus in recent years. Concurrently, targeted metabolomics methods utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) have progressively established themselves as the predominant technology for the separation and detection of bile acids. Bile acid profiles will increasingly play an important role in diagnosis and guidance in the future as the relationship between disease and changes in bile acid profiles becomes clearer. This highlights the growing diagnostic value of bile acid profiles and their potential to guide clinical decision-making. This review aims to explore the significance of bile acid profiles in clinical diagnosis from four perspectives: the synthesis and metabolism of bile acids, techniques for detecting bile acid profiles, changes in bile acid profiles associated with diseases, and the challenges and future prospects of applying bile acid profiles in clinical settings.
Collapse
Affiliation(s)
- Zhenhua Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
3
|
Levy C, Caldwell S, Mantry P, Luketic V, Landis CS, Huang J, Mena E, Maheshwari R, Rank K, Xu J, Malkov VA, Billin AN, Liu X, Lu X, Barchuk WT, Watkins TR, Chung C, Myers RP, Kowdley KV. Cilofexor in Patients With Compensated Cirrhosis Due to Primary Sclerosing Cholangitis: An Open-Label Phase 1B Study. Clin Transl Gastroenterol 2024; 15:e00744. [PMID: 38976363 PMCID: PMC11346858 DOI: 10.14309/ctg.0000000000000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
INTRODUCTION This proof-of-concept, open-label phase 1b study evaluated the safety and efficacy of cilofexor, a potent selective farnesoid X receptor agonist, in patients with compensated cirrhosis due to primary sclerosing cholangitis. METHODS Escalating doses of cilofexor (30 mg [weeks 1-4], 60 mg [weeks 5-8], 100 mg [weeks 9-12]) were administered orally once daily over 12 weeks. The primary endpoint was safety. Exploratory measures included cholestasis and fibrosis markers and pharmacodynamic biomarkers of bile acid homeostasis. RESULTS Eleven patients were enrolled (median age: 48 years; 55% men). The most common treatment-emergent adverse events (TEAEs) were pruritus (8/11 [72.7%]), fatigue, headache, nausea, and upper respiratory tract infection (2/11 [18.2%] each). Seven patients experienced a pruritus TEAE (one grade 3) considered drug-related. One patient temporarily discontinued cilofexor owing to peripheral edema. There were no deaths, serious TEAEs, or TEAEs leading to permanent discontinuation. Median changes (interquartile ranges) from baseline to week 12 (predose, fasting) were -24.8% (-35.7 to -7.4) for alanine transaminase, -13.0% (-21.9 to -8.6) for alkaline phosphatase, -43.5% (-52.1 to -30.8) for γ-glutamyl transferase, -12.7% (-25.0 to 0.0) for total bilirubin, and -21.2% (-40.0 to 0.0) for direct bilirubin. Least-squares mean percentage change (95% confidence interval) from baseline to week 12 at trough was -55.3% (-70.8 to -31.6) for C4 and -60.5% (-81.8 to -14.2) for cholic acid. Fasting fibroblast growth factor 19 levels transiently increased after cilofexor administration. DISCUSSION Escalating doses of cilofexor over 12 weeks were well tolerated and improved cholestasis markers in patients with compensated cirrhosis due to primary sclerosing cholangitis (NCT04060147).
Collapse
Affiliation(s)
- Cynthia Levy
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
- Schiff Center for Liver Diseases, University of Miami, Miami, Florida, USA;
| | - Stephen Caldwell
- University of Virginia School of Medicine, Charlottesville, Virginia, USA;
| | - Parvez Mantry
- Methodist Transplant Specialists, Dallas, Texas, USA;
| | - Velimir Luketic
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA;
| | - Charles S. Landis
- Univerisity of Washington School of Medicine, Seattle, Washington, USA;
| | - Jonathan Huang
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA;
| | - Edward Mena
- Pasadena Liver Center, Pasadena, California, USA;
| | | | - Kevin Rank
- MNGI Digestive Health, Minneapolis, Minnesota, USA;
| | - Jun Xu
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | | - Xiangyu Liu
- Gilead Sciences, Inc., Foster City, California, USA;
| | - Xiaomin Lu
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | | - Chuhan Chung
- Gilead Sciences, Inc., Foster City, California, USA;
| | | | | |
Collapse
|
4
|
Li X, Lu W, Kharitonenkov A, Luo Y. Targeting the FGF19-FGFR4 pathway for cholestatic, metabolic, and cancerous diseases. J Intern Med 2024; 295:292-312. [PMID: 38212977 DOI: 10.1111/joim.13767] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Human fibroblast growth factor 19 (FGF19, or FGF15 in rodents) plays a central role in controlling bile acid (BA) synthesis through a negative feedback mechanism. This process involves a postprandial crosstalk between the BA-activated ileal farnesoid X receptor and the hepatic Klotho beta (KLB) coreceptor complexed with fibrobalst growth factor receptor 4 (FGFR4) kinase. Additionally, FGF19 regulates glucose, lipid, and energy metabolism by coordinating responses from functional KLB and FGFR1-3 receptor complexes on the periphery. Pharmacologically, native FGF19 or its analogs decrease elevated BA levels, fat content, and collateral tissue damage. This makes them effective in treating both cholestatic diseases such as primary biliary or sclerosing cholangitis (PBC or PSC) and metabolic abnormalities such as nonalcoholic steatohepatitis (NASH). However, chronic administration of FGF19 drives oncogenesis in mice by activating the FGFR4-dependent mitogenic or hepatic regenerative pathway, which could be a concern in humans. Agents that block FGF19 or FGFR4 signaling have shown great potency in preventing FGF19-responsive hepatocellular carcinoma (HCC) development in animal models. Recent phase 1/2 clinical trials have demonstrated promising results for several FGF19-based agents in selectively treating patients with PBC, PSC, NASH, or HCC. This review aims to provide an update on the clinical development of both analogs and antagonists targeting the FGF19-FGFR4 signaling pathway for patients with cholestatic, metabolic, and cancer diseases. We will also analyze potential safety and mechanistic concerns that should guide future research and advanced trials.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | | | - Yongde Luo
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Chen S, Shao Q, Chen J, Lv X, Ji J, Liu Y, Song Y. Bile acid signalling and its role in anxiety disorders. Front Endocrinol (Lausanne) 2023; 14:1268865. [PMID: 38075046 PMCID: PMC10710157 DOI: 10.3389/fendo.2023.1268865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Anxiety disorder is a prevalent neuropsychiatric disorder that afflicts 7.3%~28.0% of the world's population. Bile acids are synthesized by hepatocytes and modulate metabolism via farnesoid X receptor (FXR), G protein-coupled receptor (TGR5), etc. These effects are not limited to the gastrointestinal tract but also extend to tissues and organs such as the brain, where they regulate emotional centers and nerves. A rise in serum bile acid levels can promote the interaction between central FXR and TGR5 across the blood-brain barrier or activate intestinal FXR and TGR5 to release fibroblast growth factor 19 (FGF19) and glucagon-like peptide-1 (GLP-1), respectively, which in turn, transmit signals to the brain via these indirect pathways. This review aimed to summarize advancements in the metabolism of bile acids and the physiological functions of their receptors in various tissues, with a specific focus on their regulatory roles in brain function. The contribution of bile acids to anxiety via sending signals to the brain via direct or indirect pathways was also discussed. Different bile acid ligands trigger distinct bile acid signaling cascades, producing diverse downstream effects, and these pathways may be involved in anxiety regulation. Future investigations from the perspective of bile acids are anticipated to lead to novel mechanistic insights and potential therapeutic targets for anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Bowlus CL, Eksteen B, Cheung AC, Thorburn D, Moylan CA, Pockros PJ, Forman LM, Dorenbaum A, Hirschfield GM, Kennedy C, Jaecklin T, McKibben A, Chien E, Baek M, Vig P, Levy C. Safety, tolerability, and efficacy of maralixibat in adults with primary sclerosing cholangitis: Open-label pilot study. Hepatol Commun 2023; 7:02009842-202306010-00003. [PMID: 37184523 DOI: 10.1097/hc9.0000000000000153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/16/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is frequently associated with pruritus, which significantly impairs quality of life. Maralixibat is a selective ileal bile acid transporter (IBAT) inhibitor that lowers circulating bile acid (BA) levels and reduces pruritus in cholestatic liver diseases. This is the first proof-of-concept study of IBAT inhibition in PSC. METHODS This open-label study evaluated the safety and tolerability of maralixibat ≤10 mg/d for 14 weeks in adults with PSC. Measures of pruritus, biomarkers of BA synthesis, cholestasis, and liver function were also assessed. RESULTS Of 27 enrolled participants, 85.2% completed treatment. Gastrointestinal treatment-emergent adverse events (TEAEs) occurred in 81.5%, with diarrhea in 51.9%. TEAEs were mostly mild or moderate (63.0%); 1 serious TEAE (cholangitis) was considered treatment related. Mean serum BA (sBA) levels decreased by 16.7% (-14.84 µmol/L; 95% CI, -27.25 to -2.43; p = 0.0043) by week 14/early termination (ET). In participants with baseline sBA levels above normal (n = 18), mean sBA decreased by 40.0% (-22.3 µmol/L, 95% CI, -40.38 to -4.3; p = 0.004) by week 14/ET. Liver enzyme elevations were not significant; however, increases of unknown clinical significance in conjugated bilirubin levels were observed. ItchRO weekly sum scores decreased from baseline to week 14/ET by 8.4% (p = 0.0495), by 12.6% (p = 0.0275) in 18 participants with pruritus at baseline, and by 70% (p = 0.0078) in 8 participants with ItchRO daily average score ≥3 at baseline. CONCLUSIONS Maralixibat was associated with reduced sBA levels in adults with PSC. In participants with more severe baseline pruritus, pruritus improved significantly from baseline. TEAEs were mostly gastrointestinal related. These results support further investigation of IBAT inhibitors for adults with PSC-associated pruritus. ClinicalTrials.gov: NCT02061540.
Collapse
Affiliation(s)
- Christopher L Bowlus
- Division of Gastroenterology and Hepatology, University of California Davis School of Medicine, Sacramento, California, USA
| | | | - Angela C Cheung
- Division of Gastroenterology, University of Ottawa, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Douglas Thorburn
- Sheila Sherlock Liver Centre, Royal Free Hospital and Institute of Liver and Digestive Health, University College London, Royal Free Campus, Hampstead, London, UK
| | - Cynthia A Moylan
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina, USA
| | - Paul J Pockros
- Scripps Clinic and Scripps Translational Science Institute, La Jolla, California, USA
| | - Lisa M Forman
- Division of Gastroenterology-Hepatology, University of Colorado, Aurora, Colorado, USA
| | | | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Elaine Chien
- Mirum Pharmaceuticals, Foster City, California, USA
| | | | - Pamela Vig
- Mirum Pharmaceuticals, Foster City, California, USA
| | - Cynthia Levy
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
7
|
Braadland PR, Schneider KM, Bergquist A, Molinaro A, Lövgren-Sandblom A, Henricsson M, Karlsen TH, Vesterhus M, Trautwein C, Hov JR, Marschall HU. Suppression of bile acid synthesis as a tipping point in the disease course of primary sclerosing cholangitis. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100561. [PMID: 36176935 PMCID: PMC9513776 DOI: 10.1016/j.jhepr.2022.100561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Background & Aims Farnesoid X receptor (FXR) agonists and fibroblast growth factor 19 (FGF19) analogues suppress bile acid synthesis and are being investigated for their potential therapeutic efficacy in cholestatic liver diseases. We investigated whether bile acid synthesis associated with outcomes in 2 independent populations of people with primary sclerosing cholangitis (PSC) not receiving such therapy. Methods Concentrations of individual bile acids and 7α-hydroxy-4-cholesten-3-one (C4) were measured in blood samples from 330 patients with PSC attending tertiary care hospitals in the discovery and validation cohorts and from 100 healthy donors. We used a predefined multivariable Cox proportional hazards model to evaluate the prognostic value of C4 to predict liver transplantation-free survival and evaluated its performance in the validation cohort. Results The bile acid synthesis marker C4 was negatively associated with total bile acids. Patients with fully suppressed bile acid synthesis had strongly elevated total bile acids and short liver transplantation-free survival. In multivariable models, a 50% reduction in C4 corresponded to increased hazards for liver transplantation or death in both the discovery (adjusted hazard ratio [HR] = 1.24, 95% CI 1.06–1.43) and validation (adjusted HR = 1.23, 95% CI 1.03–1.47) cohorts. Adding C4 to established risk scores added value to predict future events, and predicted survival probabilities were well calibrated externally. There was no discernible impact of ursodeoxycholic acid treatment on bile acid synthesis. Conclusions Bile acid accumulation-associated suppression of bile acid synthesis was apparent in patients with advanced PSC and associated with reduced transplantation-free survival. In a subset of the patients, bile acid synthesis was likely suppressed beyond a tipping point at which any further pharmacological suppression may be futile. Implications for patient stratification and inclusion criteria for clinical trials in PSC warrant further investigation. Lay summary We show, by measuring the level of the metabolite C4 in the blood from patients with primary sclerosing cholangitis (PSC), that low production of bile acids in the liver predicts a more rapid progression to severe disease. Many people with PSC appear to have fully suppressed bile acid production, and both established and new drugs that aim to reduce bile acid production may therefore be futile for them. We propose C4 as a test to find those likely to respond to these treatments. The bile acid synthesis marker C4 associated negatively with bile acid levels in patients with PSC. Suppression of bile acid synthesis was likely nearly complete in advanced PSC. UDCA treatment contributed significantly to total circulating bile acids but did not appear to affect bile acid synthesis. Attempts to inhibit bile acid synthesis in patients with low C4 may be futile, and such drugs may be contraindicated. Patients with PSC and low circulating C4 had shorter liver transplantation-free survival in two independent cohorts.
Collapse
Key Words
- 7α-Hydroxy-4-cholesten-3-one
- AOM, Amsterdam–Oxford model
- ASBT, apical sodium-dependent bile acid cotransporter
- Biliary disease
- C4
- C4, 7α-hydroxy-4-cholesten-3-one
- CYP7A1, cytochrome P450 family 7 subfamily A member 1
- Cholestasis
- Cholestatic liver disease
- FGF19, fibroblast growth factor 19
- FXR, farnesoid X receptor
- GUDCA, glycooursodeoxycholic acid
- HR, hazard ratio
- IBAT, ileal bile acid transporter
- Liver transplantation
- Liver transplantation-free survival
- MELD, model for end-stage liver disease
- PBC, primary biliary cholangitis
- PSC, primary sclerosing cholangitis
- STROBE, Strengthening the Reporting of Observational Studies in Epidemiology
- TUDCA, tauroursodeoxycholic acid
- UDCA, ursodeoxycholic acid
- UPLC-MS/MS, ultraperformance liquid chromatography–tandem mass spectrometry
- Ursodeoxycholic acid
- c-index, concordance index
- liver
Collapse
Affiliation(s)
- Peder Rustøen Braadland
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Kai Markus Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annika Bergquist
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Molinaro
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medicine, Section of Gastroenterology and Hepatology, Sahlgrenska University Hospital Gothenburg, Gothenburg, Sweden
| | | | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tom Hemming Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Mette Vesterhus
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Department of Medicine, Haraldsplass Deaconess Hospital and Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Johannes Roksund Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medicine, Section of Gastroenterology and Hepatology, Sahlgrenska University Hospital Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Schattenberg JM, Pares A, Kowdley KV, Heneghan MA, Caldwell S, Pratt D, Bonder A, Hirschfield GM, Levy C, Vierling J, Jones D, Tailleux A, Staels B, Megnien S, Hanf R, Magrez D, Birman P, Luketic V. A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA. J Hepatol 2021; 74:1344-1354. [PMID: 33484775 DOI: 10.1016/j.jhep.2021.01.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Patients with primary biliary cholangitis (PBC) who have an incomplete response to ursodeoxycholic acid remain at risk of disease progression. We investigated the safety and efficacy of elafibranor, a dual PPARα/δ agonist, in patients with PBC. METHODS This 12-week, double-blind phase II trial enrolled 45 adults with PBC who had incomplete response to ursodeoxycholic acid (alkaline phosphatase levels ≥1.67-fold the upper limit of normal (ULN). Patients were randomly assigned to elafibranor 80 mg, elafibranor 120 mg or placebo. The primary endpoint was the relative change of ALP at 12 weeks (NCT03124108). RESULTS At 12 weeks, ALP was reduced by -48.3±14.8% in the elafibranor 80 mg group (p <0.001 vs. placebo) and by -40.6±17.4% in the elafibranor 120 mg group (p <0.001) compared to a +3.2±14.8% increase in the placebo group. The composite endpoint of ALP ≤1.67-fold the ULN, decrease of ALP >15% and total bilirubin below the ULN was achieved in 67% patients in the elafibranor 80 mg group and 79% patients in the elafibranor 120 mg group, vs. 6.7% patients in the placebo group. Levels of gamma-glutamyltransferase decreased by 37.0±25.5% in the elafibranor 80 mg group (p <0.001) and 40.0±24.1% in the elafibranor 120 mg group (p <0.01) compared to no change (+0.2±26.0%) in the placebo group. Levels of disease markers such as IgM, 5'-nucleotidase or high-sensitivity C-reactive protein were likewise reduced by elafibranor. Pruritus was not induced or exacerbated by elafibranor and patients with pruritus at baseline reported less pruritic symptoms at the end of treatment. All possibly drug-related non-serious adverse events were mild to moderate. CONCLUSION In this randomized phase II trial, elafibranor was generally safe and well tolerated and significantly reduced levels of ALP, composite endpoints of bilirubin and ALP, as well as other markers of disease activity in patients with PBC and an incomplete response to ursodeoxycholic acid. LAY SUMMARY Patients with primary biliary cholangitis (a rare chronic liver disease) that do not respond to standard therapy remain at risk of disease progression toward cirrhosis and impaired quality of life. Elafibranor is a nuclear receptor agonist that we tested in a randomized clinical trial over 12 weeks. It successfully decreased levels of disease activity markers, including alkaline phosphatase. Thus, this study is the foundation for a larger prospective study that will determine the efficacy and safety of this drug as a second-line therapy. CLINICAL TRIAL REGISTRATION NUMBER Clinical Trials.gov NCT03124108.
Collapse
Affiliation(s)
- Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Centre Mainz, Germany.
| | - Albert Pares
- Hospital Clinic, University of Barcelona, CIBERehd, IDIBAPS, Barcelona, Spain
| | | | - Michael A Heneghan
- Institute of Liver Studies, Kings College Hospital, London, United Kingdom
| | | | - Daniel Pratt
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alan Bonder
- Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and University of Toronto, Toronto, Canada
| | - Cynthia Levy
- Division of Hepatology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - David Jones
- Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Anne Tailleux
- Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Remy Hanf
- GENFIT, 885 Avenue Eugene Avinee, 59120, Loos, France
| | - David Magrez
- GENFIT, 885 Avenue Eugene Avinee, 59120, Loos, France
| | - Pascal Birman
- GENFIT, 885 Avenue Eugene Avinee, 59120, Loos, France
| | - Velimir Luketic
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| |
Collapse
|
9
|
Dong XH, Dai D, Yang ZD, Yu XO, Li H, Kang H. S100 calcium binding protein A6 and associated long noncoding ribonucleic acids as biomarkers in the diagnosis and staging of primary biliary cholangitis. World J Gastroenterol 2021; 27:1973-1992. [PMID: 34007134 PMCID: PMC8108032 DOI: 10.3748/wjg.v27.i17.1973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/23/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is a chronic and slowly progressing cholestatic disease, which causes damage to the small intrahepatic bile duct by immuno-regulation, and may lead to cholestasis, liver fibrosis, cirrhosis and, eventually, liver failure.
AIM To explore the potential diagnosis and staging value of plasma S100 calcium binding protein A6 (S100A6) messenger ribonucleic acid (mRNA), LINC00312, LINC00472, and LINC01257 in primary biliary cholangitis.
METHODS A total of 145 PBC patients and 110 healthy controls (HCs) were enrolled. Among them, 80 PBC patients and 60 HCs were used as the training set, and 65 PBC patients and 50 HCs were used as the validation set. The relative expression levels of plasma S100A6 mRNA, long noncoding ribonucleic acids LINC00312, LINC00472 and LINC01257 were analyzed using quantitative reverse transcription-polymerase chain reaction. The bile duct ligation (BDL) mouse model was used to simulate PBC. Then double immunofluorescence was conducted to verify the overexpression of S100A6 protein in intrahepatic bile duct cells of BDL mice. Human intrahepatic biliary epithelial cells were treated with glycochenodeoxycholate to simulate the cholestatic environment of intrahepatic biliary epithelial cells in PBC.
RESULTS The expression of S100A6 protein in intrahepatic bile duct cells was up-regulated in the BDL mouse model compared with sham mice. The relative expression levels of plasma S100A6 mRNA, log10 LINC00472 and LINC01257 were up-regulated while LINC00312 was down-regulated in plasma of PBC patients compared with HCs (3.01 ± 1.04 vs 2.09 ± 0.87, P < 0.0001; 2.46 ± 1.03 vs 1.77 ± 0.84, P < 0.0001; 3.49 ± 1.64 vs 2.37 ± 0.96, P < 0.0001; 1.70 ± 0.33 vs 2.07 ± 0.53, P < 0.0001, respectively). The relative expression levels of S100A6 mRNA, LINC00472 and LINC01257 were up-regulated and LINC00312 was down-regulated in human intrahepatic biliary epithelial cells treated with glycochenodeoxycholate compared with control (2.97 ± 0.43 vs 1.09 ± 0.08, P = 0.0018; 2.70 ± 0.26 vs 1.10 ± 0.10, P = 0.0006; 2.23 ± 0.21 vs 1.10 ± 0.10, P = 0.0011; 1.20 ± 0.04 vs 3.03 ± 0.15, P < 0.0001, respectively). The mean expression of S100A6 in the advanced stage (III and IV) of PBC was up-regulated compared to that in HCs and the early stage (II) (3.38 ± 0.71 vs 2.09 ± 0.87, P < 0.0001; 3.38 ± 0.71 vs 2.57 ± 1.21, P = 0.0003, respectively); and in the early stage (II), it was higher than that in HCs (2.57 ± 1.21 vs 2.09 ± 0.87, P = 0.03). The mean expression of LINC00312 in the advanced stage was lower than that in the early stage and HCs (1.39 ± 0.29 vs 1.56 ± 0.33, P = 0.01; 1.39 ± 0.29 vs 2.07 ± 0.53, P < 0.0001, respectively); in addition, the mean expression of LINC00312 in the early stage was lower than that in HCs (1.56 ± 0.33 vs 2.07 ± 0.53, P < 0.0001). The mean expression of log10 LINC00472 in the advanced stage was higher than those in the early stage and HCs (2.99 ± 0.87 vs 1.81 ± 0.83, P < 0.0001; 2.99 ± 0.87 vs 1.77 ± 0.84, P < 0.0001, respectively). The mean expression of LINC01257 in both the early stage and advanced stage were up-regulated compared with HCs (3.88 ± 1.55 vs 2.37 ± 0.96, P < 0.0001; 3.57 ± 1.79 vs 2.37 ± 0.96, P < 0.0001, respectively). The areas under the curves (AUC) for S100A6, LINC00312, log10 LINC00472 and LINC01257 in PBC diagnosis were 0.759, 0.7292, 0.6942 and 0.7158, respectively. Furthermore, the AUC for these four genes in PBC staging were 0.666, 0.661, 0.839 and 0.5549, respectively. The expression levels of S100A6 mRNA, log10 LINC00472, and LINC01257 in plasma of PBC patients were decreased (2.35 ± 1.02 vs 3.06 ± 1.04, P = 0.0018; 1.99 ± 0.83 vs 2.33 ± 0.96, P = 0.036; 2.84 ± 0.92 vs 3.69 ± 1.54, P = 0.0006), and the expression level of LINC00312 was increased (1.95 ± 0.35 vs 1.73 ± 0.32, P = 0.0007) after treatment compared with before treatment using the paired t-test. Relative expression of S100A6 mRNA was positively correlated with log10 LINC00472 (r = 0.683, P < 0.0001); serum level of collagen type IV was positively correlated with the relative expression of log10 LINC00472 (r = 0.482, P < 0.0001); relative expression of S100A6 mRNA was positively correlated with the serum level of collagen type IV (r = 0.732, P < 0.0001). The AUC for the four biomarkers obtained in the validation set were close to the training set.
CONCLUSION These four genes may potentially act as novel biomarkers for the diagnosis of PBC. Moreover, LINC00472 acts as a potential biomarker for staging in PBC.
Collapse
Affiliation(s)
- Xi-Hua Dong
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Di Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Zhi-Dong Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiao-Ou Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hua Li
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hui Kang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
10
|
Trauner M. Effective medical treatments for PSC needed ASAP - is AESOP the answer? J Hepatol 2020; 73:12-14. [PMID: 32482353 DOI: 10.1016/j.jhep.2020.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/04/2022]
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Dong X, Yu X, Li H, Kang H. Identification of Marker Genes and Pathways in Patients with Primary Biliary Cholangitis. J Comput Biol 2019; 27:923-933. [PMID: 31638426 DOI: 10.1089/cmb.2019.0230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by cholestasis and cirrhosis, and in which hepatic failure may occur. This study explores the changes in the gene expression profiles of liver tissues during the pathogenesis of PBC. Array dataset GSE79850 was downloaded from the Gene Expression Omnibus database. GeneSpring software was used to analyze differentially expressed genes (DEGs) in liver tissues from PBC patients compared with those from controls. Gene ontology (GO) annotation, the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway enrichment analyses were performed by using Database for Annotation, Visualization and Integrated Discovery (DAVID) software. Cytoscape software was used to construct a protein-protein interaction (PPI) network. Plug-ins Molecular Complex Detection and iRegulon were used for clustering analysis and transcription factors related to key genes with PBC. A total of 77 DEGs, including 47 up- and 30 downregulated genes, were identified. The PPI network was established with 74 nodes and 356 protein pairs. The C-C motif chemokine ligand 5 (CCL5), interleukin 7 receptor (IL7R), and TNF receptor superfamily member 1A (TNFRSF1A) were identified as hub genes in the PPI network and may, therefore, be marker genes for PBC. Further, the upregulated genes CCL5 and IL7R, and downregulated TNFRSF1A were included in immune system processes as a GO term in the category Biological Processes. In conclusion, CCL5, IL7R, TNFRSF1A, and the immune response pathway may have crucial roles in PBC. These genes and pathways may be potential targets for treating PBC.
Collapse
Affiliation(s)
- Xihua Dong
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoou Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hua Li
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Kang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
van Nierop FS, Meessen ECE, Nelissen KGM, Achterbergh R, Lammers LA, Vaz FM, Mathôt RAA, Klümpen HJ, Olde Damink SW, Schaap FG, Romijn JA, Kemper EM, Soeters MR. Differential effects of a 40-hour fast and bile acid supplementation on human GLP-1 and FGF19 responses. Am J Physiol Endocrinol Metab 2019; 317:E494-E502. [PMID: 31237451 DOI: 10.1152/ajpendo.00534.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile acids, glucagon-like peptide-1 (GLP-1), and fibroblast growth factor 19 (FGF19) play an important role in postprandial metabolism. In this study, we investigated the postprandial bile acid response in plasma and its relation to insulin, GLP-1, and FGF19. First, we investigated the postprandial response to 40-h fast. Then we administered glycine-conjugated deoxycholic acid (gDCA) with the meal. We performed two separate observational randomized crossover studies on healthy, lean men. In experiment 1: we tested 4-h mixed meal after an overnight fast and a 40-h fast. In experiment 2, we tested a 4-h mixed meal test with and without gDCA supplementation. Both studies measured postprandial glucose, insulin, bile acids, GLP-1, and FGF19. In experiment 1, 40 h of fasting induced insulin resistance and increased postprandial GLP-1 and FGF19 concentrations. After an overnight fast, we observed strong correlations between postprandial insulin and gDCA levels at specific time points. In experiment 2, administration of gDCA increased GLP-1 levels and lowered late postprandial glucose without effect on FGF19. Energy expenditure was not affected by gDCA administration. Unexpectedly, 40 h of fasting increased both GLP-1 and FGF19, where the former appeared bile acid independent and the latter bile acid dependent. Second, a single dose of gDCA increased postprandial GLP-1. Therefore, our data add complexity to the physiological regulation of the enterokines GLP-1 and FGF19 by bile acids.
Collapse
Affiliation(s)
- F Samuel van Nierop
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Emma C E Meessen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Kyra G M Nelissen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Roos Achterbergh
- Department of Internal Medicine, Amsterdam University Medical Centers, The Netherlands
| | - Laureen A Lammers
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Frédéric M Vaz
- Department of Clinical Chemistry, Amsterdam University Medical Centers, The Netherlands
| | - Ron A A Mathôt
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, The Netherlands
| | - Steven W Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Johannes A Romijn
- Department of Internal Medicine, Amsterdam University Medical Centers, The Netherlands
| | - E Marleen Kemper
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
13
|
Tabibian JH, Lindor KD. NGM282, an FGF19 analogue, in primary sclerosing cholangitis: A nebulous matter. J Hepatol 2019; 70:348-350. [PMID: 30626486 DOI: 10.1016/j.jhep.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Affiliation(s)
- James H Tabibian
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA
| | - Keith D Lindor
- Professor of Medicine and Senior Advisor to the Provost, College of Health Solutions, Arizona State University, Phoenix, AZ, USA.
| |
Collapse
|
14
|
Hirschfield GM, Chazouillères O, Drenth JP, Thorburn D, Harrison SA, Landis CS, Mayo MJ, Muir AJ, Trotter JF, Leeming DJ, Karsdal MA, Jaros MJ, Ling L, Kim KH, Rossi SJ, Somaratne RM, DePaoli AM, Beuers U. Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: A multicenter, randomized, double-blind, placebo-controlled phase II trial. J Hepatol 2019; 70:483-493. [PMID: 30414864 DOI: 10.1016/j.jhep.2018.10.035] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/09/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is an inflammatory, cholestatic and progressively fibrotic liver disease devoid of effective medical intervention. NGM282, an engineered, non-tumorigenic FGF19 analogue, potently regulates CYP7A1-mediated bile acid homeostasis. We assessed the activity and safety of NGM282 in patients with PSC. METHODS In this double-blind, placebo-controlled phase II trial, 62 patients who had PSC confirmed by cholangiography or biopsy and an elevated alkaline phosphatase (ALP) >1.5 × the upper limit of normal were randomly assigned 1:1:1 to receive NGM282 1 mg, 3 mg or placebo once daily for 12 weeks. The primary outcome was the change in ALP from baseline to week 12. Secondary and exploratory outcomes included changes in serum biomarkers of bile acid metabolism and fibrosis. Efficacy analysis was by intention-to-treat. RESULTS At 12 weeks, there were no significant differences in the mean change from baseline in ALP between the NGM282 and placebo groups, and therefore, the primary endpoint was not met. However, NGM282 significantly reduced levels of 7alpha-hydroxy-4-cholesten-3-one (a marker of hepatic CYP7A1 activity, LS mean differences -6.2 ng/ml (95% CI -10.7 to -1.7; p = 0.008) and -9.4 ng/ml (-14.0 to -4.9; p <0.001) in the NGM282 1 mg and 3 mg groups, respectively, compared with placebo) and bile acids. Importantly, fibrosis biomarkers that predict transplant-free survival, including Enhanced Liver Fibrosis score and Pro-C3, were significantly improved following NGM282 treatment. Most adverse events were mild to moderate in severity, with gastrointestinal symptoms more frequent in the NGM282 treatment groups. CONCLUSIONS In patients with PSC, NGM282 potently inhibited bile acid synthesis and decreased fibrosis markers, without significantly affecting ALP levels. LAY SUMMARY We present for the first time, the clinical and laboratory effects of a first-in-class, engineered analogue of the endocrine hormone FGF19 in patients with primary sclerosing cholangitis (PSC). By incorporating non-invasive markers of fibrosis, beyond standard liver injury markers, we show that NGM282 impacted on fibrosis turnover and hepatic inflammation without changing alkaline phosphatase. Our findings demonstrate the complexities of using highly potent rational agents in PSC, and furthermore challenge the dogma about what the appropriate endpoints should be for trials in PSC.
Collapse
Affiliation(s)
- Gideon M Hirschfield
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, United Kingdom; University Hospitals Birmingham, Birmingham, United Kingdom; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Canada.
| | - Olivier Chazouillères
- Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, Hepatology and Gastroenterology Department, Saint-Antoine University Hospital, Assistance Publique-Hopitaux de Paris, and INSERM UMR S938, Sorbonne University, Paris, France
| | - Joost P Drenth
- Department of Gastroenterology and Hepatology, Radboud UMC, Nijmegen, the Netherlands
| | - Douglas Thorburn
- Sheila Sherlock Liver Centre and UCL Institute of Liver and Digestive Health, Royal Free Hospital, London, United Kingdom
| | | | - Charles S Landis
- Division of Gastroenterology and Hepatology, University of Washington, Seattle, United States
| | - Marlyn J Mayo
- University Texas Southwestern Medical Center, Dallas, United States
| | - Andrew J Muir
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, United States
| | - James F Trotter
- Texas Digestive Disease Consultants, Clinical Research, Southlake, United States
| | | | | | | | - Lei Ling
- NGM Biopharmaceuticals, South San Francisco, United States
| | - Kathline H Kim
- NGM Biopharmaceuticals, South San Francisco, United States
| | | | | | - Alex M DePaoli
- NGM Biopharmaceuticals, South San Francisco, United States
| | - Ulrich Beuers
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Somm E, Jornayvaz FR. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev 2018; 39:960-989. [PMID: 30124818 DOI: 10.1210/er.2018-00134] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Discovered 20 years ago, fibroblast growth factor (FGF)19, and its mouse ortholog FGF15, were the first members of a new subfamily of FGFs able to act as hormones. During fetal life, FGF15/19 is involved in organogenesis, affecting the development of the ear, eye, heart, and brain. At adulthood, FGF15/19 is mainly produced by the ileum, acting on the liver to repress hepatic bile acid synthesis and promote postprandial nutrient partitioning. In rodents, pharmacologic doses of FGF19 induce the same antiobesity and antidiabetic actions as FGF21, with these metabolic effects being partly mediated by the brain. However, activation of hepatocyte proliferation by FGF19 has long been a challenge to its therapeutic use. Recently, genetic reengineering of the molecule has resolved this issue. Despite a global overlap in expression pattern and function, murine FGF15 and human FGF19 exhibit several differences in terms of regulation, molecular structure, signaling, and biological properties. As most of the knowledge originates from the use of FGF19 in murine models, differences between mice and humans in the biology of FGF15/19 have to be considered for a successful translation from bench to bedside. This review summarizes the basic knowledge concerning FGF15/19 in mice and humans, with a special focus on regulation of production, morphogenic properties, hepatocyte growth, bile acid homeostasis, as well as actions on glucose, lipid, and energy homeostasis. Moreover, implications and therapeutic perspectives concerning FGF19 in human diseases (including obesity, type 2 diabetes, hepatic steatosis, biliary disorders, and cancer) are also discussed.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
16
|
Ciocan D, Voican CS, Wrzosek L, Hugot C, Rainteau D, Humbert L, Cassard AM, Perlemuter G. Bile acid homeostasis and intestinal dysbiosis in alcoholic hepatitis. Aliment Pharmacol Ther 2018; 48:961-974. [PMID: 30144108 DOI: 10.1111/apt.14949] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/25/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intestinal microbiota plays an important role in bile acid homeostasis. AIM To study the structure of the intestinal microbiota and its function in bile acid homeostasis in alcoholic patients based on the severity of alcoholic liver disease. METHODS In this prospective study, we included four groups of active alcoholic patients (N = 108): two noncirrhotic, with (noCir_AH, n = 13) or without alcoholic hepatitis (noCir_noAH, n = 61), and two cirrhotic, with (Cir_sAH, n = 17) or without severe alcoholic hepatitis (Cir_noAH, n = 17). Plasma and faecal bile acid profiles and intestinal microbiota composition were assessed. RESULTS Plasma levels of total bile acids (84.6 vs 6.8 μmol/L, P < 0.001) and total ursodeoxycholic acid (1.3 vs 0.3 μmol/L, P = 0.03) were higher in cirrhosis with severe alcoholic hepatitis (Cir_sAH) than Cir_noAH, whereas total faecal (2.4 vs 11.3, P = 0.01) and secondary bile acids (0.7 vs 10.7, P < 0.01) levels were lower. Cir_sAH patients had a different microbiota than Cir_noAH patients: at the phyla level, the abundance of Actinobacteria (9 vs 1%, P = 0.01) was higher and that of Bacteroidetes was lower (25 vs 40%, P = 0.04). Moreover, the microbiota of Cir_sAH patients showed changes in the abundance of genes involved in 15 metabolic pathways, including upregulation of glutathione metabolism, and downregulation of biotin metabolism. CONCLUSIONS Patients with Cir_sAH show specific changes of the bile acid pool with a shift towards more hydrophobic and toxic species that may be responsible for the specific microbiota changes. Conversely, the microbiota may also alter the bile acid pool by transforming primary to secondary bile acids, leading to a vicious cycle.
Collapse
Affiliation(s)
- Dragos Ciocan
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France
| | - Cosmin Sebastian Voican
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Laura Wrzosek
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Cindy Hugot
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France
| | - Dominique Rainteau
- UPMC Université Paris 6, Sorbonne Universités, Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France.,UMR 7203, Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France.,Département PM2 Plateforme de Métabolomique, APHP, Hôpital Saint Antoine, Peptidomique et dosage de Médicaments, Paris, France
| | - Lydie Humbert
- UPMC Université Paris 6, Sorbonne Universités, Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France.,UMR 7203, Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France
| | - Anne-Marie Cassard
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France
| | - Gabriel Perlemuter
- Inflammation Chimiokines et Immunopathologie, DHU Hepatinov, Faculté de Médecine-Université Paris-Sud/Université Paris-Saclay, INSERM, UMR-S 996, Clamart, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| |
Collapse
|
17
|
Tietz-Bogert PS, Kim M, Cheung A, Tabibian JH, Heimbach JK, Rosen CB, Nandakumar M, Lazaridis KN, LaRusso NF, Sung J, O'Hara SP. Metabolomic Profiling of Portal Blood and Bile Reveals Metabolic Signatures of Primary Sclerosing Cholangitis. Int J Mol Sci 2018; 19:3188. [PMID: 30332763 PMCID: PMC6214107 DOI: 10.3390/ijms19103188] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 02/08/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a pathogenically complex, chronic, fibroinflammatory disorder of the bile ducts without known etiology or effective pharmacotherapy. Emerging in vitro and in vivo evidence support fundamental pathophysiologic mechanisms in PSC centered on enterohepatic circulation. To date, no studies have specifically interrogated the chemical footprint of enterohepatic circulation in PSC. Herein, we evaluated the metabolome and lipidome of portal venous blood and bile obtained at the time of liver transplantation in patients with PSC (n = 7) as compared to individuals with noncholestatic, end-stage liver disease (viral, metabolic, etc. (disease control, DC, n = 19)) and to nondisease controls (NC, living donors, n = 12). Global metabolomic and lipidomic profiling was performed on serum derived from portal venous blood (portal serum) and bile using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and differential mobility spectroscopy-mass spectroscopy (DMS-MS; complex lipid platform). The Mann⁻Whitney U test was used to identify metabolites that significantly differed between groups. Principal-component analysis (PCA) showed significant separation of both PSC and DC from NC for both portal serum and bile. Metabolite set enrichment analysis of portal serum and bile demonstrated that the liver-disease cohorts (PSC and DC) exhibited similar enrichment in several metabolite categories compared to NC. Interestingly, the bile in PSC was uniquely enriched for dipeptide and polyamine metabolites. Finally, analysis of patient-matched portal serum and biliary metabolome revealed that these biological fluids were more homogeneous in PSC than in DC or NC, suggesting aberrant bile formation and enterohepatic circulation. In summary, PSC and DC patients exhibited alterations in several metabolites in portal serum and bile, while PSC patients exhibited a unique bile metabolome. These specific alterations in PSC are amenable to hypothesis testing and, potentially, therapeutic pharmacologic manipulation.
Collapse
Affiliation(s)
- Pamela S Tietz-Bogert
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Minsuk Kim
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Angela Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - James H Tabibian
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA 91342, USA.
| | - Julie K Heimbach
- Division of Transplant Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Charles B Rosen
- Division of Transplant Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | - Konstantinos N Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Alvarez-Sola G, Uriarte I, Latasa MU, Jimenez M, Barcena-Varela M, Santamaría E, Urtasun R, Rodriguez-Ortigosa C, Prieto J, Berraondo P, Fernandez-Barrena MG, Berasain C, Avila MA. Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1326-1334. [PMID: 28709961 DOI: 10.1016/j.bbadis.2017.06.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
The liver has an extraordinary regenerative capacity rapidly triggered upon injury or resection. This response is intrinsically adjusted in its initiation and termination, a property termed the "hepatostat". Several molecules have been involved in liver regeneration, and among them bile acids may play a central role. Intrahepatic levels of bile acids rapidly increase after resection. Through the activation of farnesoid X receptor (FXR), bile acids regulate their hepatic metabolism and also promote hepatocellular proliferation. FXR is also expressed in enterocytes, where bile acids stimulate the expression of fibroblast growth factor 15/19 (FGF15/19), which is released to the portal blood. Through the activation of FGFR4 on hepatocytes FGF15/19 regulates bile acids synthesis and finely tunes liver regeneration as part of the "hepatostat". Here we review the experimental evidences supporting the relevance of the FXR-FGF15/19-FGFR4 axis in liver regeneration and discuss potential therapeutic applications of FGF15/19 in the prevention of liver failure. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Gloria Alvarez-Sola
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain
| | - Iker Uriarte
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain
| | - Maria U Latasa
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Maddalen Jimenez
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Marina Barcena-Varela
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Eva Santamaría
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain
| | - Raquel Urtasun
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Carlos Rodriguez-Ortigosa
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Jesús Prieto
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Immunology and Immunotherapy Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Maite G Fernandez-Barrena
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain
| | - Carmen Berasain
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain.
| | - Matías A Avila
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda. Pio XII, n 36, 31008 Pamplona, Spain; Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008 Pamplona, Spain.
| |
Collapse
|
19
|
Borup C, Wildt S, Rumessen JJ, Bouchelouche PN, Graff J, Damgaard M, McQuitty C, Rainteau D, Munck LK. Chenodeoxycholic acid stimulated fibroblast growth factor 19 response - a potential biochemical test for bile acid diarrhoea. Aliment Pharmacol Ther 2017; 45:1433-1442. [PMID: 28378364 DOI: 10.1111/apt.14056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/01/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bile acid diarrhoea is underdiagnosed and better diagnostic tests are needed. Fasting serum fibroblast growth factor-19 (FGF19) has insufficient diagnostic value, but this may be improved by stimulation. AIM To explore if an impaired FGF19 response identifies primary bile acid diarrhoea. METHODS Eight patients with primary bile acid diarrhoea and eight healthy volunteers ingested (i) a meal plus 1250 mg chenodeoxycholic acid (CDCA), (ii) 1250 mg CDCA or (iii) the meal. Blood was sampled at fasting and repeatedly after stimulation. We analysed FGF19 by enzyme-linked immunosorbent assay and bile acids including 7α-hydroxy-4-cholesten-3-one by liquid chromatography-tandem mass spectrometry. RESULTS Stimulation with the meal plus CDCA increased median FGF19 in healthy volunteers from fasting 62 pg/mL [interquartile range (IQR): 41-138] to 99 pg/mL (IQR: 67-147; P = 0.012) after 90 min and peaked after 150 min at 313 pg/mL (IQR: 54-512). This response was impaired in primary bile acid diarrhoea patients [fasting 56 pg/mL (IQR: 42-79); 90 min: 48 pg/mL [IQR: 37-63); 150 min: 57 pg/mL (48-198)]. Receiver operating characteristics (ROCAUC ) for fasting FGF19 was 0.55 (P = 0.75) and at 90 min 0.84 (P = 0.02). The difference in FGF19 from fasting to 90 min after the meal plus CDCA separated the groups (ROCAUC 1.0; P = 0.001). 7α-hydroxy-4-cholesten-3-one was elevated in primary bile acid diarrhoea (P = 0.038) and not significantly affected by stimulation. CONCLUSIONS The FGF19 response following chenodeoxycholic acid plus meal is impaired in primary bile acid diarrhoea. This may provide a biochemical diagnostic test.
Collapse
Affiliation(s)
- C Borup
- Department of Internal Medicine, Zealand University Hospital, Køge, Denmark
| | - S Wildt
- Department of Internal Medicine, Zealand University Hospital, Køge, Denmark.,Faculty of Health and Human Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J J Rumessen
- Research Unit, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - P N Bouchelouche
- Department of Clinical Biochemistry, Zealand University Hospital, Køge, Denmark
| | - J Graff
- Department of Clinical Physiology and Nuclear Medicine, Hvidovre Hospital, Hvidovre, Denmark
| | - M Damgaard
- Department of Clinical Physiology and Nuclear Medicine, Hvidovre Hospital, Hvidovre, Denmark.,Department of Clinical Physiology and Nuclear Medicine, Zealand University Hospital, Køge, Denmark
| | - C McQuitty
- Sorbonne Universités, UPMC Univ Paris 06, Paris-France INSERM-ERL 1157 CNRS UMR 7203 LBM, CHU Saint-Antoine 27, Paris, France
| | - D Rainteau
- Sorbonne Universités, UPMC Univ Paris 06, Paris-France INSERM-ERL 1157 CNRS UMR 7203 LBM, CHU Saint-Antoine 27, Paris, France
| | - L K Munck
- Department of Internal Medicine, Zealand University Hospital, Køge, Denmark.,Faculty of Health and Human Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|