1
|
Zhang W, Xu Y, Fang Y, Li M, Li D, Guo H, Li H, He J, Miao L. Ubiquitination in lipid metabolism reprogramming: implications for pediatric solid tumors. Front Immunol 2025; 16:1554311. [PMID: 40370434 PMCID: PMC12075147 DOI: 10.3389/fimmu.2025.1554311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Pediatric solid tumors represent a significant subset of childhood cancers, accounting for approximately 60% of new diagnoses. Despite advancements in therapeutic strategies, survival rates remain markedly disparate between high-income and resource-limited settings, underscoring the urgent need for novel and effective treatments. Lipid metabolic reprogramming is a fundamental hallmark of cancer, driving tumor progression, therapeutic resistance, and immune evasion through enhanced fatty acid uptake, increased de novo lipid synthesis, and activated fatty acid β-oxidation (FAO). Ubiquitination, a dynamic post-translational modification mediated by the ubiquitin-proteasome system (UPS), plays a crucial role in regulating lipid metabolism by modulating the stability and activity of key metabolic enzymes and transporters involved in cholesterol and fatty acid pathways. This review comprehensively examines the complex interplay between ubiquitination and lipid metabolic reprogramming in pediatric solid tumors. It delineates the mechanisms by which ubiquitination influences cholesterol biosynthesis, uptake, efflux, and fatty acid synthesis and oxidation, thereby facilitating tumor growth and survival. Furthermore, the review identifies potential UPS-mediated therapeutic targets and explores the feasibility of integrating ubiquitination-based strategies with existing treatments. By targeting the UPS to disrupt lipid metabolism pathways, novel therapeutic avenues may emerge to enhance treatment efficacy and overcome resistance in pediatric oncology. This synthesis of current knowledge aims to provide a foundation for the development of innovative, precision medicine approaches to improve clinical outcomes for children afflicted with solid tumors.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yile Xu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yingjin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hang Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Tylicka M, Matuszczak E, Kamińska J, Modzelewska B, Koper-Lenkiewicz OM. Proteasomes and Ubiquitin C-Terminal Hydrolase L1 as Biomarkers of Tissue Damage and Inflammatory Response to Different Types of Injury-A Short Review. Life (Basel) 2025; 15:413. [PMID: 40141757 PMCID: PMC11944130 DOI: 10.3390/life15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The proteasomal system of protein degradation is crucial for various cellular processes, including transduction of signals and differentiation of cells. Proteasome activity rises after various traumatic stressors such as hyperoxia, radiation, or oxidative damage. Removal of damaged proteins is essential to provide the necessary conditions for cell repair. Several studies report the activation of the proteasomal degradation system after thermal injury, CNS injury, abdominal trauma, ischemia-reperfusion injury, and possible clinical implications of the use of proteasome inhibitors. It is important to highlight the distinct and crucial roles of UCHL1, 26S, and 20S proteasome subunits as biomarkers. UCHL1 appears to be particularly relevant for identifying brain and neuronal damage and in advancing the diagnosis and prognosis of traumatic brain injury (TBI) and other neurological conditions. Meanwhile, the 26S and 20S proteasomes may serve as markers for peripheral tissue damage. This differentiation enhances our understanding and ability to target specific types of tissue damage in clinical settings.
Collapse
Affiliation(s)
- Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (J.K.); (O.M.K.-L.)
| | - Beata Modzelewska
- Department of Biophysics, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (J.K.); (O.M.K.-L.)
| |
Collapse
|
3
|
Mousavi S, Nouri S, Sadeghipour A, Atashi A. Tumor microenvironment as a novel therapeutic target for lymphoid leukemias. Ann Hematol 2025; 104:1367-1386. [PMID: 39994019 PMCID: PMC12031866 DOI: 10.1007/s00277-025-06237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Lymphoid leukemias represent a significant global health burden, leading to substantial morbidity and mortality. The intricate interplay between leukemic cells and their surrounding tumor microenvironment (TME) is pivotal in disease initiation, progression, and therapeutic resistance. Comprising a dynamic milieu of stromal, immune, and leukemic cell populations, the TME orchestrates a complex network of signaling pathways and molecular interactions that foster leukemic cell survival and proliferation while evading immune surveillance. The crosstalk between these diverse cellular components within the TME not only fuels tumor progression but also confers resistance to conventional therapies, including the development of multi-drug resistance (MDR). Recognizing the pivotal role of the TME in shaping disease outcomes, novel therapeutic approaches targeting this dynamic ecosystem have emerged as promising strategies to complement existing anti-leukemic treatments. As a result, drugs that target the TME have been developed as complementary strategies to those that directly attack tumor cells. Thus, a detailed understanding of the TME components and their interactions with tumor cells is critical. Such knowledge can guide the design and implementation of novel targeted therapies for lymphoid leukemias.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Soheil Nouri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Amir Atashi
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
4
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Mirzaei Z, Zarei S, Sayadi A, Hosseiniara R, Karimabad MN, Mahmoodi M. Combination effects of Pistachio hull and carfilzomib on NF-κB p65, MDR1, MRP1, and Caspase3 gene expression in breast cancer cell line. BMC Complement Med Ther 2025; 25:15. [PMID: 39844241 PMCID: PMC11752740 DOI: 10.1186/s12906-024-04716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the synergistic effects of the chemotherapy drug Carfilzomib (CFZ) and Pistachio hull extract on the SK-BR3 breast cancer cell line. METHODS In this experimental study, we evaluated the effect of Pistachio hull extract and CFZ as standalone treatments on cell viability using the MTT assay at 24- and 48-hours post-treatment. Following this, we conducted combination therapy analyses to assess the potential synergistic relationship between Pistachio hull extract and CFZ after 24- and 48-hours of treatment on both the SK-BR3 breast cancer cell line and the MCF10A normal cell line. We utilized real-time PCR to measure the expression levels of MDR1, MRP1, NF-κB p65, and Caspase3 genes. Additionally, the NF-κB p65 transcription factor was evaluated using ELISA after 24- and 48-hours. RESULTS The MTT assay revealed IC50 values of 2.014 mg/mL and 1.031 mg/mL in the SK-BR3 cell line, and 3.265 mg/mL and 2.994 mg/mL in the MCF10A cell line at 24- and 48-hours post-treatment with Pistachio hull extract. CFZ concentrations of 0.181 × 10- 3 mg/mL and 0.0057 × 10- 3 mg/mL in the SK-BR3 cell line, as well as 5.54 × 10- 3 mg/mL and 2.51 × 10- 3 mg/mL in the MCF10A cell line, inhibited growth by up to 50%. The analysis of combination therapy indicated a synergistic effect between the two treatments after both 24- and 48-hours of exposure. Real-time PCR results demonstrated significant alterations in the expression of MDR1, MRP1, NF-κB p65, and Caspase3 genes, along with changes in NF-κB p65 protein levels in both cell lines following treatment with Pistachio hull extract, CFZ, or their combination compared to the control group (p < 0.05). CONCLUSION The findings highlight the effectiveness of CFZ as a proteasome inhibitor when used in conjunction with Pistachio hull extract in breast cancer cell lines. Therefore, both CFZ and Pistachio hull extract, whether administered alone or in combination, represent promising molecular targets for breast cancer treatment.
Collapse
Affiliation(s)
- Zahra Mirzaei
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmadreza Sayadi
- Department of Psychiatric Nursing, School of Nursing and Midwifery, Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Hosseiniara
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Bagde PH, Kandpal M, Rani A, Kumar S, Mishra A, Jha HC. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J Cell Biochem 2025; 126:e70000. [PMID: 39887732 DOI: 10.1002/jcb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target. Notably, compared to healthy cells, cancer cells have a higher protein homeostasis requirement and a faster protein turnover rate. The ubiquitin-proteasome system (UPS) helps cancer cells increase rapidly and experience less apoptotic cell death. Therefore, understanding UPS is essential to design and discover some effective inhibitors for cancer therapy. Hereby, we have focused on the role of the 26S proteasome complex, mainly the UPS, in carcinogenesis and seeking potential therapeutic targets in treating numerous cancers.
Collapse
Affiliation(s)
- Pranit Hemant Bagde
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
8
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Karmakar S, Lal G, Kumar A, Bhattacharyya S, Poluri KM, Mishra A. Ketorolac disturbs proteasome functions and induces mitochondrial abnormality-associated apoptosis. IUBMB Life 2025; 77:e2937. [PMID: 39723629 DOI: 10.1002/iub.2937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are recommended to treat moderate-to-severe pain. Previous studies suggest that NSAIDs can suppress cellular proliferation and elevate apoptosis in different cancer cells. Ketorolac is an NSAID and can reduce the cancer cells' viability. However, molecular mechanisms by which Ketorolac can induce apoptosis and be helpful as an anti-tumor agent against carcinogenesis are unclear. Here, we observed treatment with Ketorolac disturbs proteasome functions, which induces aggregation of aberrant ubiquitinated proteins. Ketorolac exposure also induced the aggregation of expanded polyglutamine proteins, results cellular proteostasis disturbance. We found that the treatment of Ketorolac aggravates the accumulation of various cell cycle-linked proteins, which results in pro-apoptotic induction in cells. Ketorolac-mediated proteasome disturbance leads to mitochondrial abnormalities. Finally, we have observed that Ketorolac treatment depolarized mitochondrial membrane potential, released cytochrome c into cytoplasm, and induced apoptosis in cells, which could be due to proteasome functional depletion. Perhaps more in-depth research is required to understand the details of NSAID-based anti-proliferative molecular mechanisms that can elevate apoptosis in cancer cells and generate anti-tumor potential with the combination of putative cancer drugs.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Surojit Karmakar
- National Centre for Cell Science (NCCS), Pune, Maharashtra, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Pune, Maharashtra, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
9
|
Uthumange SS, Liew AJH, Chee XW, Yeong KY. Ringing medicinal chemistry: The importance of 3-membered rings in drug discovery. Bioorg Med Chem 2024; 116:117980. [PMID: 39536361 DOI: 10.1016/j.bmc.2024.117980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Scaffold-based drug design has become increasingly prominent in the pharmaceutical field due to the systematic and effective approach through which it facilitates the development of novel drugs. The identification of key scaffolds provides medicinal chemists with a fundamental framework for subsequent research. With mounting evidence suggesting that increased aromaticity could impede the chances of developmental success for oral drug candidates, there is an imperative need for a more thorough exploration of alternative ring systems to mitigate attrition risks. The unique characteristics exhibited by three-membered rings have led to their application in medicinal chemistry. This review explores the use of cyclopropane-, aziridine-, thiirane-, and epoxide-containing compounds in drug discovery, focusing on their roles in approved medicines and drug candidates. Specifically, the importance of the three-membered ring systems in rending biological activity for each drug molecule was highlighted. The undeniable therapeutic value and intriguing features presented by these compounds suggest significant pharmacological potential, providing justification for their incorporation into the design of novel drug candidates.
Collapse
Affiliation(s)
- Sahani Sandalima Uthumange
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Angie Jun Hui Liew
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Xavier Wezen Chee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia.
| |
Collapse
|
10
|
El Yaagoubi OM, Oularbi L, Salhi O, Samaki H, El Rhazi M, Aboudkhil S. Novel copper complex inhibits the proteasome in skin squamous cell carcinoma induced by DMBA in mice. J Trace Elem Med Biol 2024; 86:127533. [PMID: 39321648 DOI: 10.1016/j.jtemb.2024.127533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The proteasomal system is becoming a target for the treatment of several diseases, especially in cancer therapy. The present study aims to develop a novel copper complex that inhibits the proteasome in skin squamous cell carcinoma. New molecules based on the copper complex were synthesized for the first time to assess their potential as proteasome inhibitors, specifically targeting squamous cell carcinoma induced by 7,12-dimethylbenz(a)anthracene (DMBA) in mouse models. Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and energy dispersive X-ray analysis (EDX) were carried out to characterize this new copper complex. Notably, the presence of a papilloma (skin tumor) was confirmed by histopathological analysis. Subsequent investigation included the quantification of proteasome levels using a sandwich ELISA test, and the catalytic activity of the 20S proteasome was determined by measuring the fluorescence emitted after the cleavage of 7-amino-4-methylcoumarin (AMC). Hence, X-ray crystallography indicates that all Cu atoms are five-coordinated in a square-pyramidal configuration and biological activity of copper Schiff base complex, which exhibits high proteasome inhibitory activities with particular selectivity of β5 subunit. The pharmacokinetic properties (ADMET) of the copper complex named Cu(L1) showed encouraging results with very low toxicity, distribution, and absorption. Structure-activity relationship (SAR) information obtained from Cu(L1) demonstrated its selectivity and potent inhibition for β5 subunit. In this regard, this copper complex has emerged as a novel therapy for skin cancer.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36), Faculty of Sciences and Techniques - Mohammedia, Hassan II University, Casablanca, Morocco.
| | - Larbi Oularbi
- Laboratory of Materials Membranes and Environment, P.B 146, Faculty of Sciences and Techniques - Mohammedia, Hassan II University, Casablanca, Morocco; Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University, Benguerir, Morocco.
| | - Ouissal Salhi
- Laboratory of Materials Membranes and Environment, P.B 146, Faculty of Sciences and Techniques - Mohammedia, Hassan II University, Casablanca, Morocco.
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco.
| | - Mama El Rhazi
- Laboratory of Materials Membranes and Environment, P.B 146, Faculty of Sciences and Techniques - Mohammedia, Hassan II University, Casablanca, Morocco.
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36), Faculty of Sciences and Techniques - Mohammedia, Hassan II University, Casablanca, Morocco.
| |
Collapse
|
11
|
Chang LC, Chiang SK, Chen SE, Hung MC. Exploring paraptosis as a therapeutic approach in cancer treatment. J Biomed Sci 2024; 31:101. [PMID: 39497143 PMCID: PMC11533606 DOI: 10.1186/s12929-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
A variety of cell death pathways play critical roles in the onset and progression of multiple diseases. Paraptosis, a unique form of programmed cell death, has gained significant attention in recent years. Unlike apoptosis and necrosis, paraptosis is characterized by cytoplasmic vacuolization, swelling of the endoplasmic reticulum and mitochondria, and the absence of caspase activation. Numerous natural products, synthetic compounds, and newly launched nanomedicines have been demonstrated to prime cell death through the paraptotic program and may offer novel therapeutic strategies for cancer treatment. This review summarizes recent findings, delineates the intricate network of signaling pathways underlying paraptosis, and discusses the potential therapeutic implications of targeting paraptosis in cancer treatment. The aim of this review is to expand our understanding of this unique cell death process and explore the potential therapeutic implications of targeting paraptosis in cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
12
|
Zeidan Q, Tian JL, Ma J, Eslami F, Hart GW. O-GlcNAcylation of ribosome-associated proteins is concomitant with translational reprogramming during proteotoxic stress. J Biol Chem 2024; 300:107877. [PMID: 39395807 PMCID: PMC11567021 DOI: 10.1016/j.jbc.2024.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Protein O-GlcNAc modification, similar to phosphorylation, supports cell survival by regulating key processes like transcription, cell division, trafficking, signaling, and stress tolerance. However, its role in protein homeostasis, particularly in protein synthesis, folding, and degradation, remains poorly understood. Our previous research shows that O-GlcNAc cycling enzymes associate with the translation machinery during protein synthesis and modify ribosomal proteins. Protein translation is closely linked to 26S proteasome activity, which recycles amino acids and clears misfolded proteins during stress, preventing aggregation and cell death. In this study, we demonstrate that pharmacological perturbation of the proteasome-like that used in cancer treatment- leads to the increased abundance of OGT and OGA in a ribosome-rich fraction, concurrent with O-GlcNAc modification of core translational and ribosome-associated proteins. This interaction is synchronous with eIF2α-dependent translational reprogramming. We also found that protein ubiquitination depends partly on O-GlcNAc metabolism in MEFs, as Ogt-depleted cells show decreased ubiquitination under stress. Using an O-GlcNAc-peptide enrichment strategy followed by LC-MS/MS, we identified 84 unique O-GlcNAc sites across 55 proteins, including ribosomal proteins, nucleolar factors, and the 70-kDa heat shock protein family. Hsp70 and OGT colocalize with the translational machinery in an RNA-independent manner, aiding in partial protein translation recovery during sustained stress. O-GlcNAc cycling on ribosome-associated proteins collaborates with Hsp70 to restore protein synthesis during proteotoxicity, suggesting a role in tumor resistance to proteasome inhibitors.
Collapse
Affiliation(s)
- Quira Zeidan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie L Tian
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Junfeng Ma
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Farzad Eslami
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Gerald W Hart
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
13
|
Larsson P, De Rosa MC, Righino B, Olsson M, Florea BI, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Integrated transcriptomics- and structure-based drug repositioning identifies drugs with proteasome inhibitor properties. Sci Rep 2024; 14:18772. [PMID: 39138277 PMCID: PMC11322189 DOI: 10.1038/s41598-024-69465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Computational pharmacogenomics can potentially identify new indications for already approved drugs and pinpoint compounds with similar mechanism-of-action. Here, we used an integrated drug repositioning approach based on transcriptomics data and structure-based virtual screening to identify compounds with gene signatures similar to three known proteasome inhibitors (PIs; bortezomib, MG-132, and MLN-2238). In vitro validation of candidate compounds was then performed to assess proteasomal proteolytic activity, accumulation of ubiquitinated proteins, cell viability, and drug-induced expression in A375 melanoma and MCF7 breast cancer cells. Using this approach, we identified six compounds with PI properties ((-)-kinetin-riboside, manumycin-A, puromycin dihydrochloride, resistomycin, tegaserod maleate, and thapsigargin). Although the docking scores pinpointed their ability to bind to the β5 subunit, our in vitro study revealed that these compounds inhibited the β1, β2, and β5 catalytic sites to some extent. As shown with bortezomib, only manumycin-A, puromycin dihydrochloride, and tegaserod maleate resulted in excessive accumulation of ubiquitinated proteins and elevated HMOX1 expression. Taken together, our integrated drug repositioning approach and subsequent in vitro validation studies identified six compounds demonstrating properties similar to proteasome inhibitors.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Rome, Italy
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Rome, Italy
| | - Maxim Olsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bogdan Iulius Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Center, Leiden, The Netherlands
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Martínez-López Y, Castillo-Garit JA, Casanola-Martin GM, Rasulev B, Rodríguez-Gonzalez AY, Martínez-Santiago O, Barigye SJ. Exploring proteasome inhibition using atomic weighted vector indices and machine learning approaches. Mol Divers 2024; 28:1983-1994. [PMID: 37017875 DOI: 10.1007/s11030-023-10638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Ubiquitin-proteasome system (UPS) is a highly regulated mechanism of intracellular protein degradation and turnover. The UPS is involved in different biological activities, such as the regulation of gene transcription and cell cycle. Several researchers have applied cheminformatics and artificial intelligence methods to study the inhibition of proteasomes, including the prediction of UPP inhibitors. Following this idea, we applied a new tool for obtaining molecular descriptors (MDs) for modeling proteasome Inhibition in terms of EC50 (µmol/L), in which a set of new MDs called atomic weighted vectors (AWV) and several prediction algorithms were used in cheminformatics studies. In the manuscript, a set of descriptors based on AWV are presented as datasets for training different machine learning techniques, such as linear regression, multiple linear regression (MLR), random forest (RF), K-nearest neighbors (IBK), multi-layer perceptron, best-first search, and genetic algorithm. The results suggest that these atomic descriptors allow adequate modeling of proteasome inhibitors despite artificial intelligence techniques, as a variant to build efficient models for the prediction of inhibitory activity.
Collapse
Affiliation(s)
- Yoan Martínez-López
- Department of Computer Sciences, Faculty of Informatics, Camagüey University, 74650, Camagüey City, Cuba.
| | | | - Gerardo M Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58102, USA
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58102, USA
| | - Ansel Y Rodríguez-Gonzalez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE-UT3), Unidad de Transferencia Tecnológica de Tepic, Tepic, México
| | - Oscar Martínez-Santiago
- Alfa Vitamins Laboratories, Miami, FL, 33166, USA
- Laboratorio de Bioinformática y Química Computacional, Universidad Católica del Maule, Talca, Chile
| | - Stephen J Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| |
Collapse
|
15
|
El Yaagoubi OM, Ezzemani W, Oularbi L, Samaki H, Aboudkhil S. In silico identification of 20S proteasome-β5 subunit inhibitors using structure-based virtual screening. J Biomol Struct Dyn 2024; 42:6165-6173. [PMID: 37403265 DOI: 10.1080/07391102.2023.2232041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Proteasome inhibitors have effective anti-tumor activity in cell culture and can induce apoptosis by interfering with the degradation of cell cycle proteins. 20S Proteasome is acknowledged to be a satisfactory target that has persistent properties against the human immune defense and is obligatory for the degradation of some vital proteins. This study aimed to identify potential inhibitors against 20S proteasome, specifically the β5 subunit, using structure-based virtual screening and molecular docking to reduce the number of ligands that should be eligible for experimental assays. A total of 4961 molecules with anticancer activity were screened from the ASINEX database. The filtered compounds that showed higher docking affinity were then used in more sophisticated molecular docking simulations with AutoDock Vina for validation. Finally, six drug molecules (BDE 28974746, BDE 25657353, BDE 29746159, BDD 27844484, BDE 29746109, and BDE 29746162) exhibited highly significant interactions compared to the positive controls were retained. Among these six molecules, three molecules (BDE 28974746, BDE 25657353, and BDD 27844484) showed high binding affinity and binding energy compared with Carfilzomib and Bortezomib. Molecular simulation and dynamics studies of the top three drug molecules in each case allowed us to draw further conclusions about their stability with the β5 subunit. Computed absorption, distribution, metabolism, excretion and toxicity studies on these derivatives showed encouraging results with very low toxicity, distribution, and absorption. These compounds may serve as potential hits for further biological evaluation in the development of new proteasome inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36), Faculty of Sciences and Techniques-Mohammedia, Hassan II University of Casablanca, Morocco
| | - Wahiba Ezzemani
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratoire de Biologie et Santé (URAC34), Département de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Morocco
| | - Larbi Oularbi
- Laboratory of Materials Membranes and Environment, Faculty of Sciences and Techniques-Mohammedia, Hassan II University of Casablanca, Morocco
- Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University (UM6P), Lot 660, HayMoulayRachid, BenGuerir, Morocco
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36), Faculty of Sciences and Techniques-Mohammedia, Hassan II University of Casablanca, Morocco
| |
Collapse
|
16
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
17
|
Nath Varma S, Ye S, Ferlin S, Comer C, Cotton K, Niklison-Chirou MV. The Proteasome Inhibitor CEP-18770 Induces Cell Death in Medulloblastoma. Pharmaceutics 2024; 16:672. [PMID: 38794334 PMCID: PMC11124782 DOI: 10.3390/pharmaceutics16050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Medulloblastomas (MBs) represent the most prevalent malignant solid tumors in kids. The conventional treatment regimen for MBs includes surgical removal of the tumor, followed by radiation and chemotherapy. However, this approach is associated with significant morbidity and detrimental side effects. Consequently, there is a critical demand for more precise and less harmful treatments to enhance the quality of life for survivors. CEP-18770, a novel proteasome inhibitor that targets the 20S subunit, has emerged as a promising candidate, due to its anticancer activity in metastatic solid tumors and multiple myeloma, coupled with an acceptable safety profile. In this study, we aimed to assess the anticancer efficacy of CEP-18770 by employing a variety of MB patient-derived cells and cell lines. Our preclinical investigations revealed that CEP-18770 effectively inhibits proteasome activity and induces apoptosis in MBs cells. Furthermore, we discovered that CEP-18770 and cisplatin, a current component of MB therapy, exhibit a synergistic apoptotic effect. This paper shows that CEP-18770 holds potential as an adjunctive treatment for MB tumors, thereby paving the way for more targeted and less toxic therapeutic strategies.
Collapse
Affiliation(s)
| | - Shany Ye
- Life Sciences Department, University of Bath, Claverton Down, Bath BA2 7AY, UK; (S.Y.); (S.F.); (C.C.); (K.C.)
| | - Sara Ferlin
- Life Sciences Department, University of Bath, Claverton Down, Bath BA2 7AY, UK; (S.Y.); (S.F.); (C.C.); (K.C.)
| | - Charley Comer
- Life Sciences Department, University of Bath, Claverton Down, Bath BA2 7AY, UK; (S.Y.); (S.F.); (C.C.); (K.C.)
| | - Kian Cotton
- Life Sciences Department, University of Bath, Claverton Down, Bath BA2 7AY, UK; (S.Y.); (S.F.); (C.C.); (K.C.)
| | - Maria Victoria Niklison-Chirou
- Blizard Institute, Queen Mary University of London, London E1 4NS, UK;
- Life Sciences Department, University of Bath, Claverton Down, Bath BA2 7AY, UK; (S.Y.); (S.F.); (C.C.); (K.C.)
| |
Collapse
|
18
|
Chan AM, Mitchell A, Grogan L, Shapiro P, Fletcher S. Histone deacetylase (HDAC) inhibitor specificity determinants are preserved in a class of dual HDAC/non-covalent proteasome inhibitors. Bioorg Med Chem 2024; 104:117680. [PMID: 38582047 PMCID: PMC11177207 DOI: 10.1016/j.bmc.2024.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Many disease states require multiple drugs to inhibit multiple targets for their effective treatment/management, i.e. a drug cocktail regimen, or "polypharmacy". Polypharmacology, in contrast, is the development of single agents that can inhibit multiple targets. Each strategy is associated with advantages and disadvantages. Motivated by promising clinical trial data for the treatment of multiple myeloma with the combination of the HDAC6 inhibitor ricolinostat and the proteasome inhibitor bortezomib, we herein describe a focused family of dual HDAC/non-covalent proteasome inhibitors, and explore the impact of linker and zinc-binding group identities on HDAC1/6 isozyme selectivity. In general, previously reported specificity determinants of monovalent HDAC1/6 inhibitors were preserved in our dual HDAC/proteasome inhibitors.
Collapse
Affiliation(s)
- Alexandria M Chan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Ashley Mitchell
- University of Maryland Baltimore County, 1000 Hilltop Cir., Baltimore, MD 21250, USA
| | - Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA.
| |
Collapse
|
19
|
Kim MY, Park ER, Cho EH, Park SH, Han CJ, Kim SB, Gu MB, Shin HJ, Lee KH. Depletion of proteasome subunit PSMD1 induces cancer cell death via protein ubiquitination and DNA damage, irrespective of p53 status. Sci Rep 2024; 14:7997. [PMID: 38580756 PMCID: PMC10997673 DOI: 10.1038/s41598-024-58215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high incidence and fatality rates worldwide. In our exploration of prognostic factors in HCC, the 26s proteasome subunit, non-ATPase 1 (PSMD1) protein emerged as a significant contributor, demonstrating its potential as a therapeutic target in this aggressive cancer. PSMD1 is a subunit of the 19S regulatory particle in the 26S proteasome complex; the 19S particle controls the deubiquitination of ubiquitinated proteins, which are then degraded by the proteolytic activity of the complex. Proteasome-targeting in cancer therapy has received significant attention because of its practical application as an established anticancer agent. We investigated whether PSMD1 plays a critical role in cancer owing to its prognostic significance. PSMD1 depletion induced cell cycle arrest in G2/M phase, DNA damage and apoptosis of cancer cells, irrespective of the p53 status. PSMD1 depletion-mediated cell death was accompanied by an increase in overall protein ubiquitination. These phenotypes occurred exclusively in cancer cells, with no effects observed in normal cells. These findings indicate that PSMD1 depletion-mediated ubiquitination of cellular proteins induces cell cycle arrest and eventual death in cancer cells, emphasizing PSMD1 as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Mi-Yeun Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eun-Ran Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea
| | - Eung-Ho Cho
- Department of Surgery, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sun-Hoo Park
- Department of Pathology, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Chul Ju Han
- Department of Internal Medicine, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang-Bum Kim
- Department of Surgery, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hyun-Jin Shin
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea.
| | - Kee-Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea.
| |
Collapse
|
20
|
Pelon M, Krzeminski P, Tracz-Gaszewska Z, Misiewicz-Krzeminska I. Factors determining the sensitivity to proteasome inhibitors of multiple myeloma cells. Front Pharmacol 2024; 15:1351565. [PMID: 38500772 PMCID: PMC10944964 DOI: 10.3389/fphar.2024.1351565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Multiple myeloma is an incurable cancer that originates from antibody-producing plasma cells. It is characterized by an intrinsic ability to produce large amounts of immunoglobulin-like proteins. The high rate of synthesis makes myeloma cells dependent on protein processing mechanisms related to the proteasome. This dependence made proteasome inhibitors such as bortezomib and carfilzomib one of the most important classes of drugs used in multiple myeloma treatment. Inhibition of the proteasome is associated with alteration of a number of important biological processes leading, in consequence, to inhibition of angiogenesis. The effect of drugs in this group and the degree of patient response to the treatment used is itself an extremely complex process that depends on many factors. At cellular level the change in sensitivity to proteasome inhibitors may be related to differences in the expression level of proteasome subunits, the degree of proteasome loading, metabolic adaptation, transcriptional or epigenetic factors. These are just some of the possibilities that may influence differences in response to proteasome inhibitors. This review describes the main cellular factors that determine the degree of response to proteasome inhibitor drugs, as well as information on the key role of the proteasome and the performance characteristics of the inhibitors that are the mainstay of multiple myeloma treatment.
Collapse
Affiliation(s)
- Marta Pelon
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Biology Institute, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | |
Collapse
|
21
|
Beller P, Fink P, Wolf F, Männle D, Helmle I, Kuttenlochner W, Unterfrauner D, Engelbrecht A, Staudt ND, Kulik A, Groll M, Gross H, Kaysser L. Characterization of the cystargolide biosynthetic gene cluster and functional analysis of the methyltransferase CysG. J Biol Chem 2024; 300:105507. [PMID: 38029966 PMCID: PMC10776993 DOI: 10.1016/j.jbc.2023.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
Cystargolides are natural products originally isolated from Kitasatospora cystarginea NRRL B16505 as inhibitors of the proteasome. They are composed of a dipeptide backbone linked to a β-lactone warhead. Recently, we identified the cystargolide biosynthetic gene cluster, but systematic genetic analyses had not been carried out because of the lack of a heterologous expression system. Here, we report the discovery of a homologous cystargolide biosynthetic pathway in Streptomyces durhamensis NRRL-B3309 by genome mining. The gene cluster was cloned via transformation-associated recombination and heterologously expressed in Streptomyces coelicolor M512. We demonstrate that it contains all genes necessary for the production of cystargolide A and B. Single gene deletion experiments reveal that only five of the eight genes from the initially proposed gene cluster are essential for cystargolide synthesis. Additional insights into the cystargolide pathway could be obtained from in vitro assays with CysG and chemical complementation of the respective gene knockout. This could be further supported by the in vitro investigation of the CysG homolog BelI from the belactosin biosynthetic gene cluster. Thereby, we confirm that CysG and BelI catalyze a cryptic SAM-dependent transfer of a methyl group that is critical for the construction of the cystargolide and belactosin β-lactone warheads.
Collapse
Affiliation(s)
- Patrick Beller
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Phillipp Fink
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Felix Wolf
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Daniel Männle
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Irina Helmle
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Wolfgang Kuttenlochner
- Department of Bioscience, Center for Protein Assemblies (CPA), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Daniel Unterfrauner
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Alicia Engelbrecht
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Nicole D Staudt
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Andreas Kulik
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Michael Groll
- Department of Bioscience, Center for Protein Assemblies (CPA), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
22
|
Park S, Kim D, Jung H, Choi IP, Kwon HJ, Lee Y. Contribution of HSP90 Cleavage to the Cytotoxic Effect of Suberoylanilide Hydroxamic Acid In Vivo and the Involvement of TXNIP in HSP90 Cleavage. Biomol Ther (Seoul) 2024; 32:115-122. [PMID: 38148557 PMCID: PMC10762275 DOI: 10.4062/biomolther.2023.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 12/28/2023] Open
Abstract
Heat shock protein (HSP) 90 is expressed in most living organisms, and several client proteins of HSP90 are necessary for cancer cell survival and growth. Previously, we found that HSP90 was cleaved by histone deacetylase (HDAC) inhibitors and proteasome inhibitors, and the cleavage of HSP90 contributes to their cytotoxicity in K562 leukemia cells. In this study, we first established mouse xenograft models with K562 cells expressing the wild-type or cleavage-resistant mutant HSP90β and found that the suppression of tumor growth by the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was interrupted by the mutation inhibiting the HSP90 cleavage in vivo. Next, we investigated the possible function of thioredoxin interacting protein (TXNIP) in the HSP90 cleavage induced by SAHA. TXNIP is a negative regulator for thioredoxin, an antioxidant protein. SAHA transcriptionally induced the expression of TXNIP in K562 cells. HSP90 cleavage was induced by SAHA also in the thymocytes of normal mice and suppressed by an anti-oxidant and pan-caspase inhibitor. When the thymocytes from the TXNIP knockout mice and their wild-type littermate control mice were treated with SAHA, the HSP90 cleavage was detected in the thymocytes of the littermate controls but suppressed in those of the TXNIP knockout mice suggesting the requirement of TXNIP for HSP90 cleavage. We additionally found that HSP90 cleavage was induced by actinomycin D, β-mercaptoethanol, and p38 MAPK inhibitor PD169316 suggesting its prevalence. Taken together, we suggest that HSP90 cleavage occurs also in vivo and contributes to the anti-cancer activity of various drugs in a TXNIP-dependent manner.
Collapse
Affiliation(s)
- Sangkyu Park
- Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - In Pyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Younghee Lee
- Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
23
|
Nguyen T, Chen PC, Pham J, Kaur K, Raman SS, Jewett A, Chiang J. Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma. Crit Rev Immunol 2024; 44:71-85. [PMID: 38618730 DOI: 10.1615/critrevimmunol.2024052486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Natural killer (NK) cells are innate lymphoid cells that exhibit high levels of cytotoxicity against NK-specific targets. NK cells also produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Moreover, NK cells constitute the second most common immune cell in the liver. These properties have drawn significant attention towards leveraging NK cells in treating liver cancer, especially hepatocellular carcinoma (HCC), which accounts for 75% of all primary liver cancer and is the fourth leading cause of cancer-related death worldwide. Notable anti-cancer functions of NK cells against HCC include activating antibody-dependent cell cytotoxicity (ADCC), facilitating Gasdermin E-mediated pyroptosis of HCC cells, and initiating an antitumor response via the cGAS-STING signaling pathway. In this review, we describe how these mechanisms work in the context of HCC. We will then discuss the existing preclinical and clinical studies that leverage NK cell activity to create single and combined immunotherapies.
Collapse
Affiliation(s)
- Tu Nguyen
- UCLA David Geffen School of Medicine
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA
| | - Janet Pham
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Kawaljit Kaur
- Division of Oral Biology and Medicine The Jane and Jerry Weintraub Center of Reconstructive Biotechnology University of California School of Dentistry Los Angeles, CA, USA
| | - Steven S Raman
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Jason Chiang
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| |
Collapse
|
24
|
Raghuwanshi S, Gartel AL. Small-molecule inhibitors targeting FOXM1: Current challenges and future perspectives in cancer treatments. Biochim Biophys Acta Rev Cancer 2023; 1878:189015. [PMID: 37913940 DOI: 10.1016/j.bbcan.2023.189015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Forkhead box (FOX) protein M1 (FOXM1) is a critical proliferation-associated transcription factor (TF) that is aberrantly overexpressed in the majority of human cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in, cell proliferation, cell migration, invasion, angiogenesis and metastasis. The FOXM1 as a TF directly or indirectly regulates the expression of several target genes whose dysregulation is associated with almost all hallmarks of cancer. Moreover, FOXM1 expression is associated with chemoresistance to different anti-cancer drugs. Several studies have confirmed that suppression of FOXM1 enhanced the drug sensitivity of various types of cancer cells. Current data suggest that small molecule inhibitors targeting FOXM1 in combination with anticancer drugs may represent a novel therapeutic strategy for chemo-resistant cancers. In this review, we discuss the clinical utility of FOXM1, further, we summarize and discuss small-molecule inhibitors targeting FOXM1 and categorize them according to their mechanisms of targeting FOXM1. Despite great progress, small-molecule inhibitors targeting FOXM1 face many challenges, and we present here all small-molecule FOXM1 inhibitors in different stages of development. We discuss the current challenges and provide insights on the future application of FOXM1 inhibition to the clinic.
Collapse
Affiliation(s)
- Sanjeev Raghuwanshi
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | - Andrei L Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Bhattacharyya S, Oblinger JL, Beauchamp RL, Yin Z, Erdin S, Koundinya P, Ware AD, Ferrer M, Jordan JT, Plotkin SR, Xu L, Chang LS, Ramesh V. Proteasomal pathway inhibition as a potential therapy for NF2-associated meningioma and schwannoma. Neuro Oncol 2023; 25:1617-1630. [PMID: 36806881 PMCID: PMC10479743 DOI: 10.1093/neuonc/noad037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Neurofibromatosis 2 (NF2) is an inherited disorder caused by bi-allelic inactivation of the NF2 tumor suppressor gene. NF2-associated tumors, including schwannoma and meningioma, are resistant to chemotherapy, often recurring despite surgery and/or radiation, and have generally shown cytostatic response to signal transduction pathway inhibitors, highlighting the need for improved cytotoxic therapies. METHODS Leveraging data from our previous high-throughput drug screening in NF2 preclinical models, we identified a class of compounds targeting the ubiquitin-proteasome pathway (UPP), and undertook studies using candidate UPP inhibitors, ixazomib/MLN9708, pevonedistat/MLN4924, and TAK-243/MLN7243. Employing human primary and immortalized meningioma (MN) cell lines, CRISPR-modified Schwann cells (SCs), and mouse Nf2-/- SCs, we performed dose response testing, flow cytometry-based Annexin V and cell cycle analyses, and RNA-sequencing to identify potential underlying mechanisms of apoptosis. In vivo efficacy was also assessed in orthotopic NF2-deficient meningioma and schwannoma tumor models. RESULTS Testing of three UPP inhibitors demonstrated potent reduction in cell viability and induction of apoptosis for ixazomib or TAK-243, but not pevonedistat. In vitro analyses revealed that ixazomib or TAK-243 downregulates expression of c-KIT and PDGFRα, as well as the E3 ubiquitin ligase SKP2 while upregulating genes associated with endoplasmic reticulum stress-mediated activation of the unfolded protein response (UPR). In vivo treatment of mouse models revealed delayed tumor growth, suggesting a therapeutic potential. CONCLUSIONS This study demonstrates the efficacy of proteasomal pathway inhibitors in meningioma and schwannoma preclinical models and lays the groundwork for use of these drugs as a promising novel treatment strategy for NF2 patients.
Collapse
Affiliation(s)
- Srirupa Bhattacharyya
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Janet L Oblinger
- Center for Childhood Cancer & Blood Diseases, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Roberta L Beauchamp
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Zhenzhen Yin
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Serkan Erdin
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Priya Koundinya
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anna D Ware
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Justin T Jordan
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Scott R Plotkin
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Lei Xu
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer & Blood Diseases, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Vijaya Ramesh
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
26
|
Besse L, Kraus M, Besse A, Driessen C, Tarantino I. The cytotoxic activity of carfilzomib together with nelfinavir is superior to the bortezomib/nelfinavir combination in non-small cell lung carcinoma. Sci Rep 2023; 13:4411. [PMID: 36932175 PMCID: PMC10023769 DOI: 10.1038/s41598-023-31400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Chemotherapy resistance is still a major problem in the treatment of patients with non-small-cell-lung carcinoma (NSCLC), and novel concepts for the induction of cytotoxicity in NSCLC are highly warranted. Proteotoxicity, the induction of cytotoxicity by targeting the ubiquitin proteasome system, represents an appealing innovative strategy. The combination of the proteasome inhibitor bortezomib (BTZ) and the proteotoxic stress-inducing HIV drug nelfinavir (NFV) synergistically induces proteotoxicity and shows encouraging preclinical efficacy in NSCLC. The second-generation proteasome inhibitor carfilzomib (CFZ) is superior to BTZ and overcomes BTZ resistance in multiple myeloma patients. Here, we show that CFZ together with NFV is superior to the BTZ + NFV combination in inducing endoplasmic reticulum stress and proteotoxicity through the accumulation of excess proteasomal substrate protein in NSCLC in vitro and ex vivo. Interestingly, NFV increases the intracellular availability of CFZ through inhibition of CFZ export from NSCLC cells that express multidrug resistance (MDR) protein. Combining CFZ with NFV may therefore represent a future treatment option for NSCLC, which warrants further investigation.
Collapse
Affiliation(s)
- Lenka Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland.
- Cantonal Hospital St. Gallen, Rorschacherstrasse 95 Haus 09/218, 9007, St. Gallen, Switzerland.
| | - Marianne Kraus
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland
| | - Andrej Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland
| | - Christoph Driessen
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland
| | - Ignazio Tarantino
- Department of General, Visceral, Endocrine and Transplant Surgery, Kantonsspital St. Gallen, 9000, St. Gallen, Switzerland
| |
Collapse
|
27
|
Zeng G, Yu Q, Zhuang R, Zhu H, Shao J, Xi J, Zhang J. Recent Advances and Future Perspectives of Noncompetitive Proteasome Inhibitors. Bioorg Chem 2023; 135:106507. [PMID: 37030106 DOI: 10.1016/j.bioorg.2023.106507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The proteasome regulates intracellular processes, maintains biological homeostasis, and has shown great significance in the study of various diseases, such as neurodegenerative diseases, immune-related diseases, and cancer, especially in hematologic malignancies such as multiple myeloma (MM) and mantle cell lymphoma (MCL). All clinically used proteasome inhibitors bind to the active site of the proteasome and thus exhibit a competitive mechanism. The development of resistance and intolerance during treatment drives the search for inhibitors with different mechanisms of action. In this review, we provide an overview of noncompetitive proteasome inhibitors, including their mechanisms of action, function, possible applications, and their advantages and disadvantages compared with competitive inhibitors.
Collapse
|
28
|
Ambrosio FA, Costa G, Gallo Cantafio ME, Torcasio R, Trapasso F, Alcaro S, Viglietto G, Amodio N. Natural Agents as Novel Potential Source of Proteasome Inhibitors with Anti-Tumor Activity: Focus on Multiple Myeloma. Molecules 2023; 28:molecules28031438. [PMID: 36771100 PMCID: PMC9919276 DOI: 10.3390/molecules28031438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is an aggressive and incurable disease for most patients, characterized by periods of treatment, remission and relapse. The introduction of new classes of drugs, such as proteasome inhibitors (PIs), has improved survival outcomes in these patient populations. The proteasome is the core of the ubiquitin-proteasome system (UPS), a complex and conserved pathway involved in the control of multiple cellular processes, including cell cycle control, transcription, DNA damage repair, protein quality control and antigen presentation. To date, PIs represent the gold standard for the treatment of MM. Bortezomib was the first PI approved by the FDA, followed by next generation of PIs, namely carfilzomib and ixazomib. Natural agents play an important role in anti-tumor drug discovery, and many of them have recently been reported to inhibit the proteasome, thus representing a new potential source of anti-MM drugs. Based on the pivotal biological role of the proteasome and on PIs' significance in the management of MM, in this review we aim to briefly summarize recent evidence on natural compounds capable of inhibiting the proteasome, thus triggering anti-MM activity.
Collapse
Affiliation(s)
- Francesca Alessandra Ambrosio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (G.C.); (N.A.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (G.C.); (N.A.)
| |
Collapse
|
29
|
Ibrahim B, Akere TH, Chakraborty S, Valsami-Jones E, Ali-Boucetta H. Gold Nanoparticles Induced Size Dependent Cytotoxicity on Human Alveolar Adenocarcinoma Cells by Inhibiting the Ubiquitin Proteasome System. Pharmaceutics 2023; 15:pharmaceutics15020432. [PMID: 36839757 PMCID: PMC9961554 DOI: 10.3390/pharmaceutics15020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Gold nanoparticles (AuNPs) are widely used in biomedicine due to their remarkable therapeutic applications. However, little is known about their cytotoxic effects on the ubiquitin proteasome system (UPS). Herein, the cytotoxicity of different sizes of AuNPs (5, 10, and 80 nm) on the UPS was investigated with a particular focus on deubiquitinating enzymes (DUBs) such as ubiquitin-specific proteases (USP) and ubiquitin carboxyl-terminal hydrolases (UCHL-1) in human alveolar epithelial adenocarcinoma (A549). It was found that all sizes of AuNPs reduced the percentage of viable A549 cells and increased lactate dehydrogenase (LDH) release, measured using the MTT and LDH assays, respectively. Furthermore, the 5 nm AuNPs were found to exhibit greater cytotoxicity than the 10 and 80 nm AuNPs. In addition, apoptosis and necrosis were activated through reactive oxygen species (ROS) generation due to AuNPs exposure. The internalisation of AuNPs in A549 cells increased with increasing particle size (80 > 10 > 5 nm). Interestingly, the expression of USP7, USP8, USP10, and UCHL-1 was significantly (p < 0.001) downregulated upon treatment with 5-30 µg/mL of all the AuNPs sizes compared to control cells. Moreover, the inhibition of these proteins triggered mitochondrial-related apoptosis through the upregulation of poly (ADP-ribose) polymerase (PARP), caspase-3, and caspase-9. Collectively, these results indicate that AuNPs suppress the proliferation of A549 cells and can potentially be used as novel inhibitors of the proteasome.
Collapse
Affiliation(s)
- Bashiru Ibrahim
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Taiwo Hassan Akere
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Swaroop Chakraborty
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (E.V.-J.); (H.A.-B.)
| | - Hanene Ali-Boucetta
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (E.V.-J.); (H.A.-B.)
| |
Collapse
|
30
|
Matsumoto M, Sawada H, Iwata K, Ibi M, Asaoka N, Katsuyama M, Shintani-Ishida K, Ikegaya H, Takegami S, Umemura A, Yabe-Nishimura C. Bortezomib is an effective enhancer for chemical probe-dependent superoxide detection. Front Med (Lausanne) 2022; 9:941180. [PMID: 36619644 PMCID: PMC9811382 DOI: 10.3389/fmed.2022.941180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Various chemical probes for the detection of reactive oxygen species have been developed to examine oxidative stress associated with different pathologies. L-012, a luminol-based chemiluminescent probe, is widely used to detect extracellular superoxide because of its high sensitivity. We herein demonstrated that the co-application of the peptide boronic acid proteasome inhibitor, bortezomib, with L-012 significantly increased its luminescence without affecting the background. More than a 5-fold increase was detected in the total luminescence of L-012 in both NADPH oxidase-expressing cells and the xanthine oxidase-dependent cell-free superoxide generation system, but not in their background. Therefore, bortezomib increased the signal-to-background ratio and improved the detection of low levels of superoxide. The application of MLN2238, another peptide boronic acid proteasome inhibitor, also enhanced the luminescence of L-012. In contrast, carfilzomib, an epoxyketone proteasome inhibitor, did not increase luminescence, suggesting that the effects of bortezomib depend on the chemical structure of the peptide boronic acid, but not on its pharmacological effects. Bortezomib-induced enhancements appeared to be specific to the detection of superoxide because the detection of H2O2 by Amplex Red/HRP was not affected by the application of bortezomib. In the quantitative detection of the superoxide-specific oxidative product 2-hydroxyethidium (2-OH-E+), the application of bortezomib resulted in a 2-fold increase in the level of 2-OH-E+. Therefore, bortezomib sensitizes the detection of superoxide in both cell-based and cell-free systems, highlighting a novel feature of compounds containing the peptide boronic acid as powerful enhancers for the detection of superoxide.
Collapse
Affiliation(s)
- Misaki Matsumoto
- 1Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan,*Correspondence: Misaki Matsumoto,
| | - Hikari Sawada
- 1Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazumi Iwata
- 1Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Ibi
- 1Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nozomi Asaoka
- 1Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masato Katsuyama
- 2Radioisotope Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kaori Shintani-Ishida
- 3Department of Forensic Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ikegaya
- 3Department of Forensic Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigehiko Takegami
- 4Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Atsushi Umemura
- 1Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | |
Collapse
|
31
|
Proteasome Inhibitors and Their Potential Applicability in Osteosarcoma Treatment. Cancers (Basel) 2022; 14:cancers14194544. [PMID: 36230467 PMCID: PMC9559645 DOI: 10.3390/cancers14194544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Bone cancer has seen minimal benefits in therapeutic options in the past 30 years. Proteasome inhibitors present a new avenue of research for the treatment of bone cancer. Proteasome inhibitors impair the function of the proteasome, a structure within the cell that removes unwanted and misfolded proteins. Bone cancer cells heavily rely on the proteasome to properly function and survive. Impairing the proteasome function can have detrimental consequences and lead to cell death. This review provides a thorough summary of the in vitro, in vivo, and clinical research that has explored proteasome inhibitors for the treatment of bone cancer. Abstract Osteosarcoma (OS) is the most common type of bone cancer, with ~30% of patients developing secondary/metastatic tumors. The molecular complexity of tumor metastasis and the lack of effective therapies for OS has cultivated interest in exploiting the proteasome as a molecular target for anti-cancer therapy. As our understanding towards the behavior of malignant cells expands, it is evident that cancerous cells display a greater reliance on the proteasome to maintain homeostasis and sustain efficient biological activities. This led to the development and approval of first- and second-generation proteasome inhibitors (PIs), which have improved outcomes for patients with multiple myeloma and mantle cell lymphoma. Researchers have since postulated the therapeutic potential of PIs for the treatment of OS. As such, this review aims to summarize the biological effects and latest findings from clinical trials investigating PI-based treatments for OS. Integrating PIs into current treatment regimens may better outcomes for patients diagnosed with OS.
Collapse
|
32
|
Lobba ARM, Alvarez-Flores MP, Fessel MR, Buri MV, Oliveira DS, Gomes RN, Cunegundes PS, DeOcesano-Pereira C, Cinel VD, Chudzinski-Tavassi AM. A Kunitz-type inhibitor from tick salivary glands: A promising novel antitumor drug candidate. Front Mol Biosci 2022; 9:936107. [PMID: 36052162 PMCID: PMC9424826 DOI: 10.3389/fmolb.2022.936107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Salivary glands are vital structures responsible for successful tick feeding. The saliva of ticks contains numerous active molecules that participate in several physiological processes. A Kunitz-type factor Xa (FXa) inhibitor, similar to the tissue factor pathway inhibitor (TFPI) precursor, was identified in the salivary gland transcriptome of Amblyomma sculptum ticks. The recombinant mature form of this Kunitz-type inhibitor, named Amblyomin-X, displayed anticoagulant, antiangiogenic, and antitumor properties. Amblyomin-X is a protein that inhibits FXa in the blood coagulation cascade and acts via non-hemostatic mechanisms, such as proteasome inhibition. Amblyomin-X selectively induces apoptosis in cancer cells and promotes tumor regression through these mechanisms. Notably, the cytotoxicity of Amblyomin-X seems to be restricted to tumor cells and does not affect non-tumorigenic cells, tissues, and organs, making this recombinant protein an attractive molecule for anticancer therapy. The cytotoxic activity of Amblyomin-X on tumor cells has led to vast exploration into this protein. Here, we summarize the function, action mechanisms, structural features, pharmacokinetics, and biodistribution of this tick Kunitz-type inhibitor recombinant protein as a promising novel antitumor drug candidate.
Collapse
Affiliation(s)
- Aline R. M. Lobba
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Miryam Paola Alvarez-Flores
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Melissa Regina Fessel
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Marcus Vinicius Buri
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Douglas S. Oliveira
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Renata N. Gomes
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Priscila S. Cunegundes
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos DeOcesano-Pereira
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Victor D. Cinel
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Ana M. Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Ana M. Chudzinski-Tavassi,
| |
Collapse
|
33
|
Prolonged proteasome inhibition antagonizes TGFβ1-dependent signalling by promoting the lysosomal-targeting of TGFβ receptors. Cell Signal 2022; 98:110414. [PMID: 35901932 DOI: 10.1016/j.cellsig.2022.110414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
Impairing autophagy disrupts transforming growth factor beta 1 (TGFβ1) signalling and epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Since autophagy and proteasome-mediated degradation are interdependent, we investigated how prolonged downregulation of proteasomal catalytic activity affected TGFβ1-dependent signalling and EMT. Proteasome-dependent degradation was inhibited in A549 and H1299 NSCLC cells using MG132 and lactacystin, which are reversible and irreversible proteasome inhibitors, respectively. We observed that inhibiting proteasomal activity for 24 h decreased TGFβ-dependent nuclear accumulation of Smad2/3. Time course studies were then carried out to characterize the time frame of this observation. Short-term (< 8 h) proteasome inhibition resulted in increased receptor regulated Smad (R-Smad) phosphorylation and steady-state TGFβ receptor type II (TGFβRII) levels. However, prolonged (8-24 h) proteasome inhibition decreased TGFβ1-dependent R-Smad phosphorylation and steady-state TGFβRI and TGFβRII levels. Furthermore, proteasome inhibition blunted TGFβ-dependent E- to N-Cadherin shift, stress fiber formation, and increased cellular apoptosis via the TAK-1-TRAF6-p38 MAPK pathway. Interestingly, proteasome inhibition also increased autophagic flux, steady-state microtubule-associated protein light chain 3B-II and active uncoordinated 51-like autophagy activating kinase 1 levels, and co-localization of lysosomes with autophagy cargo proteins and autophagy-related proteins. Finally, we observed that proteasome inhibition increased TGFβRII endocytosis and trafficking to lysosomes and we conclude that prolonged proteasome inhibition disrupts TGFβ signalling outcomes through altered TGFβ receptor trafficking.
Collapse
|
34
|
Sulkshane P, Teni T. Myeloid cell leukemia-1: a formidable barrier to anticancer therapeutics and the quest of targeting it. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:278-296. [PMID: 36045907 PMCID: PMC9400788 DOI: 10.37349/etat.2022.00083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
The antiapoptotic B cell lymphoma-2 (Bcl-2) family members are apical regulators of the intrinsic pathway of apoptosis that orchestrate mitochondrial outer membrane permeabilization (MOMP) through interactions with their proapoptotic counterparts. Overexpression of antiapoptotic Bcl-2 family proteins has been linked to therapy resistance and poor prognosis in diverse cancers. Among the antiapoptotic Bcl-2 family members, predominant overexpression of the prosurvival myeloid cell leukemia-1 (Mcl-1) has been reported in a myriad of hematological malignancies and solid tumors, contributing to therapy resistance and poor outcomes, thus making it a potential druggable target. The unique structure of Mcl-1 and its complex regulatory mechanism makes it an adaptive prosurvival switch that ensures tumor cell survival despite therapeutic intervention. This review focusses on diverse mechanisms adopted by tumor cells to maintain sustained elevated levels of Mcl-1 and how high Mcl-1 levels contribute to resistance in conventional as well as targeted therapies. Moreover, recent developments in the Mcl-1-targeted therapeutics and the underlying challenges and considerations in designing novel Mcl-1 inhibitors are also discussed.
Collapse
Affiliation(s)
- Prasad Sulkshane
- Glickman Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| |
Collapse
|
35
|
Meira CS, Soares JWC, Dos Reis BPZC, Pacheco LV, Santos IP, Silva DKC, de Lacerda JC, Daltro SRT, Guimarães ET, Soares MBP. Therapeutic Applications of Physalins: Powerful Natural Weapons. Front Pharmacol 2022; 13:864714. [PMID: 35450054 PMCID: PMC9016203 DOI: 10.3389/fphar.2022.864714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
Physalins, or 16,24-cyclo-13,14-seco steroids, are compounds belonging to the class of withanolides that can be found in plants of Solanaceae family, mainly in species belonging to the genus Physalis spp., which are annual herbaceous plants widely distributed in tropical and subtropical regions of the world. Physalins are versatile molecules that act in several cell signaling pathways and activate different mechanisms of cell death or immunomodulation. A number of studies have shown a variety of actions of these compounds, including anticancer, anti-inflammatory, antiparasitic, antimicrobial, antinociceptive, and antiviral activities. Here we reviewed the main findings related to the anticancer, immunomodulatory, and antiparasitic activities of physalins and its mechanisms of action, highlighting the \challenges and future directions in the pharmacological application of physalins.
Collapse
Affiliation(s)
- Cássio Santana Meira
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.,Department of Life Sciences, State University of Bahia (UNEB), Salvador, Brazil
| | | | | | | | | | | | - Julia Costa de Lacerda
- Bahiana School of Medicine and Public Health, Bahiana Foundation for the Development of Sciences, Salvador, Brazil
| | | | - Elisalva Teixeira Guimarães
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.,Department of Life Sciences, State University of Bahia (UNEB), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| |
Collapse
|
36
|
Meng X, Cui X, Shao X, Liu Y, Xing Y, Smith V, Xiong S, Macip S, Chen Y. poly(I:C) synergizes with proteasome inhibitors to induce apoptosis in cervical cancer cells. Transl Oncol 2022; 18:101362. [PMID: 35151092 PMCID: PMC8842080 DOI: 10.1016/j.tranon.2022.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
|
37
|
Parihar RD, Dhiman U, Bhushan A, Gupta PK, Gupta P. Heterorhabditis and Photorhabdus Symbiosis: A Natural Mine of Bioactive Compounds. Front Microbiol 2022; 13:790339. [PMID: 35422783 PMCID: PMC9002308 DOI: 10.3389/fmicb.2022.790339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Phylum Nematoda is of great economic importance. It has been a focused area for various research activities in distinct domains across the globe. Among nematodes, there is a group called entomopathogenic nematodes, which has two families that live in symbiotic association with bacteria of genus Xenorhabdus and Photorhabdus, respectively. With the passing years, researchers have isolated a wide array of bioactive compounds from these symbiotically associated nematodes. In this article, we are encapsulating bioactive compounds isolated from members of the family Heterorhabditidae inhabiting Photorhabdus in its gut. Isolated bioactive compounds have shown a wide range of biological activity against deadly pathogens to both plants as well as animals. Some compounds exhibit lethal effects against fungi, bacteria, protozoan, insects, cancerous cell lines, neuroinflammation, etc., with great potency. The main aim of this article is to collect and analyze the importance of nematode and its associated bacteria, isolated secondary metabolites, and their biomedical potential, which can serve as potential leads for further drug discovery.
Collapse
Affiliation(s)
| | | | - Anil Bhushan
- Natural Products and Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prashant Kumar Gupta
- Department of Horticulture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
38
|
Revisiting Proteasome Inhibitors: Molecular Underpinnings of Their Development, Mechanisms of Resistance and Strategies to Overcome Anti-Cancer Drug Resistance. Molecules 2022; 27:molecules27072201. [PMID: 35408601 PMCID: PMC9000344 DOI: 10.3390/molecules27072201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Proteasome inhibitors have shown relevant clinical activity in several hematological malignancies, namely in multiple myeloma and mantle cell lymphoma, improving patient outcomes such as survival and quality of life, when compared with other therapies. However, initial response to the therapy is a challenge as most patients show an innate resistance to proteasome inhibitors, and those that respond to the therapy usually develop late relapses suggesting the development of acquired resistance. The mechanisms of resistance to proteasome inhibition are still controversial and scarce in the literature. In this review, we discuss the development of proteasome inhibitors and the mechanisms of innate and acquired resistance to their activity—a major challenge in preclinical and clinical therapeutics. An improved understanding of these mechanisms is crucial to guiding the design of new and more effective drugs to tackle these devastating diseases. In addition, we provide a comprehensive overview of proteasome inhibitors used in combination with other chemotherapeutic agents, as this is a key strategy to combat resistance.
Collapse
|
39
|
Shkedi A, Taylor IR, Echtenkamp F, Ramkumar P, Alshalalfa M, Rivera-Márquez GM, Moses MA, Shao H, Karnes RJ, Neckers L, Feng F, Kampmann M, Gestwicki JE. Selective vulnerabilities in the proteostasis network of castration-resistant prostate cancer. Cell Chem Biol 2022; 29:490-501.e4. [PMID: 35108506 PMCID: PMC8934263 DOI: 10.1016/j.chembiol.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/17/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is associated with an increased reliance on heat shock protein 70 (HSP70), but it is not clear what other protein homeostasis (proteostasis) factors might be involved. To address this question, we performed functional and synthetic lethal screens in four prostate cancer cell lines. These screens confirmed key roles for HSP70, HSP90, and their co-chaperones, but also suggested that the mitochondrial chaperone, HSP60/HSPD1, is selectively required in CRPC cell lines. Knockdown of HSP60 does not impact the stability of androgen receptor (AR) or its variants; rather, it is associated with loss of mitochondrial spare respiratory capacity, partly owing to increased proton leakage. Finally, transcriptional data revealed a correlation between HSP60 levels and poor survival of prostate cancer patients. These findings suggest that re-wiring of the proteostasis network is associated with CRPC, creating selective vulnerabilities that might be targeted to treat the disease.
Collapse
Affiliation(s)
- Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Isabelle R Taylor
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frank Echtenkamp
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Poornima Ramkumar
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mohamed Alshalalfa
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Génesis M Rivera-Márquez
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael A Moses
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Felix Feng
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
40
|
Leister H, Krause FF, Mahdavi R, Steinhoff U, Visekruna A. The Role of Immunoproteasomes in Tumor-Immune Cell Interactions in Melanoma and Colon Cancer. Arch Immunol Ther Exp (Warsz) 2022; 70:5. [PMID: 35064840 PMCID: PMC8783903 DOI: 10.1007/s00005-022-00644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022]
Abstract
The participation of proteasomes in vital cellular and metabolic processes that are involved in tumor growth has made this protease complex an attractive target for cancer treatment. In contrast to ubiquitously available constitutive proteasome, the increased enzymatic activity of immunoproteasome is associated with tumor-infiltrating immune cells, such as antigen-presenting cells and T lymphocytes. In various tumors, an effective anti-tumor immunity is provided through generation of tumor-associated antigens by proteasomes, contributing crucially to cancer eradication by T lymphocytes. The knowledge regarding the role of immunoproteasomes in the communication between tumor cells and infiltrating immune cells is limited. Novel data suggest that the involvement of immunoproteasomes in tumorigenesis is more complex than previously thought. In the intestine, in which diverse signals from commensal bacteria and food can contribute to the onset of chronic inflammation and inflammation-driven cancer, immunoproteasomes exert tumorigenic properties by modulating the expression of pro-inflammatory factors. In contrast, in melanoma and non-small cell lung cancer, the immunoproteasome acts against cancer development by promoting an effective anti-tumor immunity. In this review, we highlight the potential of immunoproteasomes to either contribute to inflammatory signaling and tumor development, or to support anti-cancer immunity. Further, we discuss novel therapeutic options for cancer treatments that are associated with modulating the activity of immunoproteasomes in the tumor microenvironment.
Collapse
Affiliation(s)
- Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Rouzbeh Mahdavi
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
41
|
Wang SY, Shih YH, Shieh TM, Tseng YH. Proteasome Inhibitors Interrupt the Activation of Non-Canonical NF-κB Signaling Pathway and Induce Cell Apoptosis in Cytarabine-Resistant HL60 Cells. Int J Mol Sci 2021; 23:ijms23010361. [PMID: 35008789 PMCID: PMC8745175 DOI: 10.3390/ijms23010361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Over half of older patients with acute myeloid leukemia (AML) do not respond to cytotoxic chemotherapy, and most responders relapse because of drug resistance. Cytarabine is the main drug used for the treatment of AML. Intensive treatment with high-dose cytarabine can increase the overall survival rate and reduce the relapse rate, but it also increases the likelihood of drug-related side effects. To optimize cytarabine treatment, understanding the mechanism underlying cytarabine resistance in leukemia is necessary. In this study, the gene expression profiles of parental HL60 cells and cytarabine-resistant HL60 (R-HL60) cells were compared through gene expression arrays. Then, the differential gene expression between parental HL60 and R-HL60 cells was measured using KEGG software. The expression of numerous genes associated with the nuclear factor κB (NF-κB) signaling pathway changed during the development of cytarabine resistance. Proteasome inhibitors inhibited the activity of non-canonical NF-κB signaling pathway and induced the apoptosis of R-HL60 cells. The study results support the application and possible mechanism of proteasome inhibitors in patients with relapsed or refractory leukemia.
Collapse
Affiliation(s)
- Shuo-Yu Wang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dental Hygiene, China Medical University, Taichung 40402, Taiwan
| | - Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +88-673-121-101 (ext. 6356)
| |
Collapse
|
42
|
Jayaweera SPE, Wanigasinghe Kanakanamge SP, Rajalingam D, Silva GN. Carfilzomib: A Promising Proteasome Inhibitor for the Treatment of Relapsed and Refractory Multiple Myeloma. Front Oncol 2021; 11:740796. [PMID: 34858819 PMCID: PMC8631731 DOI: 10.3389/fonc.2021.740796] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
The proteasome is crucial for the degradation of intracellular proteins and plays an important role in mediating a number of cell survival and progression events by controlling the levels of key regulatory proteins such as cyclins and caspases in both normal and tumor cells. However, compared to normal cells, cancer cells are more dependent on the ubiquitin proteasome pathway (UPP) due to the accumulation of proteins in response to uncontrolled gene transcription, allowing proteasome to become a potent therapeutic target for human cancers such as multiple myeloma (MM). Up to date, three proteasome inhibitors namely bortezomib (2003), carfilzomib (2012) and ixazomib (2015) have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed and/or refractory MM. This review mainly focuses on the biochemical properties, mechanism of action, toxicity profile and pivotal clinical trials related to carfilzomib, a second-generation proteasome inhibitor that binds irreversibly with proteasome to overcome the major toxicities and resistance associated with bortezomib.
Collapse
Affiliation(s)
| | | | - Dharshika Rajalingam
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Gayathri N Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
43
|
Lin S, Yan Z, Tang Q, Zhang S. Ubiquitin-associated protein 2 like (UBAP2L) enhances growth and metastasis of gastric cancer cells. Bioengineered 2021; 12:10232-10245. [PMID: 34823423 PMCID: PMC8809994 DOI: 10.1080/21655979.2021.1982308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Ubiquitin-proteasome pathway has emerged as therapeutic targets for cancer. GEPIA database analysis showed that the expression of ubiquitin-associated protein 2 like (UBAP2L) in gastric cancer specimens was significantly higher than that in non-tumor tissue, and its high expression is associated with poor survival of gastric cancer patients. This study aims to investigate the role of UBAP2L in gastric cancer. Real-time PCR and western blot results showed that UBAP2L expression was upregulated in gastric cancer cell lines. Loss- and gain-of-function experiments demonstrated that silencing of UBAP2L inhibited proliferation, migration and invasion, and induced apoptosis of gastric cancer cells, and overexpression of UBAP2L played opposite roles. Nude mice inoculated with UBAP2L-silenced gastric cancer cells generated smaller xenografted tumors in vivo. Furthermore, UBAP2L activated Wnt/β-catenin signaling - the accumulation of nuclear β-catenin and the expression of its downstream targets (cyclin D1, AXIN-2 and c-MYC) was facilitated, whereas knockdown of UBAP2L deactivated this signaling. The tumor-suppressing effect of UBAP2L silencing was abolished by forced activation of β-cateninS33A. UBAP2L has been confirmed as a novel and direct target of miR-148b-3p. The anti-tumor effect of miR-148b-3p was partly reversed by UBAP2L overexpression. The expression of miR-148b-3p was negatively correlated with that of UBAP2L in gastric cancer samples. Overall, our study indicates that UBAP2L is required to maintain malignant behavior of gastric cancer cells, which involves the activation of Wnt/β-catenin signaling pathway. We propose UBAP2L as a potential therapeutic target against gastric cancer.
Collapse
Affiliation(s)
- Sihan Lin
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhiyong Yan
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, People’s Republic of China
| | - Qiaofei Tang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, People’s Republic of China
| | - Shuang Zhang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, People’s Republic of China
| |
Collapse
|
44
|
Sung K, Hosoya K, Murase Y, Deguchi T, Kim S, Sunaga T, Okumura M. Visualizing the cancer stem-like properties of canine tumour cells with low proteasome activity. Vet Comp Oncol 2021; 20:324-335. [PMID: 34719098 DOI: 10.1111/vco.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Cancer stem-like cells (CSCs) cause treatment failure in various tumours; however, establishing CSC-targeted therapies has been hampered by difficulties in the identification and isolation of this small sub-population of cells. Recent studies have revealed that tumour cells with low proteasome activity display a CSC phenotype that can be utilized to image CSCs in canines. This study visualizes and reveals the CSC-like properties of tumour cells with low proteasome activity in HMPOS (osteosarcoma) and MegTCC (transitional cell carcinoma), which are canine cell lines. The parent cells were genetically engineered to express ZsGreen1, a fluorescent protein connected to the carboxyl-terminal degron of canine ornithine decarboxylase that accumulates with low proteasome activity (ZsG+ cells). ZsG+ cells were imaged and the mode of action of this system was confirmed using a proteasome inhibitor (MG-132), which increased the ZsGreen1 fluorescence intensity. The CSC-like properties of ZsG+ cells were evaluated on the basis of cell divisions, cell cycle, the expression of CSC markers and tumourigenicity. ZsG+ cells underwent asymmetric divisions and had a low percentage of G0/G1 phase cells; moreover, ZsG+ cells expressed CSC markers such as CD133 and showed a large tumourigenic capability. In histopathological analysis, ZsG+ cells were widely distributed in the tumour samples derived from ZsG+ cells and in the proliferative regions of the tumours. The results of this study indicate that visualized canine tumour cells with low proteasome activity have a CSC-like phenotype and that this visualization system can be utilized to identify and isolate canine CSCs.
Collapse
Affiliation(s)
- Koangyong Sung
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Murase
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
45
|
Malacrida A, Cavalloro V, Martino E, Costa G, Ambrosio FA, Alcaro S, Rigolio R, Cassetti A, Miloso M, Collina S. Anti-Multiple Myeloma Potential of Secondary Metabolites from Hibiscus sabdariffa-Part 2. Molecules 2021; 26:6596. [PMID: 34771006 PMCID: PMC8588054 DOI: 10.3390/molecules26216596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple Myeloma (MM) is an aggressive tumor causing millions of deaths every year and currently available therapies are often unsuccessful or correlated with severe side effects. In our previous work we demonstrated that the Hibiscus sabdariffa hydroalcoholic extract inhibits the growth of the MM cell line and we isolated two metabolites responsible for the activity: Hib-ester and Hib-carbaldehyde. Herein we report their interaction with proteasome, one of the main targets in the fight against MM. The molecular modelling study outlined a good interaction of both compounds with the target and these results prompted us to investigate their potential to inhibit proteasome. Metabolites were then isolated from the calyces and an extract with a high content of Hib-ester and Hib-carbaldehyde was prepared. An anticancer profile was drawn, evaluating apoptosis, autophagy and proteasome inhibition, with the anticancer properties being mainly attributed to the Hib-ester and Hib-carbaldehyde, while the proteasome inhibition of the extract could also be ascribed to the presence of anthocyanins, a class of secondary metabolites already known for their proteasome inhibitory activity.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (A.M.); (R.R.)
- Experimental Neurology Unit, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valeria Cavalloro
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Emanuela Martino
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giosuè Costa
- Department of Health Sciences, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
- Net4Science Academic Spin-Off, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Località Condoleo di Belcastro (CZ), 88050 Belcastro, Italy
| | - Francesca Alessandra Ambrosio
- Department of Health Sciences, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
| | - Stefano Alcaro
- Department of Health Sciences, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
- Net4Science Academic Spin-Off, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Località Condoleo di Belcastro (CZ), 88050 Belcastro, Italy
| | - Roberta Rigolio
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (A.M.); (R.R.)
- Experimental Neurology Unit, University of Milano-Bicocca, 20900 Monza, Italy
| | - Arianna Cassetti
- CREA, Research Centre for Vegetable and Ornamental Crops, 18038 Sanremo, Italy;
| | - Mariarosaria Miloso
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy; (A.M.); (R.R.)
- Experimental Neurology Unit, University of Milano-Bicocca, 20900 Monza, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
46
|
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm (Vienna) 2021; 129:141-172. [PMID: 34689261 PMCID: PMC8541819 DOI: 10.1007/s00702-021-02431-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin–proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.
Collapse
Affiliation(s)
- Franziska Hommen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Saygın Bilican
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
47
|
El Yaagoubi OM, Oularbi L, Bouyahya A, Samaki H, El Antri S, Aboudkhil S. The role of the ubiquitin-proteasome pathway in skin cancer development: 26S proteasome-activated NF-κB signal transduction. Cancer Biol Ther 2021; 22:479-492. [PMID: 34583610 DOI: 10.1080/15384047.2021.1978785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Ubiquitin-Proteasome System plays a central role in signal transduction associated with stress, in the skin in particular by the control of NF-κB pathways. Under normal conditions, the inhibitory protein IκB is phosphorylated by kinases, then ubiquitinated and ends up at the proteasome to be degraded. The present short review discusses recent progress in the inhibition of NF-κB activation by proteasome inhibitors prevents the degradation of protein IκB, which accumulates in the cytosol, and there by the activation of NF-κB. Moreover, would not only limit the expression of adhesion molecules and cytokines involved in metastatic processes, but also increase the sensitivity of cancer cells to apoptosis. Considering this fact, the activity of NF-κB is regulated by the phosphorylation and proteasome-dependent degradation of its inhibitor Iκb. In this scenario, the use of a proteasome inhibitor might be an effective strategy in the treatment of skin cancer with constitutive activation of NF-κB.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Larbi Oularbi
- Laboratory of Materials, Membranes, and Environment, Faculty of Science and Technology-Mohammedia, Hassan II University, Casablanca, Morocco.,Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University, Benguerir Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.,Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco
| | - Said El Antri
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
48
|
Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, Lum PT, Subramaniyan V, Wu YS, Fuloria NK, Fuloria S. Mangifera indica (Mango): A Promising Medicinal Plant for Breast Cancer Therapy and Understanding Its Potential Mechanisms of Action. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:471-503. [PMID: 34548817 PMCID: PMC8448164 DOI: 10.2147/bctt.s316667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Globally, breast cancer is the most common cancer type and is one of the most significant causes of deaths in women. To date, multiple clinical interventions have been applied, including surgical resection, radiotherapy, endocrine therapy, targeted therapy and chemotherapy. However, 1) the lack of therapeutic options for metastatic breast cancer, 2) resistance to drug therapy and 3) the lack of more selective therapy for triple-negative breast cancer are some of the major challenges in tackling breast cancer. Given the safe nature of natural products, numerous studies have focused on their anti-cancer potentials. Mangifera indica, commonly known as mango, represents one of the most extensively investigated natural sources. In this review, we provide a comprehensive overview of M. indica extracts (bark, kernel, leaves, peel and pulp) and phytochemicals (mangiferin, norathyriol, gallotannins, gallic acid, pyrogallol, methyl gallate and quercetin) reported for in vitro and in vivo anti-breast cancer activities and their underlying mechanisms based on relevant literature from several scientific databases, including PubMed, Scopus and Google Scholar till date. Overall, the in vitro findings suggest that M. indica extracts and/or phytochemicals inhibit breast cancer cell growth, proliferation, migration and invasion as well as trigger apoptosis and cell cycle arrest. In vivo results demonstrated that there was a reduction in breast tumor xenograft growth. Several potential mechanisms underlying the anti-breast cancer activities have been reported, which include modulation of oxidative status, receptors, signalling pathways, miRNA expression, enzymes and cell cycle regulators. To further explore this medicinal plant against breast cancer, future research directions are addressed. The outcomes of the review revealed that M. indica extracts and their phytochemicals may have potential benefits in the management of breast cancer in women. However, to validate its utility in the creation of innovative and potent therapeutic agents to treat breast cancer, more dedicated research, especially clinical studies are needed to explore the anti-breast cancer potentials of M. indica extracts and their phytochemicals.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, 42610, Malaysia
| | | | | |
Collapse
|
49
|
The Proteasome Inhibitor Bortezomib Induces Apoptosis and Activation in Gel-Filtered Human Platelets. Int J Mol Sci 2021; 22:ijms22168955. [PMID: 34445660 PMCID: PMC8396574 DOI: 10.3390/ijms22168955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Bortezomib (BTZ) has demonstrated its efficacy in several hematological disorders and has been associated with thrombocytopenia. There is controversy about the effect of BTZ on human platelets, so we set out to determine its effect on various types of platelet samples. Human platelets were investigated in platelet-rich plasma (PRP) and as gel-filtered platelets (GFPs). Mitochondrial inner membrane potential depolarization and phosphatidylserine (PS) and P-selectin expression levels were studied by flow cytometry, while thrombin generation was measured by a fluorescent method. In PRP, BTZ caused negligible PS expression after 60 min of treatment. However, in GFPs, PS expression was dose- and time-dependently increased in the BTZ-treated groups, as was P-selectin. The percentage of depolarized cells was also higher after BTZ pretreatment at both time points. Peak thrombin and velocity index increased significantly even with the lowest BTZ concentration (p = 0.0019; p = 0.0032) whereas time to peak and start tail parameters decreased (p = 0.0007; p = 0.0034). The difference between PRP and GFP results can be attributed to the presence of plasma proteins in PRP, as the PS-stimulating effect of BTZ could be attenuated by supplementing GFPs with purified human albumin. Overall, BTZ induces a procoagulant platelet phenotype in an experimental setting devoid of plasma proteins.
Collapse
|
50
|
Cervantes CE, Kant S, Atta MG. The Link Between Conventional and Novel Anti-Cancer Therapeutics with Thrombotic Microangiopathy. Drug Metab Lett 2021; 14:97-105. [PMID: 34279209 DOI: 10.2174/1872312814666210716141633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Kidney disease associated with cancer and anti-cancer therapies has been increasingly recognized in the field of onco-nephrology. In particular, drug-induced nephrotoxicity has important implications since most chemotherapeutic agents have a nephrotoxic potential. Also, standard creatinine clearance methods used for the measurement of kidney function have been questioned in cancer patients due to factors like low muscle mass and poor nutritional status. Overestimations of the glomerular filtration rate, not only can increase the nephrotoxic potential of different agents, but also further limit the use of first-line therapies. OBJECTIVE This review covers specifically the drug-induced thrombotic microangiopathy and its two pathophysiologic mechanisms which include immune or idiosyncratic reactions, and non-immune or dose-dependent ones. CONCLUSION As novel cancer therapies are developed, it is paramount to pursue a better understanding of conventional and novel chemotherapeutic agents and their role in kidney disease.
Collapse
Affiliation(s)
- Carmen E Cervantes
- Department of Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland MD 21218, United States
| | - Sam Kant
- Department of Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland MD 21218, United States
| | - Mohamed G Atta
- Department of Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland MD 21218, United States
| |
Collapse
|