1
|
Lu W, Feng W, Zhen H, Jiang S, Li Y, Liu S, Ru Q, Xiao W. Unlocking the therapeutic potential of WISP-1: A comprehensive exploration of its role in age-related musculoskeletal disorders. Int Immunopharmacol 2025; 145:113791. [PMID: 39667044 DOI: 10.1016/j.intimp.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
As the global population ages, the incidence of age-related musculoskeletal diseases continues to increase, driven by numerous complex and poorly understood factors. WNT-1 inducible secreted protein 1 (WISP-1), a secreted matrix protein, plays a critical role in the growth and development of the musculoskeletal system, including chondrogenesis, osteogenesis, and myogenesis. Numerous in vivo and in vitro studies have demonstrated that WISP-1 is significantly upregulated in age-related musculoskeletal conditions, such as osteoarthritis, osteoporosis, and sarcopenia, suggesting its involvement in the pathogenesis of these diseases. Regulating WISP-1 expression holds promise as a therapeutic strategy for improving musculoskeletal function, potentially offering new avenues for treating age-related musculoskeletal diseases in clinical practice. This review highlights the signaling pathways associated with WISP-1, its physiological roles within the musculoskeletal system, and its therapeutic potential in treating age-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Haozu Zhen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710001, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Singh K, Witek M, Brahmbhatt J, McEntire J, Thirunavukkarasu K, Oladipupo SS. Stage-Dependent Fibrotic Gene Profiling of WISP1-Mediated Fibrogenesis in Human Fibroblasts. Cells 2024; 13:2005. [PMID: 39682753 PMCID: PMC11640464 DOI: 10.3390/cells13232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease with unknown etiology, characterized by chronic inflammation and tissue scarring. Although, Pirfenidone and Nintedanib slow the disease progression, no currently available drugs or therapeutic interventions address the underlying cause, highlighting the unmet medical need. A matricellular protein, Wnt-1-induced secreted protein 1 (WISP1), also referred to as CCN4 (cellular communication network factor 4), is a secreted multi-modular protein implicated in multi-organ fibrosis. Although the precise mechanism of WISP1-mediated fibrosis remains unclear, emerging evidence indicates that WISP1 is profibrotic in nature. While WISP1-targeting therapy is applied in the clinic for fibrosis, detailed interrogation of WISP1-mediated fibrogenic molecular and biological pathways is lacking. Here, for the first time, using NanoString® technology, we identified a novel WISP1-associated profibrotic gene signature and molecular pathways potentially involved in the initiation and progression of fibrosis in primary human dermal and lung fibroblasts from both healthy individuals and IPF patients. Our data demonstrate that WISP1 is upregulated in IPF-lung fibroblasts as compared to healthy control. Furthermore, our results confirm that WISP1 is downstream of the transforming growth factor-β (TGFβ), and it induces fibroblast cell proliferation. Additionally, WISP1 induced IL6 and CCL2 in fibroblasts. We also developed a novel, combined TGFβ and WISP1 in vitro system to demonstrate a role for WISP1 in the progression of fibrosis. Overall, our findings uncover not only similarities but also striking differences in the molecular profile of WISP1 in human fibroblasts, both during the initiation and progression phases, as well as in disease-specific context.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (K.S.); (J.M.)
| | - Marta Witek
- Protein Optimization, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (M.W.); (J.B.)
| | - Jaladhi Brahmbhatt
- Protein Optimization, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (M.W.); (J.B.)
| | - Jacquelyn McEntire
- Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (K.S.); (J.M.)
| | - Kannan Thirunavukkarasu
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA;
| | - Sunday S. Oladipupo
- Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (K.S.); (J.M.)
| |
Collapse
|
3
|
Zhao Y, Wang G, Wei Z, Li D, Morshedi M. RETRACTED ARTICLE: Wnt, notch signaling and exercise: what are their functions? Hum Cell 2024; 37:1612. [PMID: 38386243 DOI: 10.1007/s13577-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Yijie Zhao
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Guangjun Wang
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Zhifeng Wei
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Duo Li
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | | |
Collapse
|
4
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
5
|
Hamdan Alshganbee MF, Nabatchian F, Farrokhi V, Fadaei R, Moradi N, Afrisham R. A positive association of serum CCN5/WISP2 levels with the risk of developing gestational diabetes mellitus: a case-control study. J Physiol Sci 2023; 73:22. [PMID: 37794318 PMCID: PMC10717677 DOI: 10.1186/s12576-023-00879-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION CCN5/WISP2 is prominently manifest in adipose tissue and has been linked to the pathogenesis of obesity, diabetes, and insulin resistance. However, discrepancies exist in previous studies, and little is known about its association with gestational diabetes mellitus (GDM). The current investigation is designed to examine the correlation of WISP2 with risk factors in GDM patients in comparison to healthy pregnant women for the first time. METHODS This case-control study measured serum levels of CCN5, TNF-α, IL-6, adiponectin, and fasting insulin using ELISA kits in 88 GDM patients and 88 pregnant women. RESULTS The GDM group had remarkably higher serum levels of CCN5 (379.41 ± 83.078 ng/ml) compared to controls (212.02 ± 77.935 ng/ml). In a similar vein, it was observed that patients diagnosed with GDM exhibited elevated levels of pro-inflammatory cytokines such as IL-6 and TNF-α; while conversely, adiponectin levels were found to be significantly lower than those observed in the control group (P < 0.0001). In women with GDM, a positive and significant correlation was observed between CCN5 and BMI, FBG, insulin, HOMA-IR, as well as IL-6 and TNF-α levels. In the adjusted model, the risk of GDM was significantly increased with elevated serum CCN5 level. CONCLUSION Our research indicates a noteworthy and affirmative correlation between the levels of CCN5 in the serum and the risk of developing GDM, along with its associated risk factors such as BMI, insulin resistance index, FBG, and inflammatory cytokines (TNF-α and IL-6). These findings suggest that CCN5 could potentially play a role in the etiology of GDM.
Collapse
Affiliation(s)
| | - Fariba Nabatchian
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Xega V, Alami T, Liu JL. Recent progress on the role of cellular communication network factors (CCN) 3, 4 and 6 in regulating adiposity, liver fibrosis and pancreatic islets. J Cell Commun Signal 2023:10.1007/s12079-023-00765-8. [PMID: 37245185 DOI: 10.1007/s12079-023-00765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
CCN/WISP (cellular communication network factors, or Wnt-inducted secreted proteins) family of proteins consists of six extracellular matrix (ECM)-associated proteins that regulate development, cell adhesion and proliferation, ECM remodeling, inflammation, and tumorigenesis. In the last two decades, metabolic regulation by these matricellular proteins has been studied extensively, several excellent reviews have covered the roles of CCN1, -2 and - 5. In this brief review, we will focus on those lesser-known members and more recent discoveries, together with other recent articles presenting a more complete picture of the current state of knowledge. We have found that CCN2, -4, and - 5 promote pancreatic islet function, while CCN3 plays a unique and negative role. CCN3 and - 4 are pro-adiposity leading to insulin resistance, but CCN5 and - 6 are anti-adiposity. While CCN2 and - 4 promote tissue fibrosis and inflammation, all other four members are clearly anti-fibrotic. As for cellular signaling, they are known to interact with integrins, other cell membrane proteins and ECM thereby regulate Akt/protein kinase B, myocardin-related transcription factor (MRTF), and focal adhesion kinase. Yet, a cohesive mechanism of action to comprehensively explain those major functions is still lacking.
Collapse
Affiliation(s)
- Viktoria Xega
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Tara Alami
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Jun-Li Liu
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
7
|
Pan D, Li G, Jiang C, Hu J, Hu X. Regulatory mechanisms of macrophage polarization in adipose tissue. Front Immunol 2023; 14:1149366. [PMID: 37283763 PMCID: PMC10240406 DOI: 10.3389/fimmu.2023.1149366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
In adipose tissue, macrophages are the most abundant immune cells with high heterogeneity and plasticity. Depending on environmental cues and molecular mediators, adipose tissue macrophages (ATMs) can be polarized into pro- or anti-inflammatory cells. In the state of obesity, ATMs switch from the M2 polarized state to the M1 state, which contributes to chronic inflammation, thereby promoting the pathogenic progression of obesity and other metabolic diseases. Recent studies show that multiple ATM subpopulations cluster separately from the M1 or M2 polarized state. Various factors are related to ATM polarization, including cytokines, hormones, metabolites and transcription factors. Here, we discuss our current understanding of the potential regulatory mechanisms underlying ATM polarization induced by autocrine and paracrine factors. A better understanding of how ATMs polarize may provide new therapeutic strategies for obesity-related diseases.
Collapse
Affiliation(s)
- Dun Pan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunlin Jiang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Yeger H. CCN proteins: opportunities for clinical studies-a personal perspective. J Cell Commun Signal 2023:10.1007/s12079-023-00761-y. [PMID: 37195381 DOI: 10.1007/s12079-023-00761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
The diverse members of the CCN family now designated as CCN1(CYR61), CCN2 (CTGF), CCN3(NOV), CCN4(WISP1), CCN5(WISP2), CCN6(WISP3) are a conserved matricellular family of proteins exhibiting a spectrum of functional properties throughout all organs in the body. Interaction with cell membrane receptors such as integrins trigger intracellular signaling pathways. Proteolytically cleaved fragments (constituting the active domains) can be transported to the nucleus and perform transcriptional relevant functional activities. Notably, as also found in other protein families some members act opposite to others creating a system of functionally relevant checks and balances. It has become apparent that these proteins are secreted into the circulation, are quantifiable, and can serve as disease biomarkers. How they might also serve as homeostatic regulators is just becoming appreciated. In this review I have attempted to highlight the most recent evidence under the subcategories of cancer and non-cancer relevant that could lead to potential therapeutic approaches or ideas that can be factored into clinical advances. I have added my own personal perspective on feasibility.
Collapse
Affiliation(s)
- Herman Yeger
- Developmental and Stem Cell Biology, Research Institute, SickKids, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Wang YD, Wu LL, Qi XY, Wang YY, Liao ZZ, Liu JH, Xiao XH. New insight of obesity-associated NAFLD: Dysregulated "crosstalk" between multi-organ and the liver? Genes Dis 2023; 10:799-812. [PMID: 37396503 PMCID: PMC10308072 DOI: 10.1016/j.gendis.2021.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Obesity plays a crucial role in the development of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism for the pathogenesis of obesity-associated NAFLD remains largely obscure. Although the "multiple hit" theory provides a more accurate explanation of NAFLD pathogenesis, it still cannot fully explain precisely how obesity causes NAFLD. The liver is the key integrator of the body's energy needs, receiving input from multiple metabolically active organs. Thus, recent studies have advocated the "multiple crosstalk" hypothesis, highlighting that obesity-related hepatic steatosis may be the result of dysregulated "crosstalk" among multiple extra-hepatic organs and the liver in obesity. A wide variety of circulating endocrine hormones work together to orchestrate this "crosstalk". Of note, with deepening understanding of the endocrine system, the perception of hormones has gradually risen from the narrow sense (i.e. traditional hormones) to the broad sense of hormones as organokines and exosomes. In this review, we focus on the perspective of organic endocrine hormones (organokines) and molecular endocrine hormones (exosomes), summarizing systematically how the two types of new hormones mediate the dialogue between extra-hepatic organs and liver in the pathogenesis of obesity-related NAFLD.
Collapse
Affiliation(s)
- Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang-Liang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Yan Qi
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
10
|
Karaskova E, Kubickova V, Velganova-Veghova M, Geryk M, Foltenova H, Karasek D. Circulating Levels of WISP-1 (Wnt1-Inducible Signaling Pathway Protein 1) and Other Selected Adipokines in Children With Inflammatory Bowel Disease. Physiol Res 2022; 71:275-284. [DOI: 10.33549/physiolres.934854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Wnt1 inducible protein-1 signaling pathway (WISP-1) is a relatively new adipokine involved in many cellular processes, including epithelial mucosa healing. The aim of the study was to compare circulating levels of WISP-1 and other selected adipokines [adiponectin, resistin and retinol-binding protein 4 (RBP-4)] in children with inflammatory bowel disease (IBD) with healthy controls and to investigate possible differences between Crohn's disease patients. (CD) or ulcerative colitis (UC). The study was performed as a case-control study. In addition to adipokines, anthropometric, lipid parameters, markers of inflammation or disease activity were evaluated in all participants. Compared to healthy controls (n=20), significantly lower levels of adiponectin and higher levels of resistin and WISP-1 were found in patients with IBD (n=58). Elevation of WISP-1 was detected only in the CD group (n=31). There were no differences in RBP-4 levels between the groups. Adiponectin, WISP-1 and RBP-4 were independently associated with body mass index only, resistin levels were associated with C-reactive protein levels and leukocyte counts. Adverse adipokines production reflects presence of dysfunctional fat tissue in IBD patients. Higher levels of WISP-1 in CD compared to patients with UC may indicate a specific role for mesenteric adipose tissue in WISP-1 production.
Collapse
|
11
|
Cheng JX, Yu K. New Discovered Adipokines Associated with the Pathogenesis of Obesity and Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:2381-2389. [PMID: 35966830 PMCID: PMC9371465 DOI: 10.2147/dmso.s376163] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity is defined as abnormal or excessive accumulation of adipose tissue, closely associated with the increased risk of various comorbidities, especially type 2 diabetes mellitus (T2DM). Adipose tissue is a complex structure responsible for not only fat storage but also releasing adipokines which may play roles in the pathogenesis and could be developed into biomarkers for diagnosis, treatment and prognosis of obesity-related metabolic diseases. This review aims to summarize several adipokines discovered recently that have promising functions in obesity and T2DM. Among them, the levels of FSTL1, WISP1 and Asprosin in subjects with obesity or diabetes are commonly higher than in normal controls, suggesting that they may be pathogenic. Inversely, SFRP5, Metrnl, NRG4 and FAM19A5 may serve as the protective factors.
Collapse
Affiliation(s)
- Jia-Xue Cheng
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ke Yu
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Ke Yu, Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, No. 82, Xinhua South Road, Tongzhou District, Beijing, People’s Republic of China, Tel +86 13811657618, Email
| |
Collapse
|
12
|
Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, Griffiths HR, Gao D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front Endocrinol (Lausanne) 2022; 13:873699. [PMID: 35909571 PMCID: PMC9329830 DOI: 10.3389/fendo.2022.873699] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation via endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
Collapse
Affiliation(s)
- Yakun Ren
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
| | - Hao Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Lan
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Litao Wu
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaojuan Du
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Dan Gao
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
- *Correspondence: Dan Gao,
| |
Collapse
|
13
|
Li B, Yang J, Gong Y, Xiao Y, Zeng Q, Xu K, Duan Y, He J, He J, Ma H. Integrated Analysis of Liver Transcriptome, miRNA, and Proteome of Chinese Indigenous Breed Ningxiang Pig in Three Developmental Stages Uncovers Significant miRNA-mRNA-Protein Networks in Lipid Metabolism. Front Genet 2021; 12:709521. [PMID: 34603377 PMCID: PMC8481880 DOI: 10.3389/fgene.2021.709521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Liver is an important metabolic organ of mammals. During each transitional period of life, liver metabolism is programmed by a complex molecular regulatory system for multiple physiological functions, many pathways of which are regulated by hormones and cytokines, nuclear receptors, and transcription factors. To gain a comprehensive and unbiased molecular understanding of liver growth and development in Ningxiang pigs, we analyzed the mRNA, microRNA (miRNA), and proteomes of the livers of Ningxiang pigs during lactation, nursery, and fattening periods. A total of 22,411 genes (19,653 known mRNAs and 2758 novel mRNAs), 1122 miRNAs (384 known miRNAs and 738 novel miRNAs), and 1123 unique proteins with medium and high abundance were identified by high-throughput sequencing and mass spectrometry. We show that the differences in transcriptional, post-transcriptional, or protein levels were readily identified by comparing different time periods, providing evidence that functional changes that may occur during liver development are widespread. In addition, we found many overlapping differentially expressed genes (DEGs)/differentially expressed miRNAs (DEMs)/differentially expressed proteins (DEPs) related to glycolipid metabolism in any group comparison. These overlapping DEGs/DEMs/DGPs may play an important role in functional transformation during liver development. Short Time-series Expression Miner (STEM) analysis revealed multiple expression patterns of mRNA, miRNA, and protein in the liver. Furthermore, several diverse key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including immune defense, glycolipid metabolism, protein transport and uptake, and cell proliferation and development, were identified by combined analysis of DEGs and DGPs. A number of predicted miRNA-mRNA-protein pairs were found and validated by qRT-PCR and parallel reaction monitoring (PRM) assays. The results provide new and important information about the genetic breeding of Ningxiang pigs, which represents a foundation for further understanding the molecular regulatory mechanisms of dynamic development of liver tissue, functional transformation, and lipid metabolism.
Collapse
Affiliation(s)
- Biao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yan Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ningxiang Pig Farm of Dalong Livestock Technology Co., Ltd., Ningxiang, China
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
14
|
Williams H, Wadey KS, Frankow A, Blythe HC, Forbes T, Johnson JL, George SJ. Aneurysm severity is suppressed by deletion of CCN4. J Cell Commun Signal 2021; 15:421-432. [PMID: 34080128 DOI: 10.1007/s12079-12021-00623-12075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 05/03/2021] [Indexed: 05/28/2023] Open
Abstract
Patients with abdominal aortic aneurysms are frequently treated with high-risk surgery. A pharmaceutical treatment to reverse aneurysm progression could prevent the need for surgery and save both lives and healthcare resources. Since CCN4 regulates cell migration, proliferation and apoptosis, processes involved in aneurysm progression, it is a potential regulator of aneurysm progression. We investigated the role of CCN4 in a mouse aneurysm model, using apolipoprotein-E knockout (ApoE-/-) mice fed high fat diet and infused with Angiotensin II (AngII). Blood pressure was similarly elevated in CCN4-/-ApoE-/- mice and CCN4+/+ApoE-/- mice (controls) in response to AngII infusion. Deletion of CCN4 significantly reduced the number of ruptured aortae, both thoracic and abdominal aortic area, and aneurysm grade score, compared to controls. Additionally, the frequency of vessel wall remodelling and the number of elastic lamina breaks was significantly suppressed in CCN4-/-ApoE-/- mice compared to controls. Immunohistochemistry revealed a significantly lower proportion of macrophages, while the proportion of smooth muscle cells was not affected by the deletion of CCN4. There was also a reduction in both proliferation and apoptosis in CCN4-/-ApoE-/- mice compared to controls. In vitro studies showed that CCN4 significantly increased monocyte adhesion beyond that seen with TNFα and stimulated macrophage migration by more than threefold. In summary, absence of CCN4 reduced aneurysm severity and improved aortic integrity, which may be the result of reduced macrophage infiltration and cell apoptosis. Inhibition of CCN4 could offer a potential therapeutic approach for the treatment of aneurysms.
Collapse
Affiliation(s)
- Helen Williams
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Kerry S Wadey
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Aleksandra Frankow
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Hazel C Blythe
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Tessa Forbes
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Jason L Johnson
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Sarah J George
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.
| |
Collapse
|
15
|
Williams H, Wadey KS, Frankow A, Blythe HC, Forbes T, Johnson JL, George SJ. Aneurysm severity is suppressed by deletion of CCN4. J Cell Commun Signal 2021; 15:421-432. [PMID: 34080128 PMCID: PMC8222476 DOI: 10.1007/s12079-021-00623-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
Patients with abdominal aortic aneurysms are frequently treated with high-risk surgery. A pharmaceutical treatment to reverse aneurysm progression could prevent the need for surgery and save both lives and healthcare resources. Since CCN4 regulates cell migration, proliferation and apoptosis, processes involved in aneurysm progression, it is a potential regulator of aneurysm progression. We investigated the role of CCN4 in a mouse aneurysm model, using apolipoprotein-E knockout (ApoE-/-) mice fed high fat diet and infused with Angiotensin II (AngII). Blood pressure was similarly elevated in CCN4-/-ApoE-/- mice and CCN4+/+ApoE-/- mice (controls) in response to AngII infusion. Deletion of CCN4 significantly reduced the number of ruptured aortae, both thoracic and abdominal aortic area, and aneurysm grade score, compared to controls. Additionally, the frequency of vessel wall remodelling and the number of elastic lamina breaks was significantly suppressed in CCN4-/-ApoE-/- mice compared to controls. Immunohistochemistry revealed a significantly lower proportion of macrophages, while the proportion of smooth muscle cells was not affected by the deletion of CCN4. There was also a reduction in both proliferation and apoptosis in CCN4-/-ApoE-/- mice compared to controls. In vitro studies showed that CCN4 significantly increased monocyte adhesion beyond that seen with TNFα and stimulated macrophage migration by more than threefold. In summary, absence of CCN4 reduced aneurysm severity and improved aortic integrity, which may be the result of reduced macrophage infiltration and cell apoptosis. Inhibition of CCN4 could offer a potential therapeutic approach for the treatment of aneurysms.
Collapse
Affiliation(s)
- Helen Williams
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW UK
| | - Kerry S. Wadey
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW UK
| | - Aleksandra Frankow
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW UK
| | - Hazel C. Blythe
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW UK
| | - Tessa Forbes
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW UK
| | - Jason L. Johnson
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW UK
| | - Sarah J. George
- Translational Health Sciences, Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW UK
| |
Collapse
|
16
|
Das A, Datta D, Kassir M, Wollina U, Galadari H, Lotti T, Jafferany M, Grabbe S, Goldust M. Acanthosis nigricans: A review. J Cosmet Dermatol 2021; 19:1857-1865. [PMID: 32516476 DOI: 10.1111/jocd.13544] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Acanthosis nigricans (AN) is a cutaneous disorder characterized by symmetric velvety hyperpigmented plaques on intertriginous areas like axilla, neck, inframammary, and groin. AIMS To summarize the pathophysiology and classification of AN, provide an update of diagnostic testing strategies, and describe the current therapeutic options described so far in the literature for this disease. METHODS A comprehensive english language literature search across multiple databases (PubMed, EMBASE, MEDLINE, and Cochrane) for keywords (alone and in combination) was performed. MeSH as well as non-MeSH terms such as "acanthosis nigricans," "classification," "pathophysiology," "diagnosis," "treatment," "topical drugs," "systemic drugs," "chemical peeling," and "lasers" were taken into consideration. RESULTS The pathophysiology of AN revolves around a multifactorial stimulation of proliferation of epidermal keratinocytes and dermal fibroblasts. Various types of AN include benign, obesity-associated, syndromic, malignant, acral, unilateral, medication-induced, and mixed-type. Homeostasis model assessment-insulin resistance (HOMA-IR) is a good tool for assessment of insulin resistance. Management involves general measures (weight reduction and addressing the underlying cause, if any), topical drugs (retinoids, vitamin D analogs, and keratolytics), oral drugs (retinoids and insulin sensitizers), chemical peels (trichloroacetic acid), and lasers (Long pulsed alexandrite, fractional 1550-nm erbium fiber, and CO2 ). CONCLUSION Acanthosis nigricans is a treatable condition; however, complete cure and disappearance of lesions are difficult to achieve. Weight reduction is the most scientific and practical management strategy. Long-term studies and further research is warranted in the pathophysiology and treatment of this common condition.
Collapse
Affiliation(s)
- Anupam Das
- Department of Dermatology, KPC Medical College and Hospital, Kolkata, India
| | | | | | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| | - Hassan Galadari
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Torello Lotti
- University of Studies Guglielmo Marconi, Rome, Italy
| | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamad Goldust
- University of Rome G. Marconi, Rome, Italy.,Department of Dermatology, University Medical Center Mainz, Mainz, Germany.,Department of Dermatology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
17
|
Cheng Y, Du X, Zhang B, Zhang J. Increased Serum WISP1 Levels are Associated with Lower Extremity Atherosclerotic Disease in Patients with type 2 Diabetes Mellitus. Exp Clin Endocrinol Diabetes 2021; 130:248-253. [PMID: 33930896 DOI: 10.1055/a-1474-8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Serum wnt1-induced signaling pathway protein 1 (WISP1) levels are increased with obesity, which is a common complication associated with lower extremity atherosclerotic disease (LEAD). However, to date, the relationship between elevated WISP1 levels and the incidence of lower extremity atherosclerotic disease (LEAD) in type 2 diabetes mellitus (T2DM) remains unclear. METHODS 174 newly diagnosed type 2 diabetic patients were enrolled in our study. Patients were divided into two groups, LEAD group (n=100) and control group (n=74). Anthropometric parameters, blood pressure and some biochemical parameters were obtained. Body composition was detected by bioelectrical impedance analysis (BIA). Levels of serum insulin were determined by radioimmunoassay. Serum WISP1 and interleukin 6 (IL-6) levels were determined using an enzyme-linked immunosorbent assay. RESULTS It was shown that serum WISP1 levels in diabetic patients with LEAD were higher than those without LEAD (P<0.001). Serum WISP1 levels were positively related with waist circumference (r=0.237, P=0.003), waist-hip ratio (r=0.22, P=0.006), visceral fat area (r=0.354, P<0.001), serum creatinine (r=0.192, P=0.012), interleukin 6 (r=0.182, P=0.032), c-reactive protein (r=0.681, P<0.001), triglycerides (r=0.119, P<0.001), fasting glucose (r=0.196, P=0.011), glycated hemoglobin (r=0.284, P<0.001), and HOMA-IR (r=0.285, P<0.026). Compared with the lowest tertile, the odds ratio of the middle tertile for LEAD incidence was 3.27 (95% CI, 1.24-8.64) and 4.46 (95% CI, 1.62-12.29) for the highest tertile after adjusting confounding factors. CONCLUSION The results suggest that increased serum WISP1 levels independently contribute to the incidence of LEAD in patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Yangyang Cheng
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| | - Xiaohui Du
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| | - Bilin Zhang
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| | - Junxia Zhang
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| |
Collapse
|
18
|
Pivovarova-Ramich O, Loske J, Hornemann S, Markova M, Seebeck N, Rosenthal A, Klauschen F, Castro JP, Buschow R, Grune T, Lange V, Rudovich N, Ouwens DM. Hepatic Wnt1 Inducible Signaling Pathway Protein 1 (WISP-1/CCN4) Associates with Markers of Liver Fibrosis in Severe Obesity. Cells 2021; 10:cells10051048. [PMID: 33946738 PMCID: PMC8146455 DOI: 10.3390/cells10051048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a critical complication of obesity-induced fatty liver disease. Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4), a novel adipokine associated with visceral obesity and insulin resistance, also contributes to lung and kidney fibrosis. The aim of the present study was to investigate the role of CCN4 in liver fibrosis in severe obesity. For this, human liver biopsies were collected from 35 severely obese humans (BMI 42.5 ± 0.7 kg/m2, age 46.7 ± 1.8 y, 25.7% males) during bariatric surgery and examined for the expression of CCN4, fibrosis, and inflammation markers. Hepatic stellate LX-2 cells were treated with human recombinant CCN4 alone or in combination with LPS or transforming growth factor beta (TGF-β) and examined for fibrosis and inflammation markers. CCN4 mRNA expression in the liver positively correlated with BMI and expression of fibrosis markers COL1A1, COL3A1, COL6A1, αSMA, TGFB1, extracellular matrix turnover enzymes TIMP1 and MMP9, and the inflammatory marker ITGAX/CD11c. In LX-2 cells, the exposure to recombinant CCN4 caused dose-dependent induction of MMP9 and MCP1. CCN4 potentiated the TGF-β-mediated induction of COL3A1, TIMP1, and MCP1 but showed no interaction with LPS treatment. Our results suggest a potential contribution of CCN4 to the early pathogenesis of obesity-associated liver fibrosis.
Collapse
Affiliation(s)
- Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Correspondence:
| | - Jennifer Loske
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
| | - Nicole Seebeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | | | - Frederick Klauschen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - José Pedro Castro
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - René Buschow
- Department of Microscopy & Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
| | - Tilman Grune
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- German Center for Cardiovascular Research (DZHK), 13347 Berlin, Germany
| | - Volker Lange
- Centre for Obesity and Metabolic Surgery, Vivantes Hospital, 13509 Berlin, Germany;
- Helios Klinikum Berlin-Buch, 13125 Berlin, Germany
| | - Natalia Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Spital Bülach, 8180 Bülach, Switzerland
| | - D. Margriet Ouwens
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- German Diabetes Center, 40225 Duesseldorf, Germany
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
19
|
An Update to the WISP-1/CCN4 Role in Obesity, Insulin Resistance and Diabetes. ACTA ACUST UNITED AC 2021; 57:medicina57020100. [PMID: 33498604 PMCID: PMC7911315 DOI: 10.3390/medicina57020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 01/22/2023]
Abstract
Insulin resistance refers to the diminished response of peripheral tissues to insulin and is considered the major risk factor for type 2 diabetes. Although many possible mechanisms have been reported to develop insulin resistance, the exact underlying processes remain unclear. In recent years, the role of adipose tissue as a highly active metabolic and endocrine organ, producing proteins called adipokines and their multidirectional activities has gained interest. The physiological effects of adipokines include energy homeostasis and insulin sensitivity regulation. In addition, an excess of adipose tissue is followed by proinflammatory state which results in dysregulation of secreted cytokines contributing to insulin resistance. Wingless-type (Wnt) inducible signalling pathway protein-1 (WISP-1), also known as CCN4, has recently been described as a novel adipokine, whose circulating levels are elevated in obese and insulin resistant individuals. Growing evidence suggests that WISP-1 may participate in the impaired glucose homeostasis. In this review, we characterize WISP-1 and summarize the latest reports on the role of WISP-1 in obesity, insulin resistance and type 2 diabetes.
Collapse
|
20
|
Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Commun 2020; 11:5982. [PMID: 33239617 PMCID: PMC7689468 DOI: 10.1038/s41467-020-19657-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Expanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass. The proliferation of pancreatic beta cells decreases with age, partly due to systemic changes. Here the authors identify Wisp1 as a circulating factor enriched in young serum that induces adult beta cell proliferation, supporting the idea that young blood factors may be useful to expand beta cell mass.
Collapse
|
21
|
Zhu Y, Li W, Yang Y, Li Y, Zhao Y. WISP1 indicates poor prognosis and regulates cell proliferation and apoptosis in gastric cancer via targeting AKT/mTOR signaling pathway. Am J Transl Res 2020; 12:7297-7311. [PMID: 33312368 PMCID: PMC7724330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/11/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Gastric cancer (GC) is a serious threat to human health. We aimed to explore the effects of Wnt1 induced signaling protein 1 (WISP1) on GC. METHODS The WISP1 expressions in GC tissues were detected using immunohistochemistry and qRT-PCR. The connection between GC prognosis and WISP1 expression was analyzed via Pearson's χ2 test. The WISP1 expressions were down-regulated in GC cells through siWISP1 transfection. Colony formation assay and cell counting kit-8 assay were carried out to measure cell colony formation and proliferation, respectively. Flow cytometry was operated to examine the cell cycle and apoptosis. The protein expressions in our study were assessed using western blot. The AKT pathway was blocked by LY294002 treatment and then the cell activities were assessed. Furthermore, GC mice models were established to investigate the effects of WISP1 on GC in vivo. RESULTS We found that WISP1 was highly expressed in GC cells and tissues. The up-regulation of WISP1 was related to poor prognosis of GC patients. WISP1 down-regulation reduced colony formation and cell proliferation, resulted cell cycle arrest and promoted cell apoptosis in GC. WISP1 knockdown suppressed AKT/mTOR pathway activity. LY294002 treatment recovered the decreases of colony formation and cell proliferation, arrest of cell cycle and increase of cell apoptosis which were induced by WISP1 knockdown. WISP1 down-regulation repressed GC tumor growth and enhanced tumor apoptosis in vivo. CONCLUSION WISP1 regulated GC cell proliferation and apoptosis in vivo and in vitro through activating AKT/mTOR pathway. WISP1 might be a target in GC therapy.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Pediatrics, The First Affiliated Hospital of China Medical University Shenyang 110001, China
| | - Wei Li
- Department of Pediatrics, The First Affiliated Hospital of China Medical University Shenyang 110001, China
| | - Yuanyuan Yang
- Department of Pediatrics, The First Affiliated Hospital of China Medical University Shenyang 110001, China
| | - You Li
- Department of Pediatrics, The First Affiliated Hospital of China Medical University Shenyang 110001, China
| | - Yueyue Zhao
- Department of Pediatrics, The First Affiliated Hospital of China Medical University Shenyang 110001, China
| |
Collapse
|
22
|
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol 2020; 11:578966. [PMID: 33192583 PMCID: PMC7662468 DOI: 10.3389/fphys.2020.578966] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its role as an energy storage organ, adipose tissue can be viewed as a dynamic and complex endocrine organ, which produces and secretes several adipokines, including hormones, cytokines, extracellular matrix (ECM) proteins, and growth and vasoactive factors. A wide body of evidence showed that adipokines play a critical role in various biological and physiological functions, among which feeding modulation, inflammatory and immune function, glucose and lipid metabolism, and blood pressure control. The aim of this review is to summarize the effects of several adipokines, including leptin, diponectin, resistin, chemerin, lipocalin-2 (LCN2), vaspin, omentin, follistatin-like 1 (FSTL1), secreted protein acidic and rich in cysteine (SPARC), secreted frizzled-related protein 5 (SFRP5), C1q/TNF-related proteins (CTRPs), family with sequence similarity to 19 member A5 (FAM19A5), wingless-type inducible signaling pathway protein-1 (WISP1), progranulin (PGRN), nesfatin-1 (nesfatin), visfatin/PBEF/NAMPT, apelin, retinol binding protein 4 (RPB4), and plasminogen activator inhibitor-1 (PAI-1) in the regulation of insulin resistance and vascular function, as well as many aspects of inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, osteoarticular, and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Brunetti
- Department of Pharmacy, Gabriele d’Annunzio University, Chieti, Italy
| | | |
Collapse
|
23
|
Exercise intervention lowers aberrant serum WISP-1 levels with insulin resistance in breast cancer survivors: a randomized controlled trial. Sci Rep 2020; 10:10898. [PMID: 32616883 PMCID: PMC7331642 DOI: 10.1038/s41598-020-67794-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is associated with increased risk for and recurrence of breast cancer. Recently, Wnt1-inducible signaling pathway protein-1 (WISP-1) was reported to impair glucose metabolism and insulin sensitivity. In various cancer tissues, Wnt signaling is upregulated and induces further oncogenic and metastatic activity. However, the effects of exercise on serum levels of WISP-1 and its upstream β-catenin have not been studied in cancer patients. We investigated the effects of exercise training on Wnt signaling and insulin sensitivity in breast cancer survivors (BCS). This single-center trial randomized 46 BCS into either 12-week exercise or control groups (1:1), and included an additional 12 age-matched healthy women. Kinanthropometric parameters, serum Wnt signaling markers, and gluco-lipid profiles were evaluated before and after the intervention. Serum β-catenin and WISP-1 concentrations were significantly higher in BCS than in healthy subjects. There was a positive correlation between β-catenin and WISP-1 levels.
Exercise training in BCS significantly reduced body fat and waist circumference and enhanced aerobic and muscular fitness. Exercise decreased β-catenin and WISP-1 levels and improved gluco-lipid profiles. There was a notable correlation between changes in HOMA-IR indexes and serum WISP-1, but not with β-catenin during the exercise intervention. In conclusion, a 12-week community-based exercise intervention resulted in significant reductions in serum β-catenin and WISP-1 levels, accompanied by favorable improvements in body composition, physical fitness, and biochemical parameters in BCS.
We also highlight that this is the first report concerning effects of exercise on circulating β-catenin and WISP-1 levels and correlations between WISP-1 and insulin sensitivity, which could be important for determining prognoses for BCS.
Collapse
|
24
|
Liu L, Hu J, Yang L, Wang N, Liu Y, Wei X, Gao M, Wang Y, Ma Y, Wen D. Association of WISP1/CCN4 with Risk of Overweight and Gestational Diabetes Mellitus in Chinese Pregnant Women. DISEASE MARKERS 2020; 2020:4934206. [PMID: 32377270 PMCID: PMC7180395 DOI: 10.1155/2020/4934206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Obese women with gestational diabetes mellitus (GDM) have a higher risk of adverse outcomes than women with obesity or GDM alone. Our study is aimed at investigating the discriminatory power of circulatory Wnt1-inducible signaling pathway protein-1 (WISP1), a novel adipocytokine, on the copresence of prepregnancy overweight/obesity and GDM and at clarifying the relationship between the WISP1 level and clinical cardiometabolic parameters. METHODS A total of 313 participants were screened from a multicenter prospective prebirth cohort: Born in Shenyang Cohort Study (BISCS). Subjects were examined with a 2 × 2 factorial design for body mass index (BMI) ≥ 24 and GDM. Between 24 and 28 weeks of pregnancy, follow-up individuals underwent an OGTT and blood sampling for cardiometabolic characterization. RESULTS We observed that the WISP1 levels were elevated in prepregnancy overweight/obesity patients with GDM, compared with nonoverweight subjects with normal blood glucose (3.45 ± 0.89 vs. 2.91 ± 0.75 ng/mL). Multilogistic regression analyses after adjustments for potential confounding factors revealed that WISP1 was a strong and independent risk factor for prepregnancy overweight/obesity with GDM (all ORs > 1). In addition, the results of the ROC analysis indicated that WISP1 exhibited the capability to identify individuals with prepregnancy overweight/obesity and GDM (all AUC > 0.5). Finally, univariate and multivariate linear regression showed that WISP1 level was positively and independently correlated with fasting blood glucose, systolic blood pressure, and aspartate aminotransferase and was negatively correlated with HDL-C and complement C1q. CONCLUSIONS WISP1 may be critical for the prediction, diagnosis, and therapeutic strategies against obesity and GDM in pregnant women.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Liu Yang
- Department of Obstetrics and Gynecology, Shenyang Maternity and Child Health Hospital, Shenyang, Liaoning Province 110122, China
| | - Ningning Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Yang Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xiaotong Wei
- School of Public Health, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Ming Gao
- School of Public Health, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yinuo Wang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, Liaoning Province 110122, China
| |
Collapse
|
25
|
Donma MM, Güngör ZE, Yılmaz A, Guzel S, Donma O. Assessment of Iron Metabolism-Related Parameters in Obese Children. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2019. [DOI: 10.34172/ajmb.2019.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objectives: The aim of the study was to assess the possible associations among biochemical parameters that may be correlated with the possible mechanisms of iron metabolism in healthy children with normal body mass index (BMI), along with morbid obese (MO) children with and without metabolic syndrome (MetS). Methods: To this end, children aged 6-18 years with no history of any acute or chronic diseases were selected as the population of this prospective case-control study. Thirty MO children (with BMI higher than 99th percentile and without MetS findings), 28 MO children (with BMI higher than 99th percentile and with MetS), and 30 healthy children (with BMI values between 15th and 85th percentiles) participated in the study. Then, anthropometric measurements were recorded, followed by performing the complete blood count and serum iron profile. In addition, ferritin, transferrin, hepcidin, irisin, ferroportin, brain-derived neurotrophic factor (BDNF), WISP1, and PTP1/fortilin levels were measured using ELISA. Finally, statistical analyses were performed and P<0.05 was considered as the level of statistical significance. Results: Significant differences were obtained among the groups regarding anthropometric measurements, blood pressures, triacylglycerols, and high-density lipoprotein cholesterol levels. Further, there was a tendency toward an iron deficiency in both MO groups while an increase in ferritin levels was significant in the MetS group. However, BDNF, hepcidin, and ferroportin demonstrated no significant difference among the groups. Eventually, although the above-mentioned parameters were statistically insignificant, fortilin levels indicated a gradual decrease whereas irisin levels represented an increase from control group toward morbid obesity and MetS. Conclusion: In our study, obesity severity and the tendency toward iron deficiency were in accordance with each other. Particularly, different WISP-1 levels in the groups may help predict future complications, along with its use in diagnosing obesity.
Collapse
Affiliation(s)
- Mustafa Metin Donma
- Department of Pediatrics, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Zeynep Ersöz Güngör
- Ministry of Health, Hayrabolu State Hospital, Department of Pediatrics; Tekirdag, Turkey
| | - Ahsen Yılmaz
- Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Savas Guzel
- Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Orkide Donma
- Department of Medical Biochemistry, Cerrahpasa Medical Faculty, Istanbul University Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
26
|
Circulating Wnt1-inducible signaling pathway protein-1 (WISP-1/CCN4) is a novel biomarker of adiposity in subjects with type 2 diabetes. J Cell Commun Signal 2019; 14:101-109. [PMID: 31782053 DOI: 10.1007/s12079-019-00536-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Wnt1-inducible signaling pathway protein 1, or cellular communication network factor 4 (CCN4), a member of CCN family of secreted, extracellular matrix associated signaling proteins, recently was validated as a novel adipose tissue derived cytokine. OBJECTIVE To assess the relationships between circulating CCN4, adipose tissue distribution and function, and chronic low-grade inflammation in subjects with type 2 diabetes. METHODS We observed 156 patients with type 2 diabetes and 24 healthy controls. Serum levels of CCN4, hsCRP and alpha1-acid glycoprotein (alpha1-AGP) were measured by ELISA. Serum concentrations of leptin, resistin, visfatin, adipsin, adiponectin, IL-6, IL-8, IL-18 and TNF-alpha were determined by multiplex analysis. Fat mass and distribution was assessed by DEXA. Mean diameter of adipocytes was estimated in samples of subcutaneous adipose tissue. RESULTS Patients with diabetes had higher levels of circulating CCN4, leptin, resistin, adipsin, visfatin, hsCRP, alpha1-AGP, and IL-6 (all p < 0.02). The CCN4 concentration correlated positively with percentage of fat mass in central abdominal area, as well as with leptin, resistin and visfatin levels; negative correlation was found between CCN4 and mean adipocyte diameter. In multiple regression analysis fat mass in central abdominal area was independent predictor for CCN4 concentration. CONCLUSION In subjects with type 2 diabetes serum levels of CCN4 are associated with central abdominal fat mass and adipose tissue dysfunction.
Collapse
|
27
|
Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest 2019; 42:1257-1272. [PMID: 31073969 DOI: 10.1007/s40618-019-01052-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
Adipose tissue (AT) is one of the largest endocrine organs contributing to metabolic homeostasis. The functional pleiotropism of AT depends on its ability to secrete a large number of hormones, cytokines, extracellular matrix proteins and growth factors, all influencing many local and systemic physiological and pathophysiological processes. In condition of chronic positive energy balance, adipocyte expansion, hypoxia, apoptosis and stress all lead to AT inflammation and dysfunction, and it has been demonstrated that this sick fat is a main risk factor for many metabolic disorders, such as type 2 diabetes mellitus, fatty liver, cardiovascular disease and cancer. AT dysfunction is tightly associated with aberrant secretion of bioactive peptides, the adipocytokines, and their blood concentrations often reflect the expression in the AT. Despite the existence of an association between AT dysfunction and systemic pro-inflammatory state, most of the circulating molecules detectable in obese and dysmetabolic individuals do not identify specifically the condition of sick fat. Based on this premise, this review provides a concise overview of "classic" and novel promising adipocytokines associated with AT inflammation and discusses possible critical approaches to their interpretation in clinical practice.
Collapse
Affiliation(s)
- I Barchetta
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - F A Cimini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - G Ciccarelli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - M G Baroni
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| | - M G Cavallo
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
28
|
Yaribeygi H, Atkin SL, Sahebkar A. Wingless-type inducible signaling pathway protein-1 (WISP1) adipokine and glucose homeostasis. J Cell Physiol 2019; 234:16966-16970. [PMID: 30807659 DOI: 10.1002/jcp.28412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/14/2019] [Indexed: 01/11/2023]
Abstract
Whilst the growing global prevalence of diabetes mellitus is a major healthcare problem, the exact pathophysiology of insulin resistance leading to diabetes mellitus remains unclear. Studies have confirmed that increased adiposity is linked to lower insulin sensitivity through the expression and release of adipocyte-derived proteins such as adipokines. Wingless-type (Wnt) inducible signaling pathway protein-1 (WISP1) is a newly identified adipokine that has important roles in many molecular pathways and cellular events, with the suggestion that WISP1 adipokine is closely correlated to the progression of insulin resistance. Studies have shown that circulatory levels of WISP adipokine are higher in obese patients accompanied with increased insulin resistance. However, the exact role of WISP1 adipokine in the induction of insulin resistance is not completely understood. In this review, we detail the latest evidence showing that the WIPS1 adipokine impairs glucose homeostasis and induces diabetes mellitus.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Wang AR, Yan XQ, Zhang C, Du CQ, Long WJ, Zhan D, Ren J, Luo XP. Characterization of Wnt1-inducible Signaling Pathway Protein-1 in Obese Children and Adolescents. Curr Med Sci 2018; 38:868-874. [DOI: 10.1007/s11596-018-1955-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/06/2018] [Indexed: 12/19/2022]
|
30
|
Hörbelt T, Tacke C, Markova M, Herzfeld de Wiza D, Van de Velde F, Bekaert M, Van Nieuwenhove Y, Hornemann S, Rödiger M, Seebeck N, Friedl E, Jonas W, Thoresen GH, Kuss O, Rosenthal A, Lange V, Pfeiffer AFH, Schürmann A, Lapauw B, Rudovich N, Pivovarova O, Ouwens DM. The novel adipokine WISP1 associates with insulin resistance and impairs insulin action in human myotubes and mouse hepatocytes. Diabetologia 2018; 61:2054-2065. [PMID: 29754289 DOI: 10.1007/s00125-018-4636-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/12/2018] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Wingless-type (Wnt) inducible signalling pathway protein-1 (WISP1) has been recently identified as a proinflammatory adipokine. We examined whether WISP1 expression and circulating levels are altered in type 2 diabetes and whether WISP1 affects insulin signalling in muscle cells and hepatocytes. METHODS Serum and visceral adipose tissue (VAT) biopsies, for analysis of circulating WISP1 levels by ELISA and WISP1 mRNA expression by real-time quantitative RT-PCR, were collected from normal-weight men (control group, n = 33) and obese men with (n = 46) and without type 2 diabetes (n = 56) undergoing surgery. Following incubation of primary human skeletal muscle cells (hSkMCs) and murine AML12 hepatocytes with WISP1 and insulin, insulin signalling was analysed by western blotting. The effect of WISP1 on insulin-stimulated glycogen synthesis and gluconeogenesis was investigated in hSkMCs and murine hepatocytes, respectively. RESULTS Circulating WISP1 levels were higher in obese men (independent of diabetes status) than in normal-weight men (mean [95% CI]: 70.8 [55.2, 86.4] ng/l vs 42.6 [28.5, 56.6] ng/l, respectively; p < 0.05). VAT WISP1 expression was 1.9-fold higher in obese men vs normal-weight men (p < 0.05). Circulating WISP1 levels were positively associated with blood glucose in the OGTT and circulating haem oxygenase-1 and negatively associated with adiponectin levels. In hSkMCs and AML12 hepatocytes, recombinant WISP1 impaired insulin action by inhibiting phosphorylation of insulin receptor, Akt and its substrates glycogen synthase kinase 3β, FOXO1 and p70S6 kinase, and inhibiting insulin-stimulated glycogen synthesis and suppression of gluconeogenic genes. CONCLUSIONS/INTERPRETATION Circulating WISP1 levels and WISP1 expression in VAT are increased in obesity independent of glycaemic status. Furthermore, WISP1 impaired insulin signalling in muscle and liver cells.
Collapse
Affiliation(s)
- Tina Hörbelt
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Christopher Tacke
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine, Berlin, Germany
| | - Mariya Markova
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Daniella Herzfeld de Wiza
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | | | - Marlies Bekaert
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | | | - Silke Hornemann
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Maria Rödiger
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Nicole Seebeck
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Elisabeth Friedl
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Wenke Jonas
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - G Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oliver Kuss
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Duesseldorf, Germany
| | | | - Volker Lange
- Center for Obesity and Metabolic Surgery, Vivantes Hospital, Berlin, Germany
- Helios Hospital Berlin-Buch, Berlin, Germany
| | - Andreas F H Pfeiffer
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine, Berlin, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Natalia Rudovich
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine, Berlin, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Spital Bülach, Bülach, Switzerland
| | - Olga Pivovarova
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany.
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine, Berlin, Germany.
| | - D Margriet Ouwens
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|