1
|
Sancerni T, Montel V, Dereumetz J, Cochon L, Coq JO, Bastide B, Canu MH. Enduring effects of acute prenatal ischemia in rat soleus muscle, and protective role of erythropoietin. J Muscle Res Cell Motil 2025; 46:23-34. [PMID: 39549147 DOI: 10.1007/s10974-024-09684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Motor disorders are considered to originate mainly from brain lesions. Placental dysfunction or maternal exposure to a persistently hypoxic environment is a major cause of further motor disorders such as cerebral palsy. Our main goal was to determine the long-term effects of mild intrauterine acute ischemic stress on rat soleus myofibres and whether erythropoietin treatment could prevent these changes. Rat embryos were subjected to ischemic stress at embryonic day E17. They then received an intraperitoneal erythropoietin injection at postnatal days 1-5. Soleus muscles were collected at postnatal day 28. Prenatal ischemic stress durably affected muscle structure, as indicated by the greater fiber cross-sectional area (+ 18%) and the greater number of mature vessels (i.e. vessels with mature endothelial cells) per myofibres (+ 43%), and muscle biochemistry, as shown by changes in signaling pathways involved in protein synthesis/degradation balance (-81% for 4EBP1; -58% for AKT) and Hif1α expression levels (+ 95%). Erythropoietin injection in ischemic pups had a weak protective effect: it increased muscle mass (+ 25% with respect to ischemic pups) and partially prevented the increase in muscle degradation pathways and mature vascularization, whereas it exacerbated the decrease in synthesis pathways. Hence, erythropoietin treatment after acute ischemic stress contributes to muscle adaptation to ischemic conditions.
Collapse
Affiliation(s)
- Tiphaine Sancerni
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France
| | - Valérie Montel
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France
| | - Julie Dereumetz
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France
| | - Laetitia Cochon
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France
| | - Jacques-Olivier Coq
- Institut des Sciences du Mouvement (ISM), Team 'Plasticité des Systèmes Nerveux et Musculaires', UMR 7287 CNRS, Aix-Marseille Université Faculté des Sports, Marseille Cedex 09, F-13288, France
| | - Bruno Bastide
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France
| | - Marie-Hélène Canu
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France.
| |
Collapse
|
2
|
Li Y, Guo W, Li H, Wang Y, Liu X, Kong W. The Change of Skeletal Muscle Caused by Inflammation in Obesity as the Key Path to Fibrosis: Thoughts on Mechanisms and Intervention Strategies. Biomolecules 2024; 15:20. [PMID: 39858415 PMCID: PMC11764331 DOI: 10.3390/biom15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/27/2025] Open
Abstract
Obesity leads to a chronic inflammatory state throughout the body, with increased infiltration of immune cells and inflammatory factors in skeletal muscle tissue, and, at the same time, the level of intracellular mitochondrial oxidative stress rises. Meanwhile, obesity is closely related to the development of skeletal muscle fibrosis and can affect the metabolic function of skeletal muscle, triggering metabolic disorders such as insulin resistance (IR) and type 2 diabetes (T2D). However, whether there is a mutual regulatory effect between the two pathological states of inflammation and fibrosis in obese skeletal muscle and the specific molecular mechanisms have not been fully clarified. This review focuses on the pathological changes of skeletal muscle inflammation and fibrosis induced by obesity, covering the metabolic changes it causes, such as lipid deposition, mitochondrial dysfunction, and dysregulation of inflammatory factors, aiming to reveal the intricate connections between the two. In terms of intervention strategies, aerobic exercise, dietary modification, and pharmacotherapy can improve skeletal muscle inflammation and fibrosis. This article provides insight into the important roles of inflammation and fibrosis in the treatment of obesity and the management of skeletal muscle diseases, aiming to provide new ideas for the diagnosis and treatment of metabolic diseases such as obesity and IR.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Wenwen Guo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Han Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Yuhao Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Xinwei Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| |
Collapse
|
3
|
Badreldin H, Elshal M, El-Karef A, Ibrahim T. Empagliflozin protects the heart from atrial fibrillation in rats through inhibiting the NF-κB/HIF-1α regulatory axis and atrial remodeling. Int Immunopharmacol 2024; 143:113403. [PMID: 39437485 DOI: 10.1016/j.intimp.2024.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Atrial fibrillation (AF) is the most common form of sustained cardiac arrhythmia. The current study aimed to investigate the potential of empagliflozin (EMPA) to protect against acetylcholine (ACh)/calcium chloride (CaCl2)-induced AF in rats and elucidate the possible underlying mechanism of action. Rats were randomly assigned to five groups, as follows: CTRL group: received 1 ml/kg isotonic saline; AF group: received 1 ml/kg induction mixture of ACh/CaCl2 (60 µg ACh and 10 mg CaCl2 per ml); EMPA group: received 30 mg/kg EMPA; AF + EMPA10 group: received the induction mixture concurrent with 10 mg/kg EMPA; AF + EMPA30 group: received the induction mixture concurrent with 30 mg/kg EMPA. Our results showed that EMPA administration inhibited the AF-related electrocardiographic abnormalities and decreased the serum brain natriuretic peptide levels. EMPA treatment maintained the cardiac redox balance, as indicated by reduced levels of the lipid peroxidation biomarker malonaldehyde while enhancing the antioxidant glutathione levels. Moreover, EMPA markedly repressed ACh/CaCl2-induced C-reactive protein, tumor necrosis factor, and interleukin-6 production. Interestingly, EMPA administration strongly suppressed cardiac transforming growth factor beta1, collagen type I, and alpha-smooth muscle actin expression levels in the AF rats. These results were consistent with our histopathological findings, which revealed the ameliorative effect of EMPA on AF-induced inflammatory and fibrotic lesions. Mechanistically, EMPA dose-dependently downregulated nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor (HIF)-1α expressions. Besides, it attenuated the pro-apoptotic active caspase-3 while augmenting the anti-apoptotic B-cell lymphoma 2 expressions. Furthermore, EMPA dose-dependently suppressed cardiac phosphatidylinositol 3-kinase (PI3K)/Akt signaling. In conclusion, this study demonstrates that EMPA intervention, within AF induction, protects against ACh/CaCl2-induced AF in rats, exerting powerful antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects. These effects are mainly mediated through the targeting of the NF-κB/HIF-1α regulatory axis in a dose-dependent manner.
Collapse
Affiliation(s)
- Hussein Badreldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Amr El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt; Department of Pathology, Faculty of Medicine, Horus University, Egypt
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
4
|
Galkin F, Pulous FE, Fu Y, Zhang M, Pun FW, Ren F, Zhavoronkov A. Roles of hypoxia-inducible factor-prolyl hydroxylases in aging and disease. Ageing Res Rev 2024; 102:102551. [PMID: 39447706 DOI: 10.1016/j.arr.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The prolyl hydroxylase domain-containing (PHD or EGL9-homologs) enzyme family is mainly known for its role in the cellular response to hypoxia. HIF-PH inhibitors can stabilize hypoxia-inducible factors (HIFs), activating transcriptional programs that promote processes such as angiogenesis and erythropoiesis to adapt to changes in oxygen levels. HIF-PH inhibitors have been clinically approved for treating several types of anaemia. While most discussions of the HIF-PH signalling axis focus on hypoxia, there is a growing recognition of its importance under normoxic conditions. Recent advances in PHD biology have highlighted the potential of targeting this pathway therapeutically for a range of aging-related diseases. In this article, we review these recent discoveries, situate them within the broader context of aging and disease, and explore current therapeutic strategies that target PHD enzymes for these indications.
Collapse
Affiliation(s)
- Fedor Galkin
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Fadi E Pulous
- Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States
| | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Feng Ren
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Alex Zhavoronkov
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR; Insilico Medicine Canada Inc., 1250 René-Lévesque Ouest, Suite 3710, Montréal, Québec H3B 4W8, Canada; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
5
|
Tran TT, Eltzschig HK, Yuan X. Therapeutic targeting of hypoxia inducible factor in acute respiratory distress syndrome. J Physiol 2024; 602:5745-5756. [PMID: 38031820 PMCID: PMC11136894 DOI: 10.1113/jp284599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by bilateral chest infiltration and acute hypoxic respiratory failure. ARDS carries significant morbidity and mortality despite advancements in medical management, calling for the development of novel therapeutic targets. Hypoxia-inducible factor (HIF) is a heterodimeric protein involved in various essential pathways, including metabolic reprogramming, immune modulation, angiogenesis and cell cycle regulation. HIF is routinely degraded in homeostasis conditions via the prolyl hydroxylase domain/von Hippel-Lindau protein pathway. However, HIF is stabilized in ARDS via various mechanisms (oxygen-dependent and independent) as an endogenous protective pathway and plays multifaceted roles in different cell populations. This review focuses on the functional role of HIF and its target genes during ARDS, as well as how HIF has evolved as a therapeutic target in current medical management.
Collapse
Affiliation(s)
- Thu T Tran
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
6
|
Wood N, Critchlow A, Cheng CW, Straw S, Hendrickse PW, Pereira MG, Wheatcroft SB, Egginton S, Witte KK, Roberts LD, Bowen TS. Sex Differences in Skeletal Muscle Pathology in Patients With Heart Failure and Reduced Ejection Fraction. Circ Heart Fail 2024; 17:e011471. [PMID: 39381880 PMCID: PMC11472905 DOI: 10.1161/circheartfailure.123.011471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Women with heart failure and reduced ejection fraction (HFrEF) have greater symptoms and a lower quality of life compared with men; however, the role of noncardiac mechanisms remains poorly resolved. We hypothesized that differences in skeletal muscle pathology between men and women with HFrEF may explain clinical heterogeneity. METHODS Muscle biopsies from both men (n=22) and women (n=16) with moderate HFrEF (New York Heart Association classes I-III) and age- and sex-matched controls (n=18 and n=16, respectively) underwent transcriptomics (RNA-sequencing), myofiber structural imaging (histology), and molecular signaling analysis (gene/protein expression), with serum inflammatory profiles analyzed (enzyme-linked immunosorbent assay). Two-way ANOVA was conducted (interaction sex and condition). RESULTS RNA-sequencing identified 5629 differentially expressed genes between men and women with HFrEF, with upregulated terms for catabolism and downregulated terms for mitochondria in men. mRNA expression confirmed an effect of sex (P<0.05) on proatrophic genes related to ubiquitin proteasome, autophagy, and myostatin systems (higher in all men versus all women), whereas proanabolic IGF1 expression was higher (P<0.05) in women with HFrEF only. Structurally, women compared with men with HFrEF showed a pro-oxidative phenotype, with smaller but higher numbers of type I fibers, alongside higher muscle capillarity (Pinteraction<0.05) and higher type I fiber areal density (Pinteraction<0.05). Differences in gene/protein expression of regulators of muscle phenotype were detected between sexes, including HIF1α, ESR1, VEGF (vascular endothelial growth factor), and PGC1α expression (P<0.05), and for upstream circulating factors, including VEGF, IL (interleukin)-6, and IL-8 (P<0.05). CONCLUSIONS Sex differences in muscle pathology in HFrEF exist, with men showing greater abnormalities compared with women related to the transcriptome, fiber phenotype, capillarity, and circulating factors. These preliminary data question whether muscle pathology is a primary mechanism contributing to greater symptoms in women with HFrEF and highlight the need for further investigation.
Collapse
Affiliation(s)
- Nathanael Wood
- Faculty of Biological Sciences, School of Biomedical Sciences (N.W., A.C., M.G.P., S.E., T.S.B.), University of Leeds, United Kingdom
| | - Annabel Critchlow
- Faculty of Biological Sciences, School of Biomedical Sciences (N.W., A.C., M.G.P., S.E., T.S.B.), University of Leeds, United Kingdom
| | - Chew W. Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine (C.W.C., S.S., S.B.W., K.K.W., L.D.R.), University of Leeds, United Kingdom
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic Medicine (C.W.C., S.S., S.B.W., K.K.W., L.D.R.), University of Leeds, United Kingdom
| | | | - Marcelo G. Pereira
- Faculty of Biological Sciences, School of Biomedical Sciences (N.W., A.C., M.G.P., S.E., T.S.B.), University of Leeds, United Kingdom
| | - Stephen B. Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine (C.W.C., S.S., S.B.W., K.K.W., L.D.R.), University of Leeds, United Kingdom
| | - Stuart Egginton
- Faculty of Biological Sciences, School of Biomedical Sciences (N.W., A.C., M.G.P., S.E., T.S.B.), University of Leeds, United Kingdom
| | - Klaus K. Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine (C.W.C., S.S., S.B.W., K.K.W., L.D.R.), University of Leeds, United Kingdom
- Clinic for Cardiology, Angiology and Internal Intensive Care Medicine, RWTH Aachen University, Germany (K.K.W.)
| | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine (C.W.C., S.S., S.B.W., K.K.W., L.D.R.), University of Leeds, United Kingdom
| | - T. Scott Bowen
- Faculty of Biological Sciences, School of Biomedical Sciences (N.W., A.C., M.G.P., S.E., T.S.B.), University of Leeds, United Kingdom
| |
Collapse
|
7
|
Kadamani KL, Rahnamaie-Tajadod R, Eaton L, Bengtsson J, Ojaghi M, Cheng H, Pamenter ME. What can naked mole-rats teach us about ameliorating hypoxia-related human diseases? Ann N Y Acad Sci 2024; 1540:104-120. [PMID: 39269277 DOI: 10.1111/nyas.15219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ameliorating the deleterious impact of systemic or tissue-level hypoxia or ischemia is key to preventing or treating many human diseases and pathologies. Usefully, environmental hypoxia is also a common challenge in many natural habitats; animals that are native to such hypoxic niches often exhibit strategies that enable them to thrive with limited O2 availability. Studying how such species have evolved to tolerate systemic hypoxia offers a promising avenue of discovery for novel strategies to mitigate the deleterious effects of hypoxia in human diseases and pathologies. Of particular interest are naked mole-rats, which are among the most hypoxia-tolerant mammals. Naked mole-rats that tolerate severe hypoxia in a laboratory setting are also protected against clinically relevant mimics of heart attack and stroke. The mechanisms that support this tolerance are currently being elucidated but results to date suggest that metabolic rate suppression, reprogramming of metabolic pathways, and mechanisms that defend against deleterious perturbations of cellular signaling pathways all provide layers of protection. Herein, we synthesize and discuss what is known regarding adaptations to hypoxia in the naked mole-rat cardiopulmonary system and brain, as these systems comprise both the primary means of delivering O2 to tissues and the most hypoxia-sensitive organs in mammals.
Collapse
Affiliation(s)
- Karen L Kadamani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - John Bengtsson
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohammad Ojaghi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hang Cheng
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Jiang Y, Zhou R, Wu Y, Kong G, Zeng J, Li X, Wang B, Gu C, Liao F, Qi F, Zhu Q, Gu L, Zheng C. In vitro modeling of skeletal muscle ischemia-reperfusion injury based on sphere differentiation culture from human pluripotent stem cells. Exp Cell Res 2024; 439:114111. [PMID: 38823471 DOI: 10.1016/j.yexcr.2024.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Skeletal muscle ischemia-reperfusion (IR) injury poses significant challenges due to its local and systemic complications. Traditional studies relying on two-dimensional (2D) cell culture or animal models often fall short of faithfully replicating the human in vivo environment, thereby impeding the translational process from animal research to clinical applications. Three-dimensional (3D) constructs, such as skeletal muscle spheroids with enhanced cell-cell interactions from human pluripotent stem cells (hPSCs) offer a promising alternative by partially mimicking human physiological cellular environment in vivo processes. This study aims to establish an innovative in vitro model, human skeletal muscle spheroids based on sphere differentiation from hPSCs, to investigate human skeletal muscle developmental processes and IR mechanisms within a controlled laboratory setting. By eticulously recapitulating embryonic myogenesis through paraxial mesodermal differentiation of neuro-mesodermal progenitors, we successfully established 3D skeletal muscle spheroids that mirror the dynamic colonization observed during human skeletal muscle development. Co-culturing human skeletal muscle spheroids with spinal cord spheroids facilitated the formation of neuromuscular junctions, providing functional relevance to skeletal muscle spheroids. Furthermore, through oxygen-glucose deprivation/re-oxygenation treatment, 3D skeletal muscle spheroids provide insights into the molecular events and pathogenesis of IR injury. The findings presented in this study significantly contribute to our understanding of skeletal muscle development and offer a robust platform for in vitro studies on skeletal muscle IR injury, holding potential applications in drug testing, therapeutic development, and personalized medicine within the realm of skeletal muscle-related pathologies.
Collapse
Affiliation(s)
- Yifei Jiang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Runtao Zhou
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Yixun Wu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Ganggang Kong
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingguang Zeng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Xubo Li
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Bo Wang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Cheng Gu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China; Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fawei Liao
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Fangze Qi
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Qintang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Liqiang Gu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Canbin Zheng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.
| |
Collapse
|
9
|
Honda Y, Takahashi A, Tanaka N, Kajiwara Y, Sasaki R, Kataoka H, Sakamoto J, Okita M. Electrical Stimulation-Based Twitch Exercise Suppresses Progression of Immobilization-Induced Muscle Fibrosis via Downregulation of PGC-1?/VEGF Pathway. Physiol Res 2024; 73:285-294. [PMID: 38710059 PMCID: PMC11081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/16/2023] [Indexed: 05/08/2024] Open
Abstract
This study aimed to determine whether electrical stimulation-based twitch exercise is effective in inhibiting the progression of immobilization-induced muscle fibrosis. 19 Wistar rats were randomly divided into a control group (n=6), an immobilization group (n=6; with immobilization only), and a Belt group (n=7; with immobilization and twitch exercise through the belt electrode device, beginning 2 weeks after immobilization). The bilateral soleus muscles were harvested after the experimental period. The right soleus muscles were used for histological analysis, and the left soleus muscles were used for biochemical and molecular biological analysis. As a result, in the picrosirius red images, the perimysium and endomysium were thicker in both the immobilization and Belt groups compared to the control group. However, the perimysium and endomysium thickening were suppressed in the Belt group. The hydroxyproline content and alpha-SMA, TGF-beta1, and HIF-1alpha mRNA expressions were significantly higher in the immobilization and belt groups than in the control group. These expressions were significantly lower in the Belt group than in the immobilization group. The capillary-to-myofiber ratio and the mRNA expressions of VEGF and PGC-1alpha were significantly lower in the immobilization and belt groups than in the control group, these were significantly higher in the Belt group than in the immobilization group. From these results, Electrical stimulation-based twitch exercise using the belt electrode device may prevent the progression of immobilization-induced muscle fibrosis caused by downregulating PGC-1alpha/VEGF pathway, we surmised that this intervention strategy might be effective against the progression of muscle contracture. Keywords: Immobilization, Skeletal muscle, Fibrosis, Electrical stimulation-based twitch exercise, PGC-1alpha/VEGF pathway.
Collapse
Affiliation(s)
- Y Honda
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Suwankanit K, Shimizu M. Effects of Neuromuscular Electrical Stimulation and Therapeutic Ultrasound on Quadriceps Contracture of Immobilized Rats. Vet Sci 2024; 11:158. [PMID: 38668425 PMCID: PMC11054819 DOI: 10.3390/vetsci11040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Quadriceps contracture is a condition where the muscle-tendon unit is abnormally shortened. The treatment prognosis is guarded to poor depending on the progress of the disease. To improve the prognosis, we investigated the effectiveness of therapeutic ultrasound and NMES in treating quadriceps contracture in an immobilized rat model. Thirty-six Wistar rats were randomized into control, immobilization alone, immobilization and spontaneous recovery, immobilization and therapeutic ultrasound, immobilization and NMES, and immobilization and therapeutic ultrasound and NMES combination groups. The continuous therapeutic ultrasound (frequency, 3 MHz, intensity 1 W/cm2) and NMES (TENS mode, frequency 50 Hz; intensity 5.0 ± 0.8 mA) were performed on the quadriceps muscle. On Day 15, immobilization-induced quadriceps contracture resulted in a decreased ROM of the stifle joint, reduction in the sarcomere length, muscle atrophy, and muscle fibrosis. On Day 43, therapeutic ultrasound, NMES, and combining both methods improved muscle atrophy and shortening and decreased collagen type I and III and α-SMA protein. The combination of therapeutic ultrasound and NMES significantly reduced the mRNA expression of IL-1β, TGF-β1, and HIF-1α and increased TGF-β3. Therefore, the combination of therapeutic ultrasound and NMES is the most potent rehabilitation program for treating quadriceps contracture.
Collapse
Affiliation(s)
- Kanokwan Suwankanit
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-0054, Tokyo, Japan;
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Miki Shimizu
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-0054, Tokyo, Japan;
| |
Collapse
|
11
|
Yin A, Fu W, Elengickal A, Kim J, Liu Y, Bigot A, Mamchaoui K, Call JA, Yin H. Chronic hypoxia impairs skeletal muscle repair via HIF-2α stabilization. J Cachexia Sarcopenia Muscle 2024; 15:631-645. [PMID: 38333911 PMCID: PMC10995261 DOI: 10.1002/jcsm.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Chronic hypoxia and skeletal muscle atrophy commonly coexist in patients with COPD and CHF, yet the underlying physio-pathological mechanisms remain elusive. Muscle regeneration, driven by muscle stem cells (MuSCs), holds therapeutic potential for mitigating muscle atrophy. This study endeavours to investigate the influence of chronic hypoxia on muscle regeneration, unravel key molecular mechanisms, and explore potential therapeutic interventions. METHODS Experimental mice were exposed to prolonged normobaric hypoxic air (15% pO2, 1 atm, 2 weeks) to establish a chronic hypoxia model. The impact of chronic hypoxia on body composition, muscle mass, muscle strength, and the expression levels of hypoxia-inducible factors HIF-1α and HIF-2α in MuSC was examined. The influence of chronic hypoxia on muscle regeneration, MuSC proliferation, and the recovery of muscle mass and strength following cardiotoxin-induced injury were assessed. The muscle regeneration capacities under chronic hypoxia were compared between wildtype mice, MuSC-specific HIF-2α knockout mice, and mice treated with HIF-2α inhibitor PT2385, and angiotensin converting enzyme (ACE) inhibitor lisinopril. Transcriptomic analysis was performed to identify hypoxia- and HIF-2α-dependent molecular mechanisms. Statistical significance was determined using analysis of variance (ANOVA) and Mann-Whitney U tests. RESULTS Chronic hypoxia led to limb muscle atrophy (EDL: 17.7%, P < 0.001; Soleus: 11.5% reduction in weight, P < 0.001) and weakness (10.0% reduction in peak-isometric torque, P < 0.001), along with impaired muscle regeneration characterized by diminished myofibre cross-sectional areas, increased fibrosis (P < 0.001), and incomplete strength recovery (92.3% of pre-injury levels, P < 0.05). HIF-2α stabilization in MuSC under chronic hypoxia hindered MuSC proliferation (26.1% reduction of MuSC at 10 dpi, P < 0.01). HIF-2α ablation in MuSC mitigated the adverse effects of chronic hypoxia on muscle regeneration and MuSC proliferation (30.9% increase in MuSC numbers at 10 dpi, P < 0.01), while HIF-1α ablation did not have the same effect. HIF-2α stabilization under chronic hypoxia led to elevated local ACE, a novel direct target of HIF-2α. Notably, pharmacological interventions with PT2385 or lisinopril enhanced muscle regeneration under chronic hypoxia (PT2385: 81.3% increase, P < 0.001; lisinopril: 34.6% increase in MuSC numbers at 10 dpi, P < 0.05), suggesting their therapeutic potential for alleviating chronic hypoxia-associated muscle atrophy. CONCLUSIONS Chronic hypoxia detrimentally affects skeletal muscle regeneration by stabilizing HIF-2α in MuSC and thereby diminishing MuSC proliferation. HIF-2α increases local ACE levels in skeletal muscle, contributing to hypoxia-induced regenerative deficits. Administration of HIF-2α or ACE inhibitors may prove beneficial to ameliorate chronic hypoxia-associated muscle atrophy and weakness by improving muscle regeneration under chronic hypoxia.
Collapse
Affiliation(s)
- Amelia Yin
- Center for Molecular MedicineThe University of GeorgiaAthensGAUSA
- Department of Biochemistry and Molecular BiologyThe University of GeorgiaAthensGAUSA
| | - Wenyan Fu
- Center for Molecular MedicineThe University of GeorgiaAthensGAUSA
- Department of Biochemistry and Molecular BiologyThe University of GeorgiaAthensGAUSA
| | - Anthony Elengickal
- Department of Biochemistry and Molecular BiologyThe University of GeorgiaAthensGAUSA
| | - Joonhee Kim
- Department of Biochemistry and Molecular BiologyThe University of GeorgiaAthensGAUSA
| | - Yang Liu
- Center for Molecular MedicineThe University of GeorgiaAthensGAUSA
- Department of Biochemistry and Molecular BiologyThe University of GeorgiaAthensGAUSA
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de MyologieCentre de Recherche en MyologieParisFrance
| | - Kamal Mamchaoui
- Sorbonne Université, Inserm, Institut de MyologieCentre de Recherche en MyologieParisFrance
| | - Jarrod A. Call
- Department of Physiology and PharmacologyThe University of GeorgiaAthensGAUSA
| | - Hang Yin
- Center for Molecular MedicineThe University of GeorgiaAthensGAUSA
- Department of Biochemistry and Molecular BiologyThe University of GeorgiaAthensGAUSA
| |
Collapse
|
12
|
Piñol-Jurado P, Verdú-Díaz J, Fernández-Simón E, Domínguez-González C, Hernández-Lain A, Lawless C, Vincent A, González-Chamorro A, Villalobos E, Monceau A, Laidler Z, Mehra P, Clark J, Filby A, McDonald D, Rushton P, Bowey A, Alonso Pérez J, Tasca G, Marini-Bettolo C, Guglieri M, Straub V, Suárez-Calvet X, Díaz-Manera J. Imaging mass cytometry analysis of Becker muscular dystrophy muscle samples reveals different stages of muscle degeneration. Sci Rep 2024; 14:3365. [PMID: 38336890 PMCID: PMC10858026 DOI: 10.1038/s41598-024-51906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.
Collapse
Affiliation(s)
- Patricia Piñol-Jurado
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - José Verdú-Díaz
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Esther Fernández-Simón
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Cristina Domínguez-González
- Neuromuscular Disorders Unit, Neurology Department, imas12 Research Institute, Hospital Universitario, 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Aurelio Hernández-Lain
- Neuropathology Unit, imas12 Research Institute, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Conor Lawless
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Amy Vincent
- Faculty of Medical Sciences, Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Alejandro González-Chamorro
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Elisa Villalobos
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Alexandra Monceau
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Zoe Laidler
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Priyanka Mehra
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - James Clark
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Andrew Filby
- Newcastle University Biosciences Institute and Innovation Methodology and Application Research Theme, Newcastle University, Newcastle Upon Tyne, UK
| | - David McDonald
- Newcastle University Biosciences Institute and Innovation Methodology and Application Research Theme, Newcastle University, Newcastle Upon Tyne, UK
| | - Paul Rushton
- Department of Orthopaedic Spine Surgery, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Andrew Bowey
- Department of Orthopaedic Spine Surgery, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Jorge Alonso Pérez
- Neuromuscular Disease Unit, Neurology Department, Hospital Universitario Nuestra Señora de Candelaria, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Tenerife, Spain
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IBB SANT PAU), Barcelona, Spain
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IBB SANT PAU), Barcelona, Spain.
| |
Collapse
|
13
|
Magri F, Napoli L, Ripolone M, Ciscato P, Moggio M, Corti S, Comi GP, Sciacco M, Zanotti S. The Profiling of 179 miRNA Expression in Serum from Limb Girdle Muscular Dystrophy Patients and Healthy Controls. Int J Mol Sci 2023; 24:17402. [PMID: 38139231 PMCID: PMC10743601 DOI: 10.3390/ijms242417402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Limb girdle muscular dystrophies (LGMDs) are a group of genetically inherited neuromuscular diseases with a very variable clinical presentation and overlapping traits. Over the last few years there has been an increasing interest in the use of non-invasive circulating biomarkers to monitor disease progression and to evaluate the efficacy of therapeutic approaches. Our aim was to identify the miRNA signature with potential value for LGMD patient screening and stratification. Using miRCURY LNA miRNA qPCR Serum/Plasma Panel, we analyzed 179 miRNAs from 16 patients, divided in four pools based on their genetic diagnosis, and from healthy controls. The miRNAs analysis showed a total of 107 dysregulated miRNAs in LGMD patients when compared to the healthy controls. After filtering via skeletal tissue expression and gene/pathways target analysis, the number of dysregulated miRNAs drastically reduced. Six selected miRNAs-let-7f-5p (in LGMDR1), miR-20a-5p (in LGMDR2), miR-130b-5p, miR-378a-5p (both in LGMDR3), miR-376c-3p and miR-382-5p (both in LGMDR4)-whose expression was significantly lower compared to controls in the different LGMD pools, were further investigated. The bioinformatic analysis of the target genes in each selected miRNA revealed ECM-receptor interaction and TGF-beta signaling as the most involved pathways. The correlation analysis showed a good correlation of let-7f-5p with fibrosis and with the cross sectional area of type I and type II fibers, while miR-130b-5p showed a good correlation with the age of onset of the disease. The receiver operating characteristic curves showed how single miRNAs were able to discriminate a specific group of LGMD patients and how the combination of six miRNAs was able to discriminate LGMD patients from controls.
Collapse
Affiliation(s)
- Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Napoli
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| | - Michela Ripolone
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| | - Patrizia Ciscato
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| | - Maurizio Moggio
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| | - Stefania Corti
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| | - Simona Zanotti
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| |
Collapse
|
14
|
Mohamad Yusoff F, Nakashima A, Kajikawa M, Kishimoto S, Maruhashi T, Higashi Y. Therapeutic Myogenesis Induced by Ultrasound Exposure in a Volumetric Skeletal Muscle Loss Injury Model. Am J Sports Med 2023; 51:3554-3566. [PMID: 37743748 DOI: 10.1177/03635465231195850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) irradiation has been shown to induce various responses in different cells. It has been shown that LIPUS activates extracellular signal-regulated kinase 1/2 (ERK1/2) through integrin. PURPOSE To study the effects of LIPUS on myogenic regulatory factors and other related myogenesis elements in a volumetric skeletal muscle loss injury model. STUDY DESIGN Controlled laboratory study. METHODS C57BL/6J mice were subjected to full-thickness muscle defect injury of the quadriceps and treated with direct application of LIPUS 20 min/d or non-LIPUS treatment (control) for 3, 7, and 14 days. LIPUS was also applied to C2C12 cells in culture in the presence of low and high doses of lipopolysaccharides. The expression levels of myogenic regulatory factors and the expression levels of myokine-related and angiogenic-related proteins of the control and LIPUS groups were analyzed. RESULTS Muscle volume in the injury site was restored at day 14 with LIPUS treatment. Paired-box protein 7, myogenic factor 5, myogenin, and desmin expressions were significantly different between control and LIPUS groups at days 7 and 14. Myokine and angiogenic cytokine-related factors were significantly increased in the LIPUS group at day 3 and decreased with no significant difference between the groups by day 14. LIPUS induced different responses of myogenic regulatory factors in C2C12 cells with low and high doses of lipopolysaccharides. LIPUS promoted myogenesis through short-lived increase in interleukin-6 and heme oxygenase 1, together with activation of ERK1/2. CONCLUSION LIPUS had a constant effect on the variables of tissue damage, from macrotrauma to microtrauma, leading to efficient muscle regeneration. CLINICAL RELEVANCE The focus of therapeutic strategies with LIPUS has been not only for microvascular regeneration but also for skeletal muscle and related local tissue recovery from acute or chronic damage.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
15
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
16
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Understanding the relationship between cancer associated cachexia and hypoxia-inducible factor-1. Biomed Pharmacother 2023; 163:114802. [PMID: 37146421 DOI: 10.1016/j.biopha.2023.114802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a multifactorial disorder characterized by an unrestricted loss of body weight as a result of muscle and adipose tissue atrophy. Cachexia is influenced by several factors, including decreased metabolic activity and food intake, an imbalance between energy uptake and expenditure, excessive catabolism, and inflammation. Cachexia is highly associated with all types of cancers responsible for more than half of cancer-related mortalities worldwide. In healthy individuals, adipose tissue significantly regulates energy balance and glucose homeostasis. However, in metastatic cancer patients, CAC occurs mainly because of an imbalance between muscle protein synthesis and degradation which are organized by certain extracellular ligands and associated signaling pathways. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1α) accumulated and translocated to the nucleus and activate numerous genes involved in cell survival, invasion, angiogenesis, metastasis, metabolic reprogramming, and cancer stemness. On the other hand, the ubiquitination proteasome pathway is inhibited during low O2 levels which promote muscle wasting in cancer patients. Therefore, understanding the mechanism of the HIF-1 pathway and its metabolic adaptation to biomolecules is important for developing a novel therapeutic method for cancer and cachexia therapy. Even though many HIF inhibitors are already in a clinical trial, their mechanism of action remains unknown. With this background, this review summarizes the basic concepts of cachexia, the role of inflammatory cytokines, pathways connected with cachexia with special reference to the HIF-1 pathway and its regulation, metabolic changes, and inhibitors of HIFs.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
17
|
Cáceres-Ayala C, Mira RG, Acuña MJ, Brandan E, Cerpa W, Rebolledo DL. Episodic Binge-like Ethanol Reduces Skeletal Muscle Strength Associated with Atrophy, Fibrosis, and Inflammation in Young Rats. Int J Mol Sci 2023; 24:ijms24021655. [PMID: 36675170 PMCID: PMC9861047 DOI: 10.3390/ijms24021655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
Binge Drinking (BD) corresponds to episodes of ingestion of large amounts of ethanol in a short time, typically ≤2 h. BD occurs across all populations, but young and sports-related people are especially vulnerable. However, the short- and long-term effects of episodic BD on skeletal muscle function have been poorly explored. Young rats were randomized into two groups: control and episodic Binge-Like ethanol protocol (BEP) (ethanol 3 g/kg IP, 4 episodes of 2-days ON-2-days OFF paradigm). Muscle function was evaluated two weeks after the last BEP episode. We found that rats exposed to BEP presented decreased muscle strength and increased fatigability, compared with control animals. Furthermore, we observed that skeletal muscle from rats exposed to BEP presented muscle atrophy, evidenced by reduced fiber size and increased expression of atrophic genes. We also observed that BEP induced fibrotic and inflammation markers, accompanied by mislocalization of nNOSµ and high levels of protein nitration. Our findings suggest that episodic binge-like ethanol exposure alters contractile capacity and increases fatigue by mechanisms involving atrophy, fibrosis, and inflammation, which remain for at least two weeks after ethanol clearance. These pathological features are common to several neuromuscular diseases and might affect muscle performance and health in the long term.
Collapse
Affiliation(s)
- Constanza Cáceres-Ayala
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo G. Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - María José Acuña
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Waldo Cerpa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| | - Daniela L. Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| |
Collapse
|
18
|
Wang H, Wang B, Wei J, Zheng Z, Su J, Bian C, Xin Y, Jiang X. Sulforaphane regulates Nrf2-mediated antioxidant activity and downregulates TGF-β1/Smad pathways to prevent radiation-induced muscle fibrosis. Life Sci 2022; 311:121197. [PMID: 36400201 DOI: 10.1016/j.lfs.2022.121197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
AIMS This study aimed to examine the efficacy of sulforaphane (SFN) in preventing radiation-induced muscle fibrosis (RIMF) and the potential role in nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant stress. MAIN METHODS The RIMF model was established by a single irradiation of the left thigh of C57BL/6 J mice, and the mice were then randomly divided into control, SFN, irradiation (IR), and IR + SFN (IR/SFN) groups. The serum and skeletal muscle were collected eight weeks after irradiation, and changes in oxidative stress and muscle fibrosis were detected. KEY FINDINGS The IR group showed a more obvious skeletal muscle fiber atrophy, significantly higher number of collagen fibers, and higher inflammatory cell infiltration compared to control group. Compared to the IR group, the IR/SFN group had orderly arranged muscle fibers, decreased collagen fibers, and infiltration of inflammatory cells. In addition, compared with the control group, the expression of oxidative stress-related indexes was significantly increased, accompanied by activation of the transforming growth factor (TGF-β)/Smad pathway and its downstream fibrogenic molecules in the skeletal muscle of the IR group. After SFN intervention, the above indices were significantly restored. Furthermore, SFN induced the upregulation of Nrf2, activation of AKT, and inhibition of GSK-3β and Fyn accumulation. SIGNIFICANCE These results revealed that Nrf2 plays a central role in protecting against RIMF. Furthermore, SFN prevents RIMF by activating Nrf2 via the AKT/GSK-3β/Fyn pathway.
Collapse
Affiliation(s)
- Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Bin Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
19
|
Salekeen R, Kyba M. Not young but still immature: a HIF-1α-mediated maturation checkpoint in regenerating muscle. J Clin Invest 2022; 132:165322. [PMID: 36453544 PMCID: PMC9711870 DOI: 10.1172/jci165322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Muscle fibers express particular isoforms of contractile proteins, depending on the fiber's function and the organism's developmental stage. In the adult, after a muscle injury, newly generated fibers transition through embryonic and neonatal myosins, prior to selecting their distinctive adult myosin isoform. In this issue of the JCI, Wang et al. discover a checkpoint that regulates the neonatal-to-adult myosin isoform transition. They found that HIF-1α regulated this checkpoint, with elevated HIF-1α levels blocking progression, while HIF-1α knockout accelerated the transition. They further related these findings to centronuclear myopathy, a disease in which HIF-1α is similarly elevated and neonatal myosin expression is maintained. These findings highlight a maturation checkpoint that impacts the skeletal muscle regeneration following ischemic injury, providing a pharmacologically accessible pathway in injury and diseases such as centronuclear myopathy.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Lillehei Heart Institute.,Biochemistry, Molecular Biology, and Biophysics Graduate Program and
| | - Michael Kyba
- Lillehei Heart Institute.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Zou X, Ouyang H, Lin F, Zhang H, Yang Y, Pang D, Han R, Tang X. MYBPC3 deficiency in cardiac fibroblasts drives their activation and contributes to fibrosis. Cell Death Dis 2022; 13:948. [PMID: 36357371 PMCID: PMC9649783 DOI: 10.1038/s41419-022-05403-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Genetic mutations in the MYBPC3 gene encoding cardiac myosin binding protein C (cMyBP-C) are the most common cause of hypertrophic cardiomyopathy (HCM). Myocardial fibrosis (MF) plays a critical role in the development of HCM. However, the mechanism for mutant MYBPC3-induced MF is not well defined. In this study, we developed a R495Q mutant pig model using cytosine base editing and observed an early-onset MF in these mutant pigs shortly after birth. Unexpectedly, we found that the "cardiac-specific" MYBPC3 gene was actually expressed in cardiac fibroblasts from different species as well as NIH3T3 fibroblasts at the transcription and protein levels. CRISPR-mediated disruption of Mybpc3 in NIH3T3 fibroblasts activated nuclear factor κB (NF-κB) signaling pathway, which increased the expression of transforming growth factor beta (TGF-β1) and other pro-inflammatory genes. The upregulation of TGF-β1 promoted the expression of hypoxia-inducible factor-1 subunit α (HIF-1α) and its downstream targets involved in glycolysis such as GLUT1, PFK, and LDHA. Consequently, the enhanced aerobic glycolysis with higher rate of ATP biosynthesis accelerated the activation of cardiac fibroblasts, contributing to the development of HCM. This work reveals an intrinsic role of MYBPC3 in maintaining cardiac fibroblast homeostasis and disruption of MYBPC3 in these cells contributes to the disease pathogenesis of HCM.
Collapse
Affiliation(s)
- Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
- Chongqing Research Institute of Jilin University, Chongqing, China
| | - Feng Lin
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Huanyu Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yang Yang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
- Chongqing Research Institute of Jilin University, Chongqing, China
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
- Chongqing Research Institute of Jilin University, Chongqing, China.
| |
Collapse
|
21
|
Silva CC, Bichara CNC, Carneiro FRO, Palacios VRDCM, den Berg AVSV, Quaresma JAS, Magno Falcão LF. Muscle dysfunction in the long coronavirus disease 2019 syndrome: Pathogenesis and clinical approach. Rev Med Virol 2022; 32:e2355. [PMID: 35416359 PMCID: PMC9111061 DOI: 10.1002/rmv.2355] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023]
Abstract
In long coronavirus disease 2019 (long COVID-19), involvement of the musculoskeletal system is characterised by the persistence or appearance of symptoms such as fatigue, muscle weakness, myalgia, and decline in physical and functional performance, even at 4 weeks after the onset of acute symptoms of COVID-19. Muscle injury biomarkers are altered during the acute phase of the disease. The cellular damage and hyperinflammatory state induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may contribute to the persistence of symptoms, hypoxaemia, mitochondrial damage, and dysregulation of the renin-angiotensin system. In addition, the occurrence of cerebrovascular diseases, involvement of the peripheral nervous system, and harmful effects of hospitalisation, such as the use of drugs, immobility, and weakness acquired in the intensive care unit, all aggravate muscle damage. Here, we review the multifactorial mechanisms of muscle tissue injury, aggravating conditions, and associated sequelae in long COVID-19.
Collapse
Affiliation(s)
- Camilla Costa Silva
- Center for Biological and Health SciencesState University of ParaBelémBrazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Lee YH, Auh QS. Sleep analysis results of portable polysomnography in patients with acute and chronic temporomandibular disorder. DENTAL RESEARCH AND ORAL HEALTH 2022; 5:83-93. [PMID: 36330079 PMCID: PMC9629329 DOI: 10.26502/droh.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE This study aimed to investigate portable polysomnography (PSG)-based 'sleep' and pre-diagnosis of obstructive sleep apnoea (OSA) in acute temporomandibular disorder (TMD) and patients with chronic TMD. METHODS Randomly selected 25 patients with acute TMD (mean age, 42.58 ± 18.77 years; 14 females) and 26 age-and sex-matched patients with chronic TMD (mean age, 49.24 ± 17.52 years, 19 females) were enrolled. RESULTS The eight psychological subscales of SCL-90R had significantly higher values in the chronic TMD group than in the acute TMD group (all p < 0.05). There was no significant group difference in the respiratory event index examined using a portable PSG. OSA was observed in 57.7% in acute TMD, and 68.0% in chronic TMD, respectively. From the multiple regression analysis, palpation index was the strongest predictor of pre-diagnosis of OSA (OR = 17.550). Among the contributing factors for TMD, psychological stress (OR = 12.226), self-reported sleep problems (OR = 10.222), and above-average value of DEP (OR = 1.443) were followed. CONCLUSION Patients with chronic TMD were psychologically more vulnerable than those with acute TMD, and the existence of subjectively perceived sleep problems or objective sleep indices examined by portable PSG could affect TMD symptom severity in different ways.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, Kyung Hee Medical center, Kyung Hee University, Seoul, Korea
| | - Q-Schick Auh
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, Kyung Hee Medical center, Kyung Hee University, Seoul, Korea
| |
Collapse
|
23
|
Martinez-Lozano E, Beeram I, Yeritsyan D, Grinstaff MW, Snyder BD, Nazarian A, Rodriguez EK. Management of arthrofibrosis in neuromuscular disorders: a review. BMC Musculoskelet Disord 2022; 23:725. [PMID: 35906570 PMCID: PMC9336011 DOI: 10.1186/s12891-022-05677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Arthrofibrosis, or rigid contracture of major articular joints, is a significant morbidity of many neurodegenerative disorders. The pathogenesis depends on the mechanism and severity of the precipitating neuromuscular disorder. Most neuromuscular disorders, whether spastic or hypotonic, culminate in decreased joint range of motion. Limited range of motion precipitates a cascade of pathophysiological changes in the muscle-tendon unit, the joint capsule, and the articular cartilage. Resulting joint contractures limit functional mobility, posing both physical and psychosocial burdens to patients, economic burdens on the healthcare system, and lost productivity to society. This article reviews the pathophysiology of arthrofibrosis in the setting of neuromuscular disorders. We describe current non-surgical and surgical interventions for treating arthrofibrosis of commonly affected joints. In addition, we preview several promising modalities under development to ameliorate arthrofibrosis non-surgically and discuss limitations in the field of arthrofibrosis secondary to neuromuscular disorders.
Collapse
Affiliation(s)
- Edith Martinez-Lozano
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Indeevar Beeram
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, 330 Brookline Avenue, Stoneman 10, Boston, MA, 02215, USA
| | - Brian D Snyder
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.,Department of Orthopaedic Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.,Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, 0025, Armenia
| | - Edward K Rodriguez
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
24
|
Activation of the ATX/LPA/LPARs axis induces a fibrotic response in skeletal muscle. Matrix Biol 2022; 109:121-139. [DOI: 10.1016/j.matbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022]
|
25
|
Caceres-Ayala C, Pautassi RM, Acuña MJ, Cerpa W, Rebolledo DL. The functional and molecular effects of problematic alcohol consumption on skeletal muscle: a focus on athletic performance. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:133-147. [PMID: 35389308 DOI: 10.1080/00952990.2022.2041025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Chronic alcohol misuse is associated with alcoholic myopathy, characterized by skeletal muscle weakness and atrophy. Moreover, there is evidence that sports-related people seem to exhibit a greater prevalence of problematic alcohol consumption, especially binge drinking (BD), which might not cause alcoholic myopathy but can negatively impact muscle function and amateur and professional athletic performance.Objective: To review the literature concerning the effects of alcohol consumption on skeletal muscle function and structure that can affect muscle performance.Methodology: We examined the currently available literature (PubMed, Google Scholars) to develop a narrative review summarizing the knowledge about the effects of alcohol on skeletal muscle function and exercise performance, obtained from studies in human beings and animal models for problematic alcohol consumption.Results: Exercise- and sport-based studies indicate that alcohol consumption can negatively affect muscle recovery after vigorous exercise, especially in men, while women seem less affected. Clinical studies and pre-clinical laboratory research have led to the knowledge of some of the mechanisms involved in alcohol-related muscle dysfunction, including an imbalance between anabolic and catabolic pathways, reduced regeneration, increased inflammation and fibrosis, and deficiencies in energetic balance and mitochondrial function. These pathological features can appear not only under chronic alcohol misuse but also in other alcohol consumption patterns.Conclusions: Most laboratory-based studies use chronic or acute alcohol exposure, while episodic BD, the most common drinking pattern in amateur and professional athletes, is underrepresented. Nevertheless, alcohol consumption negatively affects skeletal muscle health through different mechanisms, which collectively might contribute to reduced sports performance.
Collapse
Affiliation(s)
- Constanza Caceres-Ayala
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo M Pautassi
- Instituto de Investigación Médica M. Y M. Ferreyra, Inimec-Conicet, Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María José Acuña
- Facultad de Salud, Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela L Rebolledo
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Petrosino JM, Longenecker JZ, Angell CD, Hinger SA, Martens CR, Accornero F. CCN2 participates in overload-induced skeletal muscle hypertrophy. Matrix Biol 2022; 106:1-11. [PMID: 35045313 PMCID: PMC8854352 DOI: 10.1016/j.matbio.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
The regulation of skeletal muscle growth following pro-hypertrophic stimuli requires a coordinated response by different cell types that leads to extracellular matrix (ECM) remodeling and increases in muscle cross-sectional area. Indeed, matricellular proteins serve a key role as communication vehicles that facilitate the propagation of signaling stimuli required for muscle adaptation to environmental challenges. We found that the matricellular protein cellular communication network factor 2 (CCN2), also known as connective tissue growth factor (CTGF), is induced during a time course of overload-driven skeletal muscle hypertrophy in mice. To elucidate the role of CCN2 in mediating the hypertrophic response, we utilized genetically engineered mouse models for myofiber-specific CCN2 gain- and loss-of-function and then examined their response to mechanical stimuli through muscle overload. Interestingly, myofiber-specific deletion of CCN2 blunted muscle's hypertrophic response to overload without interfering with ECM deposition. On the other hand, when in excess through transgenic CCN2 overexpression, CCN2 was efficient in promoting overload-induced aberrant ECM accumulation without affecting myofiber growth. Altogether, our genetic approaches highlighted independent ECM and myofiber stress adaptation responses, and positioned CCN2 as a central mediator of both. Mechanistically, CCN2 acts by regulating focal adhesion kinase (FAK) mediated transduction of overload-induced extracellular signals, including interleukin 6 (IL6), and their regulatory impact on global protein synthesis in skeletal muscle. Overall, our study highlights the contribution of muscle-derived extracellular matrix factor CCN2 for proper hypertrophic muscle growth.
Collapse
Affiliation(s)
- Jennifer M Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Jacob Z Longenecker
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Colin D Angell
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Scott A Hinger
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Colton R Martens
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Golkar-Narenji A, Antosik P, Nolin S, Rucinski M, Jopek K, Zok A, Sobolewski J, Jankowski M, Zdun M, Bukowska D, Stefańska K, Jaśkowski JM, Piotrowska-Kempisty H, Mozdziak P, Kempisty B. Gene Ontology Groups and Signaling Pathways Regulating the Process of Avian Satellite Cell Differentiation. Genes (Basel) 2022; 13:genes13020242. [PMID: 35205287 PMCID: PMC8871586 DOI: 10.3390/genes13020242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Modern science is becoming increasingly committed to environmentally friendly solutions, mitigating the impact of the developing human civilisation on the environment. One of the leading fields aimed at sustainable agriculture is in vitro meat production. Cellular agriculture aims to provide a source of animal-free meat products, which would decrease worldwide nutritional dependency on animal husbandry, thereby reducing the significant impact of this industry on Earth’s climate. However, while some studies successfully produced lab-based meat on a small scale, scalability of this approach requires significant optimisation of the methodology in order to ensure its viability on an industrial scale. One of the methodological promises of in vitro meat production is the application of cell suspension-based bioreactors. Hence, this study focused on a complex transcriptomic comparison of adherent undifferentiated, differentiated and suspension-cultured myosatellite cells, aiming to determine the effects of different culture methods on their transcriptome. Modern next-generation sequencing (RNAseq) was used to determine the levels of transcripts in the cultures’ cell samples. Then, differential expression and pathway analyses were performed using bionformatical methods. The significantly regulated pathways included: EIF2, mTOR, GP6, integrin and HIFα signalling. Differential regulation of gene expression, as well as significant enrichment and modulation of pathway activity, suggest that suspension culture potentially promotes the ex vivo-associated loss of physiological characteristics and gain of plasticity. Therefore, it seems that suspension cultures, often considered the desired method for in vitro meat production, require further investigation to fully elucidate their effect on myosatellite cells and, therefore, possibly enable their easier scalability to ensure suitability for industrial application.
Collapse
Affiliation(s)
- Afsaneh Golkar-Narenji
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA; (A.G.-N.); (S.N.); (P.M.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Shelly Nolin
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA; (A.G.-N.); (S.N.); (P.M.)
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland; (M.R.); (K.J.); (K.S.)
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland; (M.R.); (K.J.); (K.S.)
| | - Agnieszka Zok
- Division of Philosophy of Medicine and Bioethics, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Department of Social Sciences and Humanities, Poznan University of Medical Sciences, 60-701 Poznan, Poland
| | - Jarosław Sobolewski
- Department of Public Health Protection and Animal Welfare, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
| | - Maciej Zdun
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (H.P.-K.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (D.B.); (J.M.J.)
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland; (M.R.); (K.J.); (K.S.)
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (D.B.); (J.M.J.)
| | - Hanna Piotrowska-Kempisty
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (H.P.-K.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-701 Poznan, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA; (A.G.-N.); (S.N.); (P.M.)
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA; (A.G.-N.); (S.N.); (P.M.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland; (M.R.); (K.J.); (K.S.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Correspondence:
| |
Collapse
|
28
|
Sheets K, Overbey J, Ksajikian A, Bovid K, Kenter K, Li Y. The pathophysiology and treatment of musculoskeletal fibrosis. J Cell Biochem 2022; 123:843-851. [DOI: 10.1002/jcb.30217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Kelsey Sheets
- Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| | - Juliana Overbey
- BioMedical Engineering, Department of Orthopaedic Surgery, WMed, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| | - Andre Ksajikian
- BioMedical Engineering, Department of Orthopaedic Surgery, WMed, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| | - Karen Bovid
- Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| | - Keith Kenter
- Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| | - Yong Li
- Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine Western Michigan University Kalamazoo Michigan USA
| |
Collapse
|
29
|
Alduraywish AA. Cardiorespiratory and metabolic fitness indicators in novice volleyball trainees: effect of 1-week antioxidant supplementation with N-acetyl-cysteine/zinc/vitamin C. J Int Med Res 2021; 49:3000605211067125. [PMID: 34939440 PMCID: PMC8725015 DOI: 10.1177/03000605211067125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES This study aimed to determine the effect of 7-day dietary supplementation of N-acetylcysteine (NAC)/zinc/vitamin C on the time-to-exhaustion (TTE), the cardiorespiratory fitness (CRF) index, and metabolic indicators. METHODS This study enrolled volleyball student trainees (n = 18 men) who took NAC/zinc/vitamin C (750 mg/5 mg/100 mg) for 7 days at Jouf University, Saudi Arabia. The CRF index and TTE were determined. Serum concentrations of metabolic regulators (insulin, betatrophin, and hepatocyte growth factor), biomarkers of cellular damage/hypoxia, and indicators of lipid and glycemic control were measured. RESULTS Supplementation improved the TTE and CRF index, and lowered cytochrome c, C-reactive protein, hypoxia-inducible factor-1α (HIF-1α), total cholesterol, insulin, and glycated hemoglobin values. Before and after supplementation, the CRF index was negatively correlated with body mass index and positively correlated with the TTE. Before supplementation, the CRF index was positively correlated with betatrophin concentrations, and hepatocyte growth factor concentrations were positively correlated with betatrophin concentrations and negatively correlated with the homeostasis model assessment of insulin resistance index. After supplementation, the CRF index was negatively correlated with HIF-1α concentrations and metabolites. Additionally, the TTE was negatively correlated with HIF-1α, cytochrome c, and triacylglycerol concentrations. CONCLUSION Supplementation of NAC/zinc/vitamin C improves metabolic and CRF performance.
Collapse
|
30
|
Feasibility study for inducing the skeletal muscle fibrosis via irradiation using two mouse strains. Jpn J Radiol 2021; 40:466-475. [PMID: 34841459 DOI: 10.1007/s11604-021-01219-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Although the mechanism of onset and progression of radiation-induced fibrosis (RIF) has been studied, most studies to date have focused on pulmonary fibrosis. There are few studies on murine RIF in the skeletal muscle, and the pathogenic mechanism remains unclear. This pilot study aimed to evaluate the feasibility to create a murine model of RIF in the skeletal muscle and analyze strain differences in fibrosis sensitivity. MATERIALS AND METHODS Two mouse strains, C57BL/6 and C3H/He, were used. Their right hind limbs were irradiated at a dose of 25 Gy once a week for three fractions. Gastrocnemius muscles were collected at day 4, and weeks 2, 4, 8, 12, and 24 after the third irradiation and subjected to histopathological examination and immunoblotting. RESULTS In C57BL/6 mice, chronic inflammation and an increased expression of transforming growth factor-β (TGF-β) and fibronectin were observed 2 weeks after irradiation. A significant increase in fibrosis was detected after 8 weeks. However, in C3H/He mice, the expression of TGF-β and fibronectin increased 8 weeks after irradiation, and fibrosis significantly increased after 12 weeks. Moreover, the degrees of inflammation and fibrosis were more remarkable in C57BL/6 mice than in C3H/He mice. CONCLUSION The onset and degree of fibrosis may be associated with the expression of TGF-β and fibronectin, and inflammation, in a strain-specific manner. Therefore, a murine model of RIF in the skeletal muscle could be created using the indicated method, suggesting that the C57BL/6 strain is more sensitive to fibrosis in the skeletal muscle, as well as the lung, than the C3H/He strain. Radiation-induced fibrosis in the skeletal muscle could be detected in C57BL/6 and C3H/He mice, with C57BL/6 mice being more sensitive to fibrosis in the skeletal muscle than C3H/He mice.
Collapse
|
31
|
Katayama N, Noda I, Fukumoto Y, Kawanishi K, Kudo S. Effects of isometric contraction of the quadriceps on the hardness and blood flow in the infrapatellar fat pad. J Phys Ther Sci 2021; 33:722-727. [PMID: 34658513 PMCID: PMC8516604 DOI: 10.1589/jpts.33.722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
[Purpose] This study aimed to clarify the influence of the isometric contraction of the
quadriceps (ICQ) with low intensity on the circulation in the infrapatellar fat pad (IFP).
[Participants and Methods] The participants were 7 males and 5 females, with an average
age of 21.5 ± 1.4 years. IFP hardness was measured using shear wave ultrasound
elastography and Biodex. Tissue oxygenation was measured via near-infrared spectroscopy
using oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin (HHb), and total hemoglobin
(cHb) as indices. The mean values were calculated for three periods: 1 min of rest
immediately before the exercise task (before ICQ), the lower limit of the 10 sets during
the exercise task (during ICQ), and 3–4 min after the exercise task (after ICQ). IFP
hardness was compared between resting conditions and ICQ, and tissue oxygenation was
compared before, during, and after ICQ. [Results] ICQ significantly increased IFP
hardness. Tissue hemoglobin, O2Hb, and cHb decreased significantly during ICQ and
increased after ICQ compared to that before ICQ. HHb decreased during ICQ and recovered
significantly after ICQ. [Conclusion] In healthy participants, low-intensity ICQ increases
the hardness and oxygenation of the IFP. This study may partly explain the unknown pain
relief mechanism of exercise therapy.
Collapse
Affiliation(s)
- Naoya Katayama
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences: 1-26-16 Nankoukita Suminoe Ward, Osaka-shi, Osaka 559-8611, Japan.,Osaka Gyoumeikan Hospital, Japan
| | - Issei Noda
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences: 1-26-16 Nankoukita Suminoe Ward, Osaka-shi, Osaka 559-8611, Japan
| | - Yusuke Fukumoto
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences: 1-26-16 Nankoukita Suminoe Ward, Osaka-shi, Osaka 559-8611, Japan
| | - Kengo Kawanishi
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences: 1-26-16 Nankoukita Suminoe Ward, Osaka-shi, Osaka 559-8611, Japan
| | - Shintarou Kudo
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences: 1-26-16 Nankoukita Suminoe Ward, Osaka-shi, Osaka 559-8611, Japan.,Inclusive Medical Science Research Institute, Morinomiya University of Medical Sciences, Japan
| |
Collapse
|
32
|
Rebolledo DL, Lipson KE, Brandan E. Driving fibrosis in neuromuscular diseases: Role and regulation of Connective tissue growth factor (CCN2/CTGF). Matrix Biol Plus 2021; 11:100059. [PMID: 34435178 PMCID: PMC8377001 DOI: 10.1016/j.mbplus.2021.100059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Connective tissue growth factor or cellular communication network 2 (CCN2/CTGF) is a matricellular protein member of the CCN family involved in several crucial biological processes. In skeletal muscle, CCN2/CTGF abundance is elevated in human muscle biopsies and/or animal models for diverse neuromuscular pathologies, including muscular dystrophies, neurodegenerative disorders, muscle denervation, and muscle overuse. In this context, CCN2/CTGF is deeply involved in extracellular matrix (ECM) modulation, acting as a strong pro-fibrotic factor that promotes excessive ECM accumulation. Reducing CCN2/CTGF levels or biological activity in pathological conditions can decrease fibrosis, improve muscle architecture and function. In this work, we summarize information about the role of CCN2/CTGF in fibrosis associated with neuromuscular pathologies and the mechanisms and signaling pathways that regulate their expression in skeletal muscle.
Collapse
Affiliation(s)
- Daniela L Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Punta Arenas, Chile
| | | | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
33
|
Archacka K, Grabowska I, Mierzejewski B, Graffstein J, Górzyńska A, Krawczyk M, Różycka AM, Kalaszczyńska I, Muras G, Stremińska W, Jańczyk-Ilach K, Walczak P, Janowski M, Ciemerych MA, Brzoska E. Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Res Ther 2021; 12:448. [PMID: 34372911 PMCID: PMC8351116 DOI: 10.1186/s13287-021-02530-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background The skeletal muscle reconstruction occurs thanks to unipotent stem cells, i.e., satellite cells. The satellite cells remain quiescent and localized between myofiber sarcolemma and basal lamina. They are activated in response to muscle injury, proliferate, differentiate into myoblasts, and recreate myofibers. The stem and progenitor cells support skeletal muscle regeneration, which could be disturbed by extensive damage, sarcopenia, cachexia, or genetic diseases like dystrophy. Many lines of evidence showed that the level of oxygen regulates the course of cell proliferation and differentiation. Methods In the present study, we analyzed hypoxia impact on human and pig bone marrow-derived mesenchymal stromal cell (MSC) and mouse myoblast proliferation, differentiation, and fusion. Moreover, the influence of the transplantation of human bone marrow-derived MSCs cultured under hypoxic conditions on skeletal muscle regeneration was studied. Results We showed that bone marrow-derived MSCs increased VEGF expression and improved myogenesis under hypoxic conditions in vitro. Transplantation of hypoxia preconditioned bone marrow-derived MSCs into injured muscles resulted in the improved cell engraftment and formation of new vessels. Conclusions We suggested that SDF-1 and VEGF secreted by hypoxia preconditioned bone marrow-derived MSCs played an essential role in cell engraftment and angiogenesis. Importantly, hypoxia preconditioned bone marrow-derived MSCs more efficiently engrafted injured muscles; however, they did not undergo myogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02530-3.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Bartosz Mierzejewski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Joanna Graffstein
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Alicja Górzyńska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Krawczyk
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Anna M Różycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004, Warsaw, Poland.,Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Gabriela Muras
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Piotr Walczak
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Warszawska 30 St, 10-082, Olsztyn, Poland.,Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mirosław Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, 21201, USA.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St, 02-106, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
34
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
35
|
Guo H, Zhang Y, Han T, Cui X, Lu X. Chronic intermittent hypoxia aggravates skeletal muscle aging by down-regulating Klc1/grx1 expression via Wnt/β-catenin pathway. Arch Gerontol Geriatr 2021; 96:104460. [PMID: 34218156 DOI: 10.1016/j.archger.2021.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Sleep breathing disorder may affect skeletal muscle decline in the elderly, but the mechanism is not clear. Therefore, this study explores the mechanism of skeletal muscle aging in chronic intermittent hypoxia (CIH) rats. METHODS In vitro and in vivo CIH models were constructed in L6 cells and SD rats by treating chronic intermittent hypoxia. Pathological changes of skeletal muscle in vivo were measured by hematoxylin-eosin (HE) staining. Cell proliferation and apoptosis were detected by CCK-8 and Flow cytometer, respectively. The expression of KLC1/GRX1 and the proteins related to the Wnt/β-catenin pathway were measured by qRT-PCR and western blot. RESULTS CIH model was successfully established induced by chronic intermittent hypoxia with lower skeletal muscle index (SMI), increased inward migration of muscle fiber cell nucleus, and muscle cells' distance. The results showed that Wnt/β-catenin signalling was activatedin both L6 cells and CIH rats' model. KLC1 and GRX1 were significantly downregulated in the CIH model. Loss of function showed that downregulation of KLC1 promoted L6 cell and skeletal muscle aging in vitro and in vivo, respectively. CONCLUSION Our results demonstrated that CIH aggravated skeletal muscle aging by down-regulating KLC1/GRX1 expression via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hua Guo
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China; Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yunyun Zhang
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Tingting Han
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xiaochuan Cui
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China.
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Rebolledo DL, Acuña MJ, Brandan E. Role of Matricellular CCN Proteins in Skeletal Muscle: Focus on CCN2/CTGF and Its Regulation by Vasoactive Peptides. Int J Mol Sci 2021; 22:5234. [PMID: 34063397 PMCID: PMC8156781 DOI: 10.3390/ijms22105234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
The Cellular Communication Network (CCN) family of matricellular proteins comprises six proteins that share conserved structural features and play numerous biological roles. These proteins can interact with several receptors or soluble proteins, regulating cell signaling pathways in various tissues under physiological and pathological conditions. In the skeletal muscle of mammals, most of the six CCN family members are expressed during embryonic development or in adulthood. Their roles during the adult stage are related to the regulation of muscle mass and regeneration, maintaining vascularization, and the modulation of skeletal muscle fibrosis. This work reviews the CCNs proteins' role in skeletal muscle physiology and disease, focusing on skeletal muscle fibrosis and its regulation by Connective Tissue Growth factor (CCN2/CTGF). Furthermore, we review evidence on the modulation of fibrosis and CCN2/CTGF by the renin-angiotensin system and the kallikrein-kinin system of vasoactive peptides.
Collapse
Affiliation(s)
- Daniela L. Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago 8370854, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Fundación Ciencia & Vida, Santiago 7810000, Chile
| |
Collapse
|
37
|
Špaková I, Rabajdová M, Mičková H, Graier WF, Mareková M. Effect of hypoxia factors gene silencing on ROS production and metabolic status of A375 malignant melanoma cells. Sci Rep 2021; 11:10325. [PMID: 33990669 PMCID: PMC8121821 DOI: 10.1038/s41598-021-89792-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
The innate response of melanocytes to exogenous or endogenous stress stimuli like extreme pH and temperature, metabolite and oxygen deficiency or a high UV dose initiates a cellular stress response. This process activates adaptive processes to minimize the negative impact of the stressor on the pigment cell. Under physiological conditions, a non-cancer cell is directed to apoptosis if the stressor persists. However, malignant melanoma cells will survive persistent stress thanks to distinct "cancerous" signaling pathways (e.g. MEK) and transcription factors that regulate the expression of so-called "survival genes" (e.g. HIF, MITF). In this survival response of cancer cells, MEK pathway directs melanoma cells to deregulate mitochondrial metabolism, to accumulate reduced species (NADH), and to centralize metabolism in the cytosol. The aim of this work was to study the effect of gene silencing in malignant melanoma A375 cells on metabolic processes in cytosol and mitochondria. Gene silencing of HIF-1α, and miR-210 in normoxia and pseudohypoxia, and analysis of its effect on MITF-M, and PDHA1 expression. Detection of cytosolic NADH by Peredox-mCherry Assay. Detection of OCR, and ECAR using Seahorse XF96. Measurement of produced O2•- with MitoTracker Red CMXRos. 1H NMR analysis of metabolites present in cell suspension, and medium. By gene silencing of HIF-1α and miR-210 the expression of PDHA1 was upregulated while that of MITF-M was downregulated, yielding acceleration of mitochondrial respiratory activity and thus elimination of ROS. Hence, we detected a significantly reduced A375 cell viability, an increase in alanine, inositol, nucleotides, and other metabolites that together define apoptosis. Based on the results of measurements of mitochondrial resipiratory activity, ROS production, and changes in the metabolites obtained in cells under the observed conditions, we concluded that silencing of HIF-1α and miR-210 yields apoptosis and, ultimately, apoptotic cell death in A375 melanoma cells.
Collapse
Affiliation(s)
- Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia.
| | - Helena Mičková
- Department of Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Wolfgang F Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| |
Collapse
|
38
|
Shi L, Jiang M, Li M, Shang X, Li X, Huang M, Wu Y, Qiao C, Wang X, Tian X, Shi Y, Wang Z. Regulation of HIF-1α and p53 in stress responses in the subterranean rodents Lasiopodomys mandarinus and Lasiopodomys brandtii (Rodentia: Cricetidae). ZOOLOGIA 2021. [DOI: 10.3897/zoologia.38.e58607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The response mechanism and interaction patterns of HIF-1α and p53 in animals in an hypoxic environment are crucial for their hypoxic tolerance and adaptation. Many studies have shown that underground rodents have better hypoxic adaptation characteristics. However, the mechanism by which HIF-1α and p53 in underground rodents respond to hypoxic environments compared with in ground rodents remains unclear. Further, whether a synergy between HIF-1α and p53 enables animals tolerate extremely hypoxic environments is unclear. We studied HIF-1α and p53 expression in the brain tissue and cell apoptosis in the hippocampal CA1 region during 6 hours of acute hypoxia (5% oxygen) in Lasiopodomys mandarinus (Milne-Edwards, 1871) and Lasiopodomys brandtii (Radde, 1861), two closely related small rodents with different life characteristics (underground and aboveground, respectively), using a comparative biology method to determine the mechanisms underlying their adaptation to this environment. Our results indicate that HIF-1α and p53 expression is more rapid in L. mandarinus than in L. brandtii under acute hypoxic environments, resulting in a significant synergistic effect in L. mandarinus. Correlation analysis revealed that HIF-1α expression and the apoptotic index of the hippocampal CA1 regions of the brain tissues of L. mandarinus and L. brandtii, both under hypoxia, were significantly negatively and positively correlated, respectively. Long-term existence in underground burrow systems could enable better adaptation to hypoxia in L. mandarinus than in L. brandtii. We speculate that L. mandarinus can quickly eliminate resulting damage via the synergistic effect of p53 and HIF-1α in response to acute hypoxic environments, helping the organism quickly return to a normal state after the stress.
Collapse
|
39
|
Mensch A, Zierz S. Cellular Stress in the Pathogenesis of Muscular Disorders-From Cause to Consequence. Int J Mol Sci 2020; 21:ijms21165830. [PMID: 32823799 PMCID: PMC7461575 DOI: 10.3390/ijms21165830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular stress has been considered a relevant pathogenetic factor in a variety of human diseases. Due to its primary functions by means of contractility, metabolism, and protein synthesis, the muscle cell is faced with continuous changes of cellular homeostasis that require rapid and coordinated adaptive mechanisms. Hence, a prone susceptibility to cellular stress in muscle is immanent. However, studies focusing on the cellular stress response in muscular disorders are limited. While in recent years there have been emerging indications regarding a relevant role of cellular stress in the pathophysiology of several muscular disorders, the underlying mechanisms are to a great extent incompletely understood. This review aimed to summarize the available evidence regarding a deregulation of the cellular stress response in individual muscle diseases. Potential mechanisms, as well as involved pathways are critically discussed, and respective disease models are addressed. Furthermore, relevant therapeutic approaches that aim to abrogate defects of cellular stress response in muscular disorders are outlined.
Collapse
|
40
|
Gong R, Zuo C, Wu K, Zhang S, Qin X, Li Y, Gao X, Huang D, Lin M. A Comparison of Subconjunctival Wound Healing between Different Methods of Dissecting Subconjunctival Tissues. Ophthalmic Res 2020; 64:99-107. [PMID: 32564013 DOI: 10.1159/000509551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare different methods for dissecting subconjunctival tissues by developing subconjunctival wound healing models. METHODS New Zealand white rabbits were separated into 3 groups based on the method by which the rabbit subconjunctival wound healing model was generated: subconjunctival tissues were dissected episclerally (EPI) or subepithelially (SUB), with a corresponding blank control (CON). All the cases in the experimental groups were surgically prepared with conjunctival flaps, and they were sacrificed on the third postoperative day. At the surgical sites, the protein levels of hypoxia-inducible factor-1 (HIF-1)-α, vascular endothelial growth factor (VEGF)-A, and matrix metalloproteinase (MMP)-2 were detected by Western blot, morphological vascularity was measured by Adobe Photoshop, and subconjunctival fibrosis was assessed by histology. RESULTS Compared with the CON group, both the EPI and SUB groups showed significantly upregulated protein levels of HIF-1α, VEGF-A, and MMP-2. In addition, the protein levels of HIF-1α, VEGF-A, and MMP-2 were higher in the EPI group than in the SUB group. Morphological vascularity was significantly elevated in the EPI group compared with the SUB and CON groups. Collagen content was markedly increased in the EPI group compared with the SUB and CON groups. CONCLUSIONS Dissecting subconjunctival tissues subepithelially inhibits subconjunctival fibrosis, which may be instructive in tenonectomy in filtration surgery.
Collapse
Affiliation(s)
- Ruowen Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Simin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xi Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yangyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China,
| |
Collapse
|