1
|
Pang YT, Kuo KM, Yang L, Gumbart JC. DeepPath: Overcoming data scarcity for protein transition pathway prediction using physics-based deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640693. [PMID: 40060558 PMCID: PMC11888466 DOI: 10.1101/2025.02.27.640693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The structural dynamics of proteins play a crucial role in their function, yet most experimental and deep learning methods produce only static models. While molecular dynamics (MD) simulations provide atomistic insight into conformational transitions, they remain computationally prohibitive, particularly for large-scale motions. Here, we introduce DeepPath, a deep-learning-based framework that rapidly generates physically realistic transition pathways between known protein states. Unlike conventional supervised learning approaches, DeepPath employs active learning to iteratively refine its predictions, leveraging molecular mechanical force fields as an oracle to guide pathway generation. We validated DeepPath on three biologically relevant test cases: SHP2 activation, CdiB H1 secretion, and the BAM complex lateral gate opening. DeepPath accurately predicted the transition pathways for all test cases, reproducing key intermediate structures and transient interactions observed in previous studies. Notably, DeepPath also predicted an intermediate between the BAM inward- and outward-open states that closely aligns with an experimentally observed hybrid-barrel structure (TMscore = 0.91). Across all cases, DeepPath achieved accurate pathway predictions within hours, showcasing an efficient alternative to MD simulations for exploring protein conformational transitions.
Collapse
Affiliation(s)
- Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katie M Kuo
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Tuncbilek Z, Cakmak NK, Tas A, Ayan D, Silig Y. PEGylated Titanium Dioxide Nanoparticle-bound Doxorubicin and Paclitaxel Drugs Affect Prostate Cancer Cells and Alter the Expression of DUSP Family Genes. Anticancer Agents Med Chem 2025; 25:257-271. [PMID: 39473102 DOI: 10.2174/0118715206330115241015092548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 03/25/2025]
Abstract
BACKGROUND Prostate cancer (PC) is among the cancer types with high incidence and mortality. New and effective strategies are being sought for the treatment of deadly cancers, such as PC. In this context, the use of nanocarrier systems containing titanium dioxide (TiO2) can improve treatment outcomes and increase the effectiveness of anticancer drugs. OBJECTIVE This study aimed to evaluate the cytotoxic activity of doxorubicin (DOX) and paclitaxel (PTX) drugs on the PC cell line by attaching them to PEGylated TiO2 nanoparticles and to examine their effect on the expression levels of dual-specificity phosphatase (DUSP) genes. METHODS Free DOX and PTX drugs, DOX and PTX compounds bound to the pegylated TiO2 system were applied to DU-145 cells, a PC cell line, under in vitro conditions, and MTT analysis was performed. Additionally, the IC50 values of these compounds were analyzed. In addition, the expression levels of DUSP1, DUSP2, DUSP4, DUSP6, and DUSP10 genes were measured using RT-PCR. Additionally, bioinformatics and molecular docking analyses were performed on DUSP proteins. RESULTS The cytotoxic activity of PTX compound bound to PEGylated TiO2 was found to be higher than that of DOX compound bound to PEGylated TiO2. Additionally, when the expression levels were compared to the control group, the expression levels of DUSPs were found to be lower in the drugs of the drug carrier systems. CONCLUSION Accordingly, it was predicted that the PEGylated TiO2 nano-based carrier could be effective in PC.
Collapse
Affiliation(s)
- Zuhal Tuncbilek
- Department of Chemistry and Chemical Technologies, Yildizeli Vocational School, Sivas Cumhuriyet University, Sivas, 58500, Türkiye
| | - Nese Keklikcioglu Cakmak
- Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, 58140, Türkiye
| | - Ayca Tas
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, 58140, Türkiye
| | - Durmus Ayan
- Department of Medical Biochemistry, Faculty of Medicine, Nigde Omer Halisdemir University, Niğde, 51240, Türkiye
| | - Yavuz Silig
- Department of Medical Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, 58140, Türkiye
| |
Collapse
|
3
|
Lusardi M, Belvedere R, Petrella A, Iervasi E, Ponassi M, Brullo C, Spallarossa A. Novel tetrasubstituted 5-Arylamino pyrazoles able to interfere with angiogenesis and Ca 2+ mobilization. Eur J Med Chem 2024; 276:116715. [PMID: 39083983 DOI: 10.1016/j.ejmech.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
In the last years, 5-pyrazolyl ureas and 5-aminopyrazoles have been investigated for their antiangiogenetic properties and their potential interaction with the ubiquitous Ca2+ binding protein Calreticulin. Based on the structure of the active compounds I and GeGe-3, novel 5-arylamino pyrazoles 2 and 3 were synthesized through a stepwise procedure. In MTT assays, all the new derivatives proved to be non-cytotoxic against eight different tumor cell lines, normal fibroblasts, and endothelial cells. Furthermore, selected derivatives showed relevant antiangiogenetic properties, resulting more effective than reference molecules I and GeGe-3 in inhibiting HUVEC endothelial tube formation. 5-Arylamino pyrazoles 2a and 2d were identified as the most interesting compounds and significantly prevented tube formation of tumor secretome-stimulated HUVEC. Furthermore, the two compounds inhibited HUVEC migration in wound healing assay and altered cell invasion capability. Additionally, 2a and 2d strongly affected Ca2+ mobilization and cytoskeletal organization of HUVEC cells, being as active as the reference compound GeGe-3. Differently from previous studies, molecular docking simulations suggested a poor affinity of 2a towards Calreticulin, one of the interacting partners of the lead compound GeGe-3. Collectively, this new amino-pyrazole library further extends the structure-activity relationships of the previously prepared derivatives and confirmed the biological attractiveness of this chemical scaffold as antiangiogenetic agents.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Viale Giovanni Paolo II, 84084, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Viale Giovanni Paolo II, 84084, Salerno, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, Largo. R. Benzi, 10, 16132, Genova, Italy
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, Largo. R. Benzi, 10, 16132, Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Andrea Spallarossa
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, I-16132, Genova, Italy.
| |
Collapse
|
4
|
Bourlon MT, Urbina-Ramirez S, Verduzco-Aguirre HC, Mora-Pineda M, Velazquez HE, Leon-Rodriguez E, Atisha-Fregoso Y, De Anda-Gonzalez MG. Differences in the expression of the phosphatase PTP-1B in patients with localized prostate cancer with and without adverse pathological features. Front Oncol 2024; 14:1334845. [PMID: 38706600 PMCID: PMC11066170 DOI: 10.3389/fonc.2024.1334845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Patients with adverse pathological features (APF) at radical prostatectomy (RP) for prostate cancer (PC) are candidates for adjuvant treatment. Clinicians lack reliable markers to predict these APF preoperatively. Protein tyrosine phosphatase 1B (PTP-1B) is involved in migration and invasion of PC, and its expression could predict presence of APF. Our aim was to compare PTP-1B expression in patients with and without APF, and to explore PTP-1B expression as an independent prognostic factor. Methods Tissue microarrays (TMAs) were constructed using RP archival specimens for immunohistochemical staining of PTP-1B; expression was reported with a standardized score (0-9). We compared median PTP-1B score between cases with and without APF. We constructed two logistic regression models, one to identify the independence of PTP-1B score from biologically associated variables (metformin use and type 2 diabetes mellitus [T2DM]) and the second to seek independence of known risk factors (Gleason score and prostate specific antigen [PSA]). Results A total of 73 specimens were suitable for TMA construction. Forty-four (60%) patients had APF. The median PTP-1B score was higher in those with APF: 8 (5-9) vs 5 (3-8) (p=0.026). In the logistic regression model including T2DM and metformin use, the PTP-1B score maintained statistical significance (OR 1.21, 95% CI 1.01-1.45, p=0.037). In the model including PSA and Gleason score; the PTP-1B score showed no independence (OR 1.68, 95% CI 0.97-1.41, p=0.11). The area under the curve to predict APF for the PTP-1B score was 0.65 (95% CI 0.52-0.78, p=0.03), for PSA+Gleason 0.71 (95% CI 0.59-0.82, p=0.03), and for PSA+Gleason+PTP-1B score 0.73 (95% CI 0.61-0.84, p=0.001). Discussion Patients with APF after RP have a higher expression of PTP-1B than those without APF, even after adjusting for T2DM and metformin exposure. PTP-1B has a good accuracy for predicting APF but does not add to known prognostic factors.
Collapse
Affiliation(s)
- Maria T. Bourlon
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
- Universidad Panamericana, Escuela de Medicina, Mexico City, Mexico
| | - Shaddai Urbina-Ramirez
- Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Haydee C. Verduzco-Aguirre
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Mauricio Mora-Pineda
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Hugo E. Velazquez
- Instituto Nacional de Cardiología “Ignacio Chavez”, Radiology Department, Mexico City, Mexico
| | - Eucario Leon-Rodriguez
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Yemil Atisha-Fregoso
- Instituto Tecnológico de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - María G. De Anda-Gonzalez
- Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
5
|
Lusardi M, Wehrle-Haller B, Sidibe A, Ponassi M, Iervasi E, Rosano C, Brullo C, Spallarossa A. Novel 5-aminopyrazoles endowed with anti-angiogenetic properties: Design, synthesis and biological evaluation. Eur J Med Chem 2023; 260:115727. [PMID: 37597434 DOI: 10.1016/j.ejmech.2023.115727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
The promising anti-angiogenetic properties of previously synthesized pyrazolyl ureas provided the rationale for the synthesis of novel 5-aminopyrazoles 2-5, differently decorated on the pyrazole nucleus. All the derivatives were tested by MTT assays and proved to be non-cytotoxic against eight different tumor cell lines and normal fibroblasts. An EdU proliferation assay was carried out on human foreskin fibroblasts and VEGF stimulated human umbilical vein endothelial cells which confirmed the absence of cytotoxicity of the compounds on human cells up to 20 μM concentration. To evaluate the influence of the newly synthesized pyrazoles on MAPK and PI3K signaling pathways, the phosphorylation of ERK1/2 and Akt was analyzed by Western blots from HFF and HUVEC cell lysates stimulated with growth factors in the presence or absence of the compounds. Pyrazoles 3b and 3c showed a significant inhibition of Akt phosphorylation in both tested cell lines with lower phosphorylation levels than the reference compound GeGe-3 in HUVEC. Furthermore, derivatives 2 and 3 appeared to strongly affect the migration of HFF cells in a wound healing assay, confirming their potential ability to interfere with the angiogenesis process. The new pyrazole library extends the structure-activity relationships of the previously isolated compounds and highlights the attractiveness of this chemical class for pathological cell migration and angiogenesis.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy, Section of Medicinal Chemistry, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Adama Sidibe
- Department of Cell Physiology and Metabolism, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Camillo Rosano
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Andrea Spallarossa
- Department of Pharmacy, Section of Medicinal Chemistry, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132, Genova, Italy.
| |
Collapse
|
6
|
Mehta NV, Abhyankar A, Degani MS. Elemental exchange: Bioisosteric replacement of phosphorus by boron in drug design. Eur J Med Chem 2023; 260:115761. [PMID: 37651875 DOI: 10.1016/j.ejmech.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Continuous efforts are being directed toward the employment of boron in drug design due to its advantages and unique characteristics including a plethora of target engagement modes, lower metabolism, and synthetic accessibility, among others. Phosphates are components of multiple drug molecules as well as clinical candidates, since they play a vital role in various biochemical functions, being components of nucleotides, energy currency- ATP as well as several enzyme cofactors. This review discusses the unique chemistry of boron functionalities as phosphate bioisosteres - "the boron-phosphorus elemental exchange strategy" as well as the superiority of boron groups over other commonly employed phosphate bioisosteres. Boron phosphate-mimetics have been utilized for the development of enzyme inhibitors as well as novel borononucleotides. Both the boron functionalities described in this review-boronic acids and benzoxaboroles-contain a boron connected to two oxygens and one carbon atom. The boron atom of these functional groups coordinates with a water molecule in the enzyme site forming a tetrahedral molecule which mimics the phosphate structure. Although boron phosphate-mimetic molecules - FDA-approved Crisaborole and phase II/III clinical candidate Acoziborole are products of the boron-phosphorus bioisosteric elemental exchange strategy, this technique is still in its infancy. The review aims to promote the use of this strategy in future medicinal chemistry projects.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| | - Arundhati Abhyankar
- Shri Vile Parle Kelavani Mandal's Dr Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vile Parle West, Mumbai, 400056, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
7
|
Abstract
Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.
Collapse
Affiliation(s)
- Shanelle R Shillingford
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
De Rasmo D, Cormio A, Cormio G, Signorile A. Ovarian Cancer: A Landscape of Mitochondria with Emphasis on Mitochondrial Dynamics. Int J Mol Sci 2023; 24:ijms24021224. [PMID: 36674740 PMCID: PMC9865899 DOI: 10.3390/ijms24021224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Ovarian cancer (OC) represents the main cause of death from gynecological malignancies in western countries. Altered cellular and mitochondrial metabolism are considered hallmarks in cancer disease. Several mitochondrial aspects have been found altered in OC, such as the oxidative phosphorylation system, oxidative stress and mitochondrial dynamics. Mitochondrial dynamics includes cristae remodeling, fusion, and fission processes forming a dynamic mitochondrial network. Alteration of mitochondrial dynamics is associated with metabolic change in tumour development and, in particular, the mitochondrial shaping proteins appear also to be responsible for the chemosensitivity and/or chemoresistance in OC. In this review a focus on the mitochondrial dynamics in OC cells is presented.
Collapse
Affiliation(s)
- Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70124 Bari, Italy
| | - Antonella Cormio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Gennaro Cormio
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Correspondence:
| |
Collapse
|
9
|
Gai S, Suthagar K, Shaffer KJ, Jiao W, Minnow YVT, Glockzin K, Maatouk SW, Katzfuss A, Meek TD, Schramm VL, Tyler PC. The design of protozoan phosphoribosyltransferase inhibitors containing non-charged phosphate mimic residues. Bioorg Med Chem 2022; 74:117038. [PMID: 36209571 DOI: 10.1016/j.bmc.2022.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023]
Abstract
Phosphate groups play essential roles in biological processes, including retention inside biological membranes. Phosphodiesters link nucleic acids, and the reversible transfer of phosphate groups is essential in energy metabolism and cell-signalling processes. Phosphorylated metabolic intermediates are known targets for metabolic and disease-related disorders, and the enzymes involved in these pathways recognize phosphate groups in their catalytic sites. Therapeutics that target these enzymes can require charged (ionic) entities to capture the binding energy of ionic substrates. Such compounds are not cell-permeable and require pro-drug strategies for efficacy as therapeutics. Protozoan parasites such as Plasmodium and Trypanosoma spp. are unable to synthesise purines de novo and rely on the salvage of purines from the host cell to synthesise free purine bases. Purine phosphoribosyltransfereases (PPRTases) play a crucial role for purine salvage and are potential target for drug development. Here we present attempts to design inhibitors of PPRTases that are non-ionic and show affinity for the nucleotide 5'-phosphate binding site. Inhibitor design was based on known potent ionic inhibitors, reported phosphate mimics and computational modelling studies.
Collapse
Affiliation(s)
- Sinan Gai
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Kajitha Suthagar
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Karl J Shaffer
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Wanting Jiao
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Yacoba V T Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sean W Maatouk
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ardala Katzfuss
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
10
|
Clausse V, Fang Y, Tao D, Tagad HD, Sun H, Wang Y, Karavadhi S, Lane K, Shi ZD, Vasalatiy O, LeClair CA, Eells R, Shen M, Patnaik S, Appella E, Coussens NP, Hall MD, Appella DH. Discovery of Novel Small-Molecule Scaffolds for the Inhibition and Activation of WIP1 Phosphatase from a RapidFire Mass Spectrometry High-Throughput Screen. ACS Pharmacol Transl Sci 2022; 5:993-1006. [PMID: 36268125 PMCID: PMC9578142 DOI: 10.1021/acsptsci.2c00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Wild-type P53-induced phosphatase 1 (WIP1), also known as PPM1D or PP2Cδ, is a serine/threonine protein phosphatase induced by P53 after genotoxic stress. WIP1 inhibition has been proposed as a therapeutic strategy for P53 wild-type cancers in which it is overexpressed, but this approach would be ineffective in P53-negative cancers. Furthermore, there are several cancers with mutated P53 where WIP1 acts as a tumor suppressor. Therefore, activating WIP1 phosphatase might also be a therapeutic strategy, depending on the P53 status. To date, no specific, potent WIP1 inhibitors with appropriate pharmacokinetic properties have been reported, nor have WIP1-specific activators. Here, we report the discovery of new WIP1 modulators from a high-throughput screen (HTS) using previously described orthogonal biochemical assays suitable for identifying both inhibitors and activators. The primary HTS was performed against a library of 102 277 compounds at a single concentration using a RapidFire mass spectrometry assay. Hits were further evaluated over a range of 11 concentrations with both the RapidFire MS assay and an orthogonal fluorescence-based assay. Further biophysical, biochemical, and cell-based studies of confirmed hits revealed a WIP1 activator and two inhibitors, one competitive and one uncompetitive. These new scaffolds are prime candidates for optimization which might enable inhibitors with improved pharmacokinetics and a first-in-class WIP1 activator.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Fang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Harichandra D. Tagad
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hongmao Sun
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yuhong Wang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Surendra Karavadhi
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kelly Lane
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Zhen-Dan Shi
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Olga Vasalatiy
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Christopher A. LeClair
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Rebecca Eells
- Reaction
Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Samarjit Patnaik
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ettore Appella
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Coussens
- Molecular
Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
11
|
Che L, Du ZB, Wang WH, Wu JS, Han T, Chen YY, Han PY, Lei Z, Chen XX, He Y, Xu L, Lin X, Lin ZN, Lin YC. Intracellular antibody targeting HBx suppresses invasion and metastasis in hepatitis B virus-related hepatocarcinogenesis via protein phosphatase 2A-B56γ-mediated dephosphorylation of protein kinase B. Cell Prolif 2022; 55:e13304. [PMID: 35811356 PMCID: PMC9628248 DOI: 10.1111/cpr.13304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Hepatitis B virus X (HBx) is closely associated with HBV‐related hepatocarcinogenesis via the inactivation of tumour suppressors. Protein phosphatase 2A (PP2A) regulatory subunit B56 gamma (B56γ), as a tumour suppressor, plays a critical role in regulating cellular phosphorylation signals via dephosphorylation of signalling proteins. However, the underlying mechanism that B56γ involved in regulating HBx‐associated hepatocarcinogenesis phenotypes and mediating anti‐HBx antibody‐mediated tumour suppression remains unknown. Materials and Methods We used bioinformatics analysis, paired HCC patient specimens, HBx transgenic (HBx‐Tg) mice, xenograft nude mice, HBV stable replication in the HepG2.2.15 cells, and anti‐HBx antibody intervention to systematically evaluate the biological function of protein kinase B (AKT) dephosphorylation through B56γ in HBx‐associated hepatocarcinogenesis. Results Bioinformatics analysis revealed that AKT, matrix metalloproteinase 2 (MMP2), and MMP9 were markedly upregulated, while cell migration and viral carcinogenesis pathways were activated in HBV‐infected liver tissues and HBV‐associated HCC tissues. Our results demonstrated that HBx‐expression promotes AKT phosphorylation (p‐AKTThr308/Ser473), mediating the migration and invasion phenotypes in vivo and in vitro. Importantly, in clinical samples, HBx and B56γ were downregulated in HBV‐associated HCC tumour tissues compared with peritumor tissues. Moreover, intervention with site‐directed mutagenesis (AKTT308A, AKTS473A) of p‐AKTThr308/Ser473 mimics dephosphorylation, genetics‐based B56γ overexpression, and intracellular anti‐HBx antibody inhibited cell growth, migration, and invasion in HBx‐expressing HCC cells. Conclusions Our results demonstrated that B56γ inhibited HBV/HBx‐dependent hepatocarcinogenesis by regulating the dephosphorylation of p‐AKTThr308/Ser473 in HCC cells. The intracellular anti‐HBx antibody and the activator of B56γ may provide a multipattern chemopreventive strategy against HBV‐related HCC.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Wei-Hua Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Tun Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yuan-Yuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pei-Yu Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xiao-Xuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yun He
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ling Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Ghemrawi R, Khair M, Hasan S, Aldulaymi R, AlNeyadi SS, Atatreh N, Ghattas MA. The Discovery of Potent SHP2 Inhibitors with Anti-Proliferative Activity in Breast Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23084468. [PMID: 35457286 PMCID: PMC9030381 DOI: 10.3390/ijms23084468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Despite available treatments, breast cancer is the leading cause of cancer-related death. Knowing that the tyrosine phosphatase SHP2 is a regulator in tumorigenesis, developing inhibitors of SHP2 in breast cells is crucial. Our study investigated the effects of new compounds, purchased from NSC, on the phosphatase activity of SHP2 and the modulation of breast cancer cell lines’ proliferation and viability. A combined ligand-based and structure-based virtual screening protocol was validated, then performed, against SHP2 active site. Top ranked compounds were tested via SHP2 enzymatic assay, followed by measuring IC50 values. Subsequently, hits were tested for their anti-breast cancer viability and proliferative activity. Our experiments identified three compounds 13030, 24198, and 57774 as SHP2 inhibitors, with IC50 values in micromolar levels and considerable selectivity over the analogous enzyme SHP1. Long MD simulations of 500 ns showed a very promising binding mode in the SHP2 catalytic pocket. Furthermore, these compounds significantly reduced MCF-7 breast cancer cells’ proliferation and viability. Interestingly, two of our hits can have acridine or phenoxazine cyclic system known to intercalate in ds DNA. Therefore, our novel approach led to the discovery of SHP2 inhibitors, which could act as a starting point in the future for clinically useful anticancer agents.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; (R.G.); (S.H.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates;
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| | - Shaima Hasan
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; (R.G.); (S.H.)
| | - Raghad Aldulaymi
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates;
| | - Shaikha S. AlNeyadi
- Department of Chemistry, College of Science, UAE University Al-Ain, Abu Dhabi 15551, United Arab Emirates;
| | - Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; (R.G.); (S.H.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates;
- Correspondence: (N.A.); (M.A.G.)
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; (R.G.); (S.H.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates;
- Correspondence: (N.A.); (M.A.G.)
| |
Collapse
|
13
|
Didem Kara I, Cakir A, Ozaslan M, Halil Kili I, Tepe B, Akdogan E, Kazaz C. Anticancer Agents from Xanthium strumarium Fruits Against C6 Glioma Cells. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.437.454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Synthesis, functional proteomics and biological evaluation of new 5-pyrazolyl ureas as potential anti-angiogenic compounds. Eur J Med Chem 2021; 226:113872. [PMID: 34600191 DOI: 10.1016/j.ejmech.2021.113872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022]
Abstract
Based on biological results of previous synthesized pyrazolyl ureas able to interfere with angiogenesis process, we planned and synthesized the new benzyl-urea derivatives 2-4; some of them showed an interesting anti-proliferative profile and particularly 4e potently inhibited HUVEC proliferation. To shed light on the mechanism of action of 4e, its interactome has been deeply inspected to identify the most prominent protein partners, mainly taking into account kinome and phosphatome, through drug affinity responsive target stability experiments, followed by targeted limited proteolysis analysis. From these studies, PP1γ emerged as the most reliable 4e potential target in HUVEC. Molecular docking simulations on PP1γ were carried out to predict 4e binding mode. To assess its potential anti-angiogenic effect, 4e was tested in vitro to verify interference on kinase and phosphate activities. Overall, our results evidenced for 4e an interesting anti-angiogenic action, probably due to its action at intracellular level on PP1γ signalling pathways.
Collapse
|
15
|
Turdo A, D'Accardo C, Glaviano A, Porcelli G, Colarossi C, Colarossi L, Mare M, Faldetta N, Modica C, Pistone G, Bongiorno MR, Todaro M, Stassi G. Targeting Phosphatases and Kinases: How to Checkmate Cancer. Front Cell Dev Biol 2021; 9:690306. [PMID: 34778245 PMCID: PMC8581442 DOI: 10.3389/fcell.2021.690306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Marzia Mare
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | | | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.,Azienda Ospedaliera Universitaria Policlinico (AOUP), Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Guo Y, Xu Y, Dong X, Zhang J. Cross the Undruggable Barrier, the Development of SHP2 Inhibitors: From Catalytic Site Inhibitors to Allosteric Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Yaping Xu
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Jianjun Zhang
- Department of Pharmacy Institution The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine) Hangzhou 310006 P.R. China
| |
Collapse
|
17
|
Saminathan H, Ghosh A, Zhang D, Song C, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Fyn Kinase-Mediated PKCδ Y311 Phosphorylation Induces Dopaminergic Degeneration in Cell Culture and Animal Models: Implications for the Identification of a New Pharmacological Target for Parkinson's Disease. Front Pharmacol 2021; 12:631375. [PMID: 33995031 PMCID: PMC8113680 DOI: 10.3389/fphar.2021.631375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress, neuroinflammation and apoptosis are some of the key etiological factors responsible for dopamin(DA)ergic degeneration during Parkinson's disease (PD), yet the downstream molecular mechanisms underlying neurodegeneration are largely unknown. Recently, a genome-wide association study revealed the FYN gene to be associated with PD, suggesting that Fyn kinase could be a pharmacological target for PD. In this study, we report that Fyn-mediated PKCδ tyrosine (Y311) phosphorylation is a key event preceding its proteolytic activation in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinsonism. MPP+/MPTP induced Fyn kinase activation in N27 DAergic neuronal cells and the mouse substantia nigra. PKCδ-Y311 phosphorylation by activated Fyn initiates the apoptotic caspase-signaling cascade during DAergic degeneration. Pharmacological attenuation of Fyn activity protected DAergic neurons from MPP+-induced degeneration in primary mesencephalic neuronal cultures. We further employed Fyn wild-type and Fyn knockout (KO) mice to confirm whether Fyn is a valid pharmacological target of DAergic neurodegeneration. Primary mesencephalic neurons from Fyn KO mice were greatly protected from MPP+-induced DAergic cell death, neurite loss and DA reuptake loss. Furthermore, Fyn KO mice were significantly protected from MPTP-induced PKCδ-Y311 phosphorylation, behavioral deficits and nigral DAergic degeneration. This study thus unveils a mechanism by which Fyn regulates PKCδ's pro-apoptotic function and DAergic degeneration. Pharmacological inhibitors directed at Fyn activation could prove to be a novel therapeutic target in the delay or halting of selective DAergic degeneration during PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Anumantha G. Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Ravichandran G, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J. Innate immune function of serine/threonine-protein kinase from Macrobrachium rosenbergii in response to host-pathogen interactions. FISH & SHELLFISH IMMUNOLOGY 2020; 106:332-340. [PMID: 32758637 DOI: 10.1016/j.fsi.2020.07.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The occurrences of multiple drug-resistant strains have been relentlessly increasing in recent years. The aquaculture industry has encountered major disease outbreaks and crucially affected by this situation. The usage of non-specific chemicals and antibiotics expedites the stimulation of resistant strains. Triggering the natural defense mechanism would provide an effective and safest way of protecting the host system. Hence, we have investigated the innate immune function of serine/threonine-protein kinase (STPK) in Macrobrachium rosenbergii (Mr). The in-silico protein analysis resulted in the identification of cationic antimicrobial peptide, MrSL-19, with interesting properties from STPK of M. rosenbergii. Antimicrobial assay, FACS and SEM analysis demonstrated that the peptide potentially inhibits Staphylococcus aureus by interacting with its membrane. The toxic study on MrSL-19 demonstrated that the peptide is not toxic against HEK293 cells as well as human erythrocytes. This investigation showed the significant innate immune property of an efficient cationic antimicrobial peptide, MrSL-19 of STPK from M. rosenbergii.
Collapse
Affiliation(s)
- Gayathri Ravichandran
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
19
|
Yang R, Dong Q, Xu H, Gao X, Zhao Z, Qin J, Chen C, Luo D. Identification of Phomoxanthone A and B as Protein Tyrosine Phosphatase Inhibitors. ACS OMEGA 2020; 5:25927-25935. [PMID: 33073119 PMCID: PMC7557999 DOI: 10.1021/acsomega.0c03315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Phomoxanthone A and B (PXA and PXB) are xanthone dimers and isolated from the endophytic fungus Phomopsis sp. By254. The results demonstrated that PXB and PXA are noncompetitive inhibitors of SHP2 and PTP1B and competitive inhibitors of SHP1. Molecular docking studies showed that PXB and PXA interact with conserved domains of protein tyrosine phosphatases such as the β5-β6 loop, WPD loop, P loop, and Q loop. PXA and PXB could significantly inhibit the cell proliferation in MCF7 cells. Our results indicated that these two compounds do not efficiently inhibit PTP1B and SHP2 activity. RNA sequencing showed that PXA and PXB may inhibit SHP1 activity in MCF7 cells leading to the upregulation of inflammatory factors. In addition to PTP inhibition, PXA and PXB are multitarget compounds to inhibit the proliferation of tumor cells. In conclusion, both compounds show inhibition of cancer cells and a certain degree of inflammatory stimulation, which make them promising for tumor immunotherapy.
Collapse
Affiliation(s)
- Runlei Yang
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Qian Dong
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Huibin Xu
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - XueHui Gao
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Ziyue Zhao
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jianchun Qin
- College
of Plant Science, Jilin University, Changchun, Jilin 130062, China
| | - Chuan Chen
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Duqiang Luo
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| |
Collapse
|
20
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
21
|
Tang K, Jia YN, Yu B, Liu HM. Medicinal chemistry strategies for the development of protein tyrosine phosphatase SHP2 inhibitors and PROTAC degraders. Eur J Med Chem 2020; 204:112657. [PMID: 32738411 DOI: 10.1016/j.ejmech.2020.112657] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
As a non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene, the Src homology 2 domain-containing protein tyrosine phosphatase (SHP2) is involved in mitogen-activated protein kinase (MAPK) signaling pathway and contributes to immune surveillance via programmed cell death pathway (PD-1/PD-L1). To date, numerous SHP2 inhibitors have been developed, some of them have advanced into clinical trials. Moreover, the first PROTAC degrader SHP2-D26 has been proved to effectively induce degradation of SHP2, which may open a new avenue for targeted SHP2 therapies. In this review, we systematically summarized the development of SHP2 inhibitors with a particular focus on the structure-activity relationships (SAR) studies, crystal structures or binding models, and their modes of action.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yao-Nan Jia
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Yuan X, Bu H, Zhou J, Yang CY, Zhang H. Recent Advances of SHP2 Inhibitors in Cancer Therapy: Current Development and Clinical Application. J Med Chem 2020; 63:11368-11396. [DOI: 10.1021/acs.jmedchem.0c00249] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
23
|
Ghosh AK, Brindisi M, Sarkar A. The Curtius Rearrangement: Applications in Modern Drug Discovery and Medicinal Chemistry. ChemMedChem 2018; 13:2351-2373. [PMID: 30187672 DOI: 10.1002/cmdc.201800518] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/20/2022]
Abstract
The Curtius rearrangement is the thermal decomposition of an acyl azide derived from carboxylic acid to produce an isocyanate as the initial product. The isocyanate can undergo further reactions to provide amines and their derivatives. Due to its tolerance for a large variety of functional groups and complete retention of stereochemistry during rearrangement, the Curtius rearrangement has been used in the synthesis of a wide variety of medicinal agents with amines and amine-derived functional groups such as ureas and urethanes. The current review outlines various applications of the Curtius rearrangement in drug discovery and medicinal chemistry. In particular, the review highlights some widely used rearrangement methods, syntheses of some key agents for popular drug targets and FDA-approved drugs. In addition, the review highlights applications of the Curtius rearrangement in continuous-flow protocols for the scale-up of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Anindya Sarkar
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
24
|
Metz KS, Deoudes EM, Berginski ME, Jimenez-Ruiz I, Aksoy BA, Hammerbacher J, Gomez SM, Phanstiel DH. Coral: Clear and Customizable Visualization of Human Kinome Data. Cell Syst 2018; 7:347-350.e1. [PMID: 30172842 DOI: 10.1016/j.cels.2018.07.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022]
Abstract
Protein kinases represent one of the largest gene families in eukaryotes and play roles in a wide range of cell signaling processes and human diseases. Current tools for visualizing kinase data in the context of the human kinome superfamily are limited to encoding data through the addition of nodes to a low-resolution image of the kinome tree. We present Coral, a user-friendly interactive web application for visualizing both quantitative and qualitative data. Unlike previous tools, Coral can encode data in three features (node color, node size, and branch color), allows three modes of kinome visualization (the traditional kinome tree as well as radial and dynamic force networks), and generates high-resolution scalable vector graphics files suitable for publication without the need for refinement using graphics editing software. Due to its user-friendly, interactive, and highly customizable design, Coral is broadly applicable to high-throughput studies of the human kinome. The source code and web application are available at github.com/dphansti/CORAL and phanstiel-lab.med.unc.edu/Coral, respectively.
Collapse
Affiliation(s)
- Kathleen S Metz
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Erika M Deoudes
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew E Berginski
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ivan Jimenez-Ruiz
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bulent Arman Aksoy
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jeff Hammerbacher
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shawn M Gomez
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Douglas H Phanstiel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
25
|
Vazhappilly CG, Saleh E, Ramadan W, Menon V, Al-Azawi AM, Tarazi H, Abdu-Allah H, El-Shorbagi AN, El-Awady R. Inhibition of SHP2 by new compounds induces differential effects on RAS/RAF/ERK and PI3K/AKT pathways in different cancer cell types. Invest New Drugs 2018; 37:252-261. [PMID: 29947013 DOI: 10.1007/s10637-018-0626-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Kinases and phosphatases are important players in growth signaling and are involved in cancer development. For development of targeted cancer therapy, attention is given to kinases rather than phosphatases inhibitors. Src homology region 2 domain-containing protein tyrosine phosphatase2 (SHP2) is overexpressed in different types of cancers. We investigated the SHP2-inhibitory effects of two new 5-aminosalicylate-4-thiazolinones in human cervical (HeLa) and breast (MCF-7 & MDA-MB-231) cancer cells. In-silico molecular docking showed preferential affinity of the two compounds towards the catalytic over the allosteric site of SHP2. An enzymatic assay confirmed the docking results whereby 0.01 μM of both compounds reduced SHP2 activity to 50%. On cellular level, the two compounds significantly reduced the expression of SHP2, KRAS, p-ERK and p-STAT3 in HeLa but not in the other two cell lines. Phosphorylation of AKT and JNK was enhanced in HeLa and MCF7. Both compounds exhibited anti-proliferative/anti-migratory effects on HeLa and MCF7 but not in MDA-MB-231 cells. These results indicate that inhibition of SHP2 and its downstream pathways by the two compounds might be a promising strategy for cancer therapy in some but not all cancer types.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ekram Saleh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Wafaa Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Aya Mudhafar Al-Azawi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamadeh Tarazi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, University City Road, 27272, Sharjah, United Arab Emirates
| | - Hajjaj Abdu-Allah
- Medicinal Chemistry Department, College of Pharmacy, Assuit University, Assuit, Egypt
| | - Abdel-Nasser El-Shorbagi
- College of Pharmacy, University of Sharjah, University City Road, 27272, Sharjah, United Arab Emirates.,Medicinal Chemistry Department, College of Pharmacy, Assuit University, Assuit, Egypt
| | - Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates. .,College of Pharmacy, University of Sharjah, University City Road, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
26
|
Pease BN, Huttlin EL, Jedrychowski MP, Dorin-Semblat D, Sebastiani D, Segarra DT, Roberts BF, Chakrabarti R, Doerig C, Gygi SP, Chakrabarti D. Characterization of Plasmodium falciparum Atypical Kinase PfPK7 - Dependent Phosphoproteome. J Proteome Res 2018; 17:2112-2123. [PMID: 29678115 DOI: 10.1021/acs.jproteome.8b00062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PfPK7 is an "orphan" kinase displaying regions of homology to multiple protein kinase families. PfPK7 functions in regulating parasite proliferation/development as evident from the phenotype analysis of knockout parasites. Despite this regulatory role, the functions of PfPK7 in signaling pathways are not known. To better understand PfPK7-regulated phosphorylation events, we performed isobaric tag-based quantitative comparative phosphoproteomics of the schizont and segmenter stages from wild-type and pfpk7 - parasite lines. This analysis identified 3,875 phosphorylation sites on 1,047 proteins. Among these phosphorylation events, 146 proteins with 239 phosphorylation sites displayed reduction in phosphorylation in the absence of PfPK7. Further analysis of the phosphopeptides revealed three motifs whose phosphorylation was down regulated in the pfpk7 - cell line in both schizonts and segmenters. Decreased phosphorylation following loss of PfPK7 indicates that these proteins may function as direct substrates of PfPK7. We demonstrated that PfPK7 is active toward three of these potential novel substrates; however, PfPK7 did not phosphorylate many of the other proteins, suggesting that decreased phosphorylation in these proteins is an indirect effect. Our phosphoproteomics analysis is the first study to identify direct substrates of PfPK7 and reveals potential downstream or compensatory signaling pathways.
Collapse
Affiliation(s)
- Brittany N Pease
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences , University of Central Florida , Orlando , Florida 32826 , United States
| | - Edward L Huttlin
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Mark P Jedrychowski
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Dominique Dorin-Semblat
- Inserm U665, Institut National de Transfusion Sanguine , 6, rue Alexandre Cabanel , 75739 Paris Cedex 5, France
| | - Daniela Sebastiani
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences , University of Central Florida , Orlando , Florida 32826 , United States
| | - Daniel T Segarra
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences , University of Central Florida , Orlando , Florida 32826 , United States
| | - Bracken F Roberts
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences , University of Central Florida , Orlando , Florida 32826 , United States
| | - Ratna Chakrabarti
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences , University of Central Florida , Orlando , Florida 32826 , United States
| | - Christian Doerig
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton , Victoria 3800 , Australia
| | - Steven P Gygi
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Debopam Chakrabarti
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences , University of Central Florida , Orlando , Florida 32826 , United States
| |
Collapse
|
27
|
Richard NP, Pippa R, Cleary MM, Puri A, Tibbitts D, Mahmood S, Christensen DJ, Jeng S, McWeeney S, Look AT, Chang BH, Tyner JW, Vitek MP, Odero MD, Sears R, Agarwal A. Combined targeting of SET and tyrosine kinases provides an effective therapeutic approach in human T-cell acute lymphoblastic leukemia. Oncotarget 2018; 7:84214-84227. [PMID: 27705940 PMCID: PMC5356656 DOI: 10.18632/oncotarget.12394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/24/2016] [Indexed: 12/21/2022] Open
Abstract
Recent evidence suggests that inhibition of protein phosphatase 2A (PP2A) tumor suppressor activity via the SET oncoprotein contributes to the pathogenesis of various cancers. Here we demonstrate that both SET and c-MYC expression are frequently elevated in T-ALL cell lines and primary samples compared to healthy T cells. Treatment of T-ALL cells with the SET antagonist OP449 restored the activity of PP2A and reduced SET interaction with the PP2A catalytic subunit, resulting in a decrease in cell viability and c-MYC expression in a dose-dependent manner. Since a tight balance between phosphatases and kinases is required for the growth of both normal and malignant cells, we sought to identify a kinase inhibitor that would synergize with SET antagonism. We tested various T-ALL cell lines against a small-molecule inhibitor screen of 66 compounds targeting two-thirds of the tyrosine kinome and found that combined treatment of T-ALL cells with dovitinib, an orally active multi-targeted small-molecule receptor tyrosine kinase inhibitor, and OP449 synergistically reduced the viability of all tested T-ALL cell lines. Mechanistically, combined treatment with OP449 and dovitinib decreased total and phospho c-MYC levels and reduced ERK1/2, AKT, and p70S6 kinase activity in both NOTCH-dependent and independent T-ALL cell lines. Overall, these results suggest that combined targeting of tyrosine kinases and activation of serine/threonine phosphatases may offer novel therapeutic strategies for the treatment of T-ALL.
Collapse
Affiliation(s)
- Nameeta P Richard
- Randall Children's Hospital at Legacy Emanuel, Children's Cancer and Blood Disorders Program, Portland, OR 97227, USA.,Division of Pediatric Hematology Oncology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Raffaella Pippa
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Megan M Cleary
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alka Puri
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Deanne Tibbitts
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shawn Mahmood
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Dale J Christensen
- Research and Development, Oncotide Pharmaceuticals, Research Triangle Park, NC 27710, USA .,Spyryx Biosciences, Durham, NC 27713, USA
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shannon McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - A Thomas Look
- Dana-Farber Cancer Institute, Harvard Cancer Center, Boston, MA 02215, USA
| | - Bill H Chang
- Division of Pediatric Hematology Oncology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey W Tyner
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Michael P Vitek
- Research and Development, Oncotide Pharmaceuticals, Research Triangle Park, NC 27710, USA
| | - María D Odero
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Rosalie Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR USA-97239.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA-97239
| | - Anupriya Agarwal
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA-97239.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR USA-97239.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA-97239
| |
Collapse
|
28
|
Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018; 118:1069-1091. [PMID: 28541680 PMCID: PMC5812791 DOI: 10.1021/acs.chemrev.7b00105] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| |
Collapse
|
29
|
|
30
|
Fabbro D. 25 years of small molecular weight kinase inhibitors: potentials and limitations. Mol Pharmacol 2015; 87:766-75. [PMID: 25549667 DOI: 10.1124/mol.114.095489] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Deregulation of protein and lipid kinase activities leads to a variety of pathologies, ranging from cancer inflammatory diseases, diabetes, infectious diseases, and cardiovascular disorders. Protein kinases and lipid kinases represent, therefore, an important target for the pharmaceutical industry. In fact, approximately one-third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases. To date, 30 kinase inhibitors have been approved, which, with few exceptions, are mainly for oncological indications and directed against only a handful of protein and lipid kinases, leaving 70% of the kinome untapped. Despite these successes in kinase drug discovery, the development of kinase inhibitors with outstanding selectivity, identification and validation of driver kinase(s) in diseases, and the emerging problem of resistance to the inhibition of key target kinases remain major challenges. This minireview provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.
Collapse
|
31
|
Fabbro D, Cowan-Jacob SW, Moebitz H. Ten things you should know about protein kinases: IUPHAR Review 14. Br J Pharmacol 2015; 172:2675-700. [PMID: 25630872 DOI: 10.1111/bph.13096] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/31/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022] Open
Abstract
Many human malignancies are associated with aberrant regulation of protein or lipid kinases due to mutations, chromosomal rearrangements and/or gene amplification. Protein and lipid kinases represent an important target class for treating human disorders. This review focus on 'the 10 things you should know about protein kinases and their inhibitors', including a short introduction on the history of protein kinases and their inhibitors and ending with a perspective on kinase drug discovery. Although the '10 things' have been, to a certain extent, chosen arbitrarily, they cover in a comprehensive way the past and present efforts in kinase drug discovery and summarize the status quo of the current kinase inhibitors as well as knowledge about kinase structure and binding modes. Besides describing the potentials of protein kinase inhibitors as drugs, this review also focus on their limitations, particularly on how to circumvent emerging resistance against kinase inhibitors in oncological indications.
Collapse
Affiliation(s)
| | | | - Henrik Moebitz
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| |
Collapse
|
32
|
Zeng LF, Zhang RY, Yu ZH, Li S, Wu L, Gunawan AM, Lane BS, Mali RS, Li X, Chan RJ, Kapur R, Wells CD, Zhang ZY. Therapeutic potential of targeting the oncogenic SHP2 phosphatase. J Med Chem 2014; 57:6594-609. [PMID: 25003231 PMCID: PMC4136714 DOI: 10.1021/jm5006176] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
The Src homology 2 domain containing
protein tyrosine phosphatase-2
(SHP2) is an oncogenic phosphatase associated with various kinds of
leukemia and solid tumors. Thus, there is substantial interest in
developing SHP2 inhibitors as potential anticancer and antileukemia
agents. Using a structure-guided and fragment-based library approach,
we identified a novel hydroxyindole carboxylic acid-based SHP2 inhibitor 11a-1, with an IC50 value of 200 nM
and greater than 5-fold selectivity against 20 mammalian PTPs. Structural
and modeling studies reveal that the hydroxyindole carboxylic acid
anchors the inhibitor to the SHP2 active site, while interactions
of the oxalamide linker and the phenylthiophene tail with residues
in the β5–β6 loop contribute
to 11a-1’s binding potency and selectivity.
Evidence suggests that 11a-1 specifically
attenuates the SHP2-dependent signaling inside the cell. Moreover, 11a-1 blocks growth factor mediated Erk1/2 and
Akt activation and exhibits excellent antiproliferative activity in
lung cancer and breast cancer as well as leukemia cell lines.
Collapse
Affiliation(s)
- Li-Fan Zeng
- Department of Biochemistry and Molecular Biology, ‡Herman B. Wells Center for Pediatric Research, and §Chemical Genomics Core Facility, Indiana University School of Medicine , 635 Barnhill Drive, Indianapolis, Indiana 46202 United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yu ZH, Zhang RY, Walls CD, Chen L, Zhang S, Wu L, Liu S, Zhang ZY. Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. Biochemistry 2014; 53:4136-51. [PMID: 24935154 PMCID: PMC4081049 DOI: 10.1021/bi5002695] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) is a critical signal transducer downstream of growth factors that promotes the activation of the RAS-ERK1/2 cascade. In its basal state, SHP2 exists in an autoinhibited closed conformation because of an intramolecular interaction between its N-SH2 and protein tyrosine phosphatase (PTP) domains. Binding to pTyr ligands present on growth factor receptors and adaptor proteins with its N-SH2 domain localizes SHP2 to its substrates and frees the active site from allosteric inhibition. Germline mutations in SHP2 are known to cause both Noonan syndrome (NS) and LEOPARD syndrome (LS), two clinically similar autosomal dominant developmental disorders. NS-associated SHP2 mutants display elevated phosphatase activity, while LS-associated SHP2 mutants exhibit reduced catalytic activity. A conundrum in how clinically similar diseases result from mutations to SHP2 that have opposite effects on this enzyme's catalytic functionality exists. Here we report a comprehensive investigation of the kinetic, structural, dynamic, and biochemical signaling properties of the wild type as well as all reported LS-associated SHP2 mutants. The results reveal that LS-causing mutations not only affect SHP2 phosphatase activity but also induce a weakening of the intramolecular interaction between the N-SH2 and PTP domains, leading to mutants that are more readily activated by competing pTyr ligands. Our data also indicate that the residual phosphatase activity associated with the LS SHP2 mutant is required for enhanced ERK1/2 activation. Consequently, catalytically impaired SHP2 mutants could display gain-of-function properties because of their ability to localize to the vicinity of substrates for longer periods of time, thereby affording the opportunity for prolonged substrate turnover and sustained RAS-ERK1/2 activation.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Ruo-Yu Zhang
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Chad D. Walls
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Lan Chen
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States,Chemical
Genomics Core Facility, Indiana University
School of Medicine, 635
Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Sheng Zhang
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States,Chemical
Genomics Core Facility, Indiana University
School of Medicine, 635
Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Li Wu
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States,Chemical
Genomics Core Facility, Indiana University
School of Medicine, 635
Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Sijiu Liu
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Zhong-Yin Zhang
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States,E-mail:
| |
Collapse
|
34
|
Morales LD, Casillas Pavón EA, Shin JW, Garcia A, Capetillo M, Kim DJ, Lieman JH. Protein tyrosine phosphatases PTP-1B, SHP-2, and PTEN facilitate Rb/E2F-associated apoptotic signaling. PLoS One 2014; 9:e97104. [PMID: 24809452 PMCID: PMC4014576 DOI: 10.1371/journal.pone.0097104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/15/2014] [Indexed: 11/20/2022] Open
Abstract
To maintain tissue homeostasis, apoptosis is functionally linked to the cell cycle through the retinoblastoma (Rb)/E2F pathway. When the Rb tumor suppressor protein is functionally inactivated, E2F1 elicits an apoptotic response through both intrinsic (caspase-9 mediated) and extrinsic (caspase-8 mediated) apoptotic pathways in order to eliminate hyperproliferative cells. Rb/E2F-associated apoptosis has been demonstrated to be associated with the loss of constitutive transcriptional repression by Rb/E2F complexes and mediated by caspase-8. Protein tyrosine phosphatases (PTPs) PTP-1B and SHP-2 have been previously shown to be directly activated by loss of Rb/E2F repression during Rb/E2F-associated apoptosis. In this current study, we demonstrate that the PTEN tumor suppressor is also directly activated by loss of Rb/E2F repression. We also demonstrate that PTP-1B, SHP-2, and PTEN play a functional role in Rb/E2F-associated apoptosis. Knockdown of PTP1B, SHP2, or PTEN expression with small interfering RNA (siRNA) in apoptotic cells increases cell viability and rescues cells from the Rb/E2F-associated apoptotic response. Furthermore, rescue from apoptosis coincides with inhibition of caspase-8 and caspase-3 cleavage (activation). Our results indicate PTP-1B, SHP-2, and PTEN all play a functional role in Rb/E2F-associated apoptotic signal transduction and provide further evidence that PTP-1B, SHP-2, and PTEN can contribute to tumor suppression through an Rb/E2F-associated mechanism.
Collapse
Affiliation(s)
- Liza D. Morales
- Edinburg Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Edgar A. Casillas Pavón
- Department of Biology, University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Jun Wan Shin
- Edinburg Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Alexander Garcia
- Department of Biology, University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Mario Capetillo
- Department of Biology, University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Dae Joon Kim
- Edinburg Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jonathan H. Lieman
- Department of Biology, University of Texas-Pan American, Edinburg, Texas, United States of America
- Department of Biology, South Texas College, McAllen, Texas, United States of America
| |
Collapse
|
35
|
Pan Y, Cheng T, Wang Y, Bryant SH. Pathway analysis for drug repositioning based on public database mining. J Chem Inf Model 2014; 54:407-18. [PMID: 24460210 PMCID: PMC3956470 DOI: 10.1021/ci4005354] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Sixteen FDA-approved
drugs were investigated to elucidate their
mechanisms of action (MOAs) and clinical functions by pathway analysis
based on retrieved drug targets interacting with or affected by the
investigated drugs. Protein and gene targets and associated pathways
were obtained by data-mining of public databases including the MMDB,
PubChem BioAssay, GEO DataSets, and the BioSystems databases. Entrez
E-Utilities were applied, and in-house Ruby scripts were developed
for data retrieval and pathway analysis to identify and evaluate relevant
pathways common to the retrieved drug targets. Pathways pertinent
to clinical uses or MOAs were obtained for most drugs. Interestingly,
some drugs identified pathways responsible for other diseases than
their current therapeutic uses, and these pathways were verified retrospectively
by in vitro tests, in vivo tests, or clinical trials. The pathway
enrichment analysis based on drug target information from public databases
could provide a novel approach for elucidating drug MOAs and repositioning,
therefore benefiting the discovery of new therapeutic treatments for
diseases.
Collapse
Affiliation(s)
- Yongmei Pan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health , 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | | | | | | |
Collapse
|
36
|
Herradón G, Pérez-García C. Targeting midkine and pleiotrophin signalling pathways in addiction and neurodegenerative disorders: recent progress and perspectives. Br J Pharmacol 2014; 171:837-48. [PMID: 23889475 PMCID: PMC3925022 DOI: 10.1111/bph.12312] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/09/2013] [Accepted: 07/21/2013] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Midkine (MK) and pleiotrophin (PTN) are two neurotrophic factors that are highly up-regulated in different brain regions after the administration of various drugs of abuse and in degenerative areas of the brain. A deficiency in both MK and PTN has been suggested to be an important genetic factor, which confers vulnerability to the development of the neurodegenerative disorders associated with drugs of abuse in humans. In this review, evidence demonstrating that MK and PTN limit the rewarding effects of drugs of abuse and, potentially, prevent drug relapse is compiled. There is also convincing evidence that MK and PTN have neuroprotective effects against the neurotoxicity and development of neurodegenerative disorders induced by drugs of abuse. Exogenous administration of MK and/or PTN into the CNS by means of non-invasive methods is proposed as a novel therapeutic strategy for addictive and neurodegenerative diseases. Identification of new molecular targets downstream of the MK and PTN signalling pathways or pharmacological modulation of those already known may also provide a more traditional, but probably effective, therapeutic strategy for treating addictive and neurodegenerative disorders. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- G Herradón
- Pharmacology lab Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San PabloBoadilla del Monte, Madrid, Spain
| | - C Pérez-García
- Pharmacology lab Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San PabloBoadilla del Monte, Madrid, Spain
| |
Collapse
|
37
|
Dhanjal JK, Grover S, Sharma S, Singh A, Grover A. Structural insights into mode of actions of novel natural Mycobacterium protein tyrosine phosphatase B inhibitors. BMC Genomics 2014; 15 Suppl 1:S3. [PMID: 24564493 PMCID: PMC4046716 DOI: 10.1186/1471-2164-15-s1-s3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Tuberculosis has become a major health problem being the second leading cause of death worldwide. Mycobacterium tuberculosis secretes a virulence factor, protein tyrosine phosphatase B (mPTPB) in the cytoplasm of host macrophage which suppresses its natural innate immune response and helps the pathogen survive and proliferate in the phagosome. The present study aims at indentifying potent inhibitors of mPTPB by using computational approaches of ligand based molecular modeling and docking studies. Results A 3D QSAR model was developed using a set of benzofuran salicylic acid based mPTPB inhibitors with experimentally known IC50 values. The model was generated using the statistical method of principle component regression analysis in combination with step wise forward variable selection algorithm. It was observed that steric and hydrophobic descriptors positively contribute towards the inhibitory activity of the ligands. The developed model had a robust internal as well as external predictive power as indicated by the q2 value of 0.8920 and predicted r2 value of 0.8006 respectively. Hence, the generated model was used to screen a large set of naturally occurring chemical compounds and predict their biological activity to identify more potent natural compounds targeting mPTPB. The two top potential hits (with pIC50 value of 1.459 and 1.677 respectively) had a similar interaction pattern as that of the most potent compound (pIC50 = 1.42) of the congeneric series. Conclusion The contour plot provided a better understanding of the relationship between structural features of substituted benzofuran salicylic acid derivatives and their activities which would facilitate design of novel mPTPB inhibitors. The QSAR modeling was used to obtain an equation, correlating the important steric and hydrophobic descriptors with the pIC50 value. Thus, we report two natural compounds of inhibitory nature active against mPTPB enzyme of Mycobacterium tuberculosis. These inhibitors have the potential to evolve as lead molecules in the development of drugs for the treatment of tuberculosis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-S1-S3) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Ding SJ, Qian WJ, Smith RD. Quantitative proteomic approaches for studying phosphotyrosine signaling. Expert Rev Proteomics 2014; 4:13-23. [PMID: 17288512 DOI: 10.1586/14789450.4.1.13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein tyrosine phosphorylation is a fundamental mechanism for controlling many aspects of cellular processes, as well as aspects of human health and diseases. Compared with phosphoserine and phosphothreonine, phosphotyrosine signaling is more tightly regulated, but often more challenging to characterize, due to significantly lower levels of tyrosine phosphorylation (i.e., a relative abundance of 1800:200:1 was estimated for phosphoserine/phosphothreonine/phosphotyrosine in vertebrate cells). In this review, we outline recent advances in analytical methodologies for enrichment, identification and accurate quantitation of tyrosine-phosphorylated proteins and peptides. Advances in antibody-based technologies, capillary liquid chromatography coupled with mass spectrometry, and various stable isotope labeling strategies are discussed, as well as non-mass spectrometry-based methods, such as those using protein/peptide arrays. As a result of these advances, powerful tools now have the power to crack signal transduction codes at the system level, and provide a basis for discovering novel drug targets for human diseases.
Collapse
Affiliation(s)
- Shi-Jian Ding
- Pacific Northwest National Laboratory, Biological Science Division & Environmental Molecular Sciences Laboratory, Richland, WA 99352, USA.
| | | | | |
Collapse
|
39
|
The role of low-molecular-weight protein tyrosine phosphatase (LMW-PTP ACP1) in oncogenesis. Tumour Biol 2013; 34:1979-89. [DOI: 10.1007/s13277-013-0784-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/27/2013] [Indexed: 01/20/2023] Open
|
40
|
He Y, Xu J, Yu ZH, Gunawan AM, Wu L, Wang L, Zhang ZY. Discovery and evaluation of novel inhibitors of mycobacterium protein tyrosine phosphatase B from the 6-Hydroxy-benzofuran-5-carboxylic acid scaffold. J Med Chem 2013; 56:832-42. [PMID: 23305444 DOI: 10.1021/jm301781p] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase B (mPTPB) is a virulence factor secreted by the pathogen and mediates mycobacterial survival in macrophages by targeting host cell immune responses. Consequently, mPTPB represents an exciting new target to combat tuberculosis (TB) infection. We describe a medicinal chemistry oriented approach that transforms a benzofuran salicylic acid scaffold into a highly potent (IC(50) = 38 nM) and selective mPTPB inhibitor (>50 fold against a large panel of PTPs). Importantly, the inhibitor is capable of reversing the altered host immune responses induced by the bacterial phosphatase and restoring the macrophage's full capacity to secrete IL-6 and undergo apoptosis in response to interferon-γ stimulation, validating the concept that chemical inhibition of mPTPB may be therapeutically useful for novel TB treatment. The study further demonstrates that bicyclic salicylic acid pharmacophores can be used to deliver PTP inhibitors with high potency, selectivity, and cellular efficacy.
Collapse
Affiliation(s)
- Yantao He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
He R, Zeng LF, He Y, Zhang S, Zhang ZY. Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J 2012; 280:731-50. [PMID: 22816879 DOI: 10.1111/j.1742-4658.2012.08718.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The importance of protein tyrosine phosphatases (PTPs) in the regulation of cellular signalling is well established. Malfunction of PTP activity is also known to be associated with cancer, metabolic syndromes and autoimmune disorders, as well as neurodegenerative and infectious diseases. However, a detailed understanding of the roles played by the PTPs in normal physiology and in pathogenic conditions has been hampered by the absence of PTP-specific small molecule agents. In addition, the therapeutic benefits of modulating this target class are underexplored as a result of a lack of suitable chemical probes. Potent and specific PTP inhibitors could significantly facilitate functional analysis of the PTPs in complex cellular signal transduction pathways and may constitute valuable therapeutics in the treatment of several human diseases. We highlight the current challenges to and opportunities for developing PTP-specific small molecule agents. We also review available selective small molecule inhibitors developed for a number of PTPs, including PTP1B, TC-PTP, SHP2, lymphoid-specific tyrosine phosphatase, haematopoietic protein tyrosine phosphatase, CD45, PTPβ, PTPγ, PTPRO, Vaccinia H1-related phosphatase, mitogen-activated protein kinase phosphatase-1, mitogen-activated protein kinase phosphatase-3, Cdc25, YopH, mPTPA and mPTPB.
Collapse
Affiliation(s)
- Rongjun He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
42
|
Sobhia ME, Paul S, Shinde R, Potluri M, Gundam V, Kaur A, Haokip T. Protein tyrosine phosphatase inhibitors: a patent review (2002 – 2011). Expert Opin Ther Pat 2012; 22:125-53. [DOI: 10.1517/13543776.2012.661414] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Fabbro D, Cowan-Jacob SW, Möbitz H, Martiny-Baron G. Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol Biol 2012; 795:1-34. [PMID: 21960212 DOI: 10.1007/978-1-61779-337-0_1] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein and lipid kinases fulfill essential roles in many signaling pathways that regulate normal cell functions. Deregulation of these kinase activities lead to a variety of pathologies ranging from cancer to inflammatory diseases, diabetes, infectious diseases, cardiovascular disorders, cell growth and survival. 518 protein kinases and about 20 lipid-modifying kinases are encoded by the human genome, and a much larger proportion of additional kinases are present in parasite, bacterial, fungal, and viral genomes that are susceptible to exploitation as drug targets. Since many human diseases result from overactivation of protein and lipid kinases due to mutations and/or overexpression, this enzyme class represents an important target for the pharmaceutical industry. Approximately one third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases.The kinase inhibitors that have been launched, thus far, are mainly in oncology indications and are directed against a handful of protein and lipid kinases. With one exception, all of these registered kinase inhibitors are directed toward the ATP-site and display different selectivities, potencies, and pharmacokinetic properties. At present, about 150 kinase-targeted drugs are in clinical development and many more in various stages of preclinical development. Kinase inhibitor drugs that are in clinical trials target all stages of signal transduction from the receptor protein tyrosine kinases that initiate intracellular signaling, through second-messenger-dependent lipid and protein kinases, and protein kinases that regulate the cell cycle.This review provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.
Collapse
Affiliation(s)
- Doriano Fabbro
- Novartis Institutes for Biomedical Research, Expertise Platform Kinases, Basel, Switzerland.
| | | | | | | |
Collapse
|
44
|
Burnside K, Rajagopal L. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence. Future Microbiol 2011; 6:747-61. [PMID: 21797690 DOI: 10.2217/fmb.11.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-1304, USA
| | | |
Collapse
|
45
|
He Y, Zeng LF, Yu ZH, He R, Liu S, Zhang ZY. Bicyclic benzofuran and indole-based salicylic acids as protein tyrosine phosphatase inhibitors. Bioorg Med Chem 2011; 20:1940-6. [PMID: 22133902 DOI: 10.1016/j.bmc.2011.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/26/2011] [Accepted: 11/02/2011] [Indexed: 12/30/2022]
Abstract
Protein tyrosine phosphatases (PTPs) constitute a large and structurally diverse family of signaling enzymes that control the cellular levels of protein tyrosine phosphorylation. Malfunction of PTP activity has significant implications in many human diseases, and the PTP protein family provides an exciting array of validated diabetes/obesity (PTP1B), oncology (SHP2), autoimmunity (Lyp), and infectious disease (mPTPB) targets. However, despite the fact that PTPs have been garnering attention as novel therapeutic targets, they remain largely an untapped resource. The main challenges facing drug developers by the PTPs are inhibitor specificity and bioavailability. Work over the last ten years has demonstrated that it is feasible to develop potent and selective inhibitors for individual members of the PTP family by tethering together small ligands that can simultaneously occupy both the active site and unique nearby peripheral binding sites. Recent results with the bicyclic salicylic acid pharmacophores indicate that the new chemistry platform may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Structural analysis of PTP-inhibitor complexes reveals molecular determinants important for the development of more potent and selective PTP inhibitors, thus offering hope in the medicinal chemistry of a largely unexploited protein class with a wealth of attractive drug targets.
Collapse
Affiliation(s)
- Yantao He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
46
|
Plano D, Ibáñez E, Calvo A, Palop JA, Sanmartín C. Novel library of selenocompounds as kinase modulators. Molecules 2011; 16:6349-64. [PMID: 21796074 PMCID: PMC6264252 DOI: 10.3390/molecules16086349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/30/2022] Open
Abstract
Although the causes of cancer lie in mutations or epigenic changes at the genetic level, their molecular manifestation is the dysfunction of biochemical pathways at the protein level. The 518 protein kinases encoded by the human genome play a central role in various diseases, a fact that has encouraged extensive investigations on their biological function and three dimensional structures. Selenium (Se) is an important nutritional trace element involved in different physiological functions with antioxidative, antitumoral and chemopreventive properties. The mechanisms of action for selenocompounds as anticancer agents are not fully understood, but kinase modulation seems to be a possible pathway. Various organosulfur compounds have shown antitumoral and kinase inhibition effects but, in many cases, the replacement of sulfur by selenium improves the antitumoral effect of compounds. Although Se atom possesses a larger atomic volume and nucleophilic character than sulfur, Se can also formed interactions with aminoacids of the catalytic centers of proteins. So, we propose a novel chemical library that includes organoselenium compounds as kinase modulators. In this study thirteen selenocompounds have been evaluated at a concentration of 3 or 10 µM in a 24 kinase panel using a Caliper LabChip 3000 Drug Discover Platform. Several receptor (EGFR, IGFR1, FGFR1…) and non-receptor (Abl) kinases have been selected, as well as serine/threonine/lipid kinases (AurA, Akt, CDKs, MAPKs…) implicated in main cancer pathways: cell cycle regulation, signal transduction, angiogenesis regulation among them. The obtained results showed that two compounds presented inhibition values higher than 50% in at least four kinases and seven derivatives selectively inhibited one or two kinases. Furthermore, three compounds selectively activated IGF-1R kinase with values ranging from −98% to −211%. In conclusion, we propose that the replacement of sulfur by selenium seems to be a potential and useful strategy in the search of novel chemical compound libraries against cancer as kinase modulators.
Collapse
Affiliation(s)
- Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea, 1, Pamplona E-31008, Spain
| | - Elena Ibáñez
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea, 1, Pamplona E-31008, Spain
| | - Alfonso Calvo
- Oncology Division, Center for Applied Medical Research, CIMA, University of Navarra, Pío XII, 53, Pamplona E-31008, Spain
| | - Juan Antonio Palop
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea, 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea, 1, Pamplona E-31008, Spain
- Author to whom correspondence should be addressed;
| |
Collapse
|
47
|
Yu ZH, Chen L, Wu L, Liu S, Wang L, Zhang ZY. Small molecule inhibitors of SHP2 tyrosine phosphatase discovered by virtual screening. Bioorg Med Chem Lett 2011; 21:4238-42. [PMID: 21669525 PMCID: PMC3128679 DOI: 10.1016/j.bmcl.2011.05.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
SHP2, encoded by PTPN11, is a non-receptor protein tyrosine phosphatase (PTP) containing two tandem Src homology-2 (SH2) domains. It is expressed ubiquitously and plays critical roles in growth factor mediated processes, primarily by promoting the activation of the RAS/ERK signaling pathway. Genetic and biochemical studies have identified SHP2 as the first bona fide oncoprotein in the PTP superfamily, and a promising target for anti-cancer and anti-leukemia therapy. Here, we report a structure-based approach to identify SHP2 inhibitors with a novel scaffold. Through sequential virtual screenings and in vitro inhibition assays, a reversible competitive SHP2 inhibitor (C21) was identified. C21 is structurally distinct from all known SHP2 inhibitors. Combining molecular dynamics simulation and binding free energy calculation, a most likely binding mode of C21 with SHP2 is proposed, and further validated by site-directed mutagenesis and structure-activity relationship studies. This binding mode is consistent with the observed potency and specificity of C21, and reveals the molecular determinants for further optimization based on the new scaffold.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Lan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Chemical Genomics Core Facility, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Li Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Chemical Genomics Core Facility, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Sijiu Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Lina Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Chemical Genomics Core Facility, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
48
|
Identification of novel, less toxic PTP-LAR inhibitors using in silico strategies: pharmacophore modeling, SADMET-based virtual screening and docking. J Mol Model 2011; 18:187-201. [PMID: 21523550 DOI: 10.1007/s00894-011-1037-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/10/2011] [Indexed: 12/31/2022]
Abstract
Human leukocyte antigen-related (PTP-LAR) is a receptor-like transmembrane phosphatase and a potential target for diabetes, obesity and cancer. In the present study, a sequence of in silico strategies (pharmacophore mapping, a 3D database searching, SADMET screening, and docking and toxicity studies) was performed to identify eight novel nontoxic PTP-LAR inhibitors. Twenty different pharmacophore hypotheses were generated using two methods; the best (hypothesis 2) consisted of three hydrogen-bond acceptor (A), one ring aromatic (R), and one hydrophobic aliphatic (Z) features. This hypothesis was used to screen molecules from several databases, such as Specs, IBS, MiniMaybridge, NCI, and an in-house PTP inhibitor database. In order to overcome the general bioavailability problem associated with phosphatases, the hits obtained were filtered by Lipinski's rule of five and SADMET properties and validated by molecular docking studies using the available crystal structure 1LAR. These docking studies suggested the ligand binding pattern and interactions required for LAR inhibition. The docking analysis also revealed that sulfonylurea derivatives with an isoquinoline or naphthalene scaffold represent potential LAR drugs. The screening protocol was further validated using ligand pharmacophore mapping studies, which showed that the abovementioned interactions are indeed crucial and that the screened molecules can be presumed to possess potent inhibitory activities.
Collapse
|
49
|
Kang JH, Toita R, Katayama Y. Bio and nanotechnological strategies for tumor-targeted gene therapy. Biotechnol Adv 2010; 28:757-63. [PMID: 20541598 DOI: 10.1016/j.biotechadv.2010.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/24/2010] [Accepted: 06/01/2010] [Indexed: 01/15/2023]
Abstract
Gene therapy is a new medical approach for the treatment of tumors. For safe and efficient gene therapy, therapeutic genes need to be delivered efficiently into the target tumor cells. Development of gene delivery systems to specifically recognize and target tumor cells and to distinguish them from normal cells, especially in the same tissue or organ, is one of the most important issues regarding the present gene delivery methodologies. The enhanced permeability and retention (EPR) effect using the characteristics of angiogenic tumor blood vessels, as well as gene delivery systems recognizing hyperactivated receptors or intracellular signals, is broadly applied to tumor-targeted gene therapy. In addition, bacterial vectors can be a useful means for targeting hypoxic or anoxic regions of a tumor.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | | | |
Collapse
|
50
|
Zhang X, He Y, Liu S, Yu Z, Jiang ZX, Yang Z, Dong Y, Nabinger SC, Wu L, Gunawan AM, Wang L, Chan RJ, Zhang ZY. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J Med Chem 2010; 53:2482-93. [PMID: 20170098 PMCID: PMC2842125 DOI: 10.1021/jm901645u] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias, and solid tumors. Thus, there is considerable interest in SHP2 as a potential target for anticancer and antileukemia therapy. We report a salicylic acid based combinatorial library approach aimed at binding both active site and unique nearby subpockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anticancer and antileukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Area Under Curve
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Crystallography, X-Ray
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacokinetics
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Indoles/chemistry
- Indoles/pharmacokinetics
- Indoles/pharmacology
- Inhibitory Concentration 50
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Models, Chemical
- Models, Molecular
- Molecular Structure
- Mutation
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/prevention & control
- Protein Binding
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Salicylic Acid/chemistry
- Small Molecule Libraries
- Triazoles/chemistry
- Triazoles/pharmacokinetics
- Triazoles/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xian Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
- Center for Chemical Genetics and Drug Discovery and College of Chemistry, Nankai University, Tianjin, China
| | - Yantao He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Sijiu Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Zhihong Yu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Zhong-Xing Jiang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Zhenyun Yang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Yuanshu Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Sarah C. Nabinger
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Li Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
- Chemical Genomics Core Facility, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Andrea M. Gunawan
- Chemical Genomics Core Facility, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Lina Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Rebecca J. Chan
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
- Chemical Genomics Core Facility, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202 USA
| |
Collapse
|