1
|
Zhao Y, Liu X, Wu Z, Ma G, Gao Q, Zheng J, Zhang C. Role and regulatory mechanism of DLX5 in rhabdomyosarcoma tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119959. [PMID: 40258575 DOI: 10.1016/j.bbamcr.2025.119959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Rhabdomyosarcoma (RMS), a common malignant tumor in children, presents numerous challenges in clinical treatment. This study investigated the specific functions and regulatory mechanisms of distal-less homeobox 5 (DLX5) in RMS. Data from TCGA, GEO and GEPIA databases were downloaded and analyzed. The effect of DLX5 and PAX3-FOXO1 on RMS cells was examined through cellular experiments. Binding activity between DLX5 and H3K9me2 was assessed using pull-down and chromatin immunoprecipitation-qPCR assays. Additionally, RMS model mice were constructed via xenotransplantation to validate the in vivo effects of DLX5 on RMS. The results revealed that DLX5 was upregulated in RMS tissues and increased in various RMS cell lines, particularly in alveolar RMS cell lines. DLX5 knockdown inhibited malignant biological behaviors. Besides, DLX5 expression was associated with myogenic differentiation of RMS cells. While the overexpression or knockdown of DLX5 did not affect PAX-FOXO1 expression. PAX3-FOXO1 knockdown reduced DLX5 expression, indicating that DLX5 act as a downstream effector of PAX3-FOXO1. Mechanistically, PAX3-FOXO1 regulated DLX5 expression through KDM4B/H3K9me2 axis. In vitro experiments further demonstrated that knockout of DLX5 or KDM4B inhibited tumor growth. In conclusion, DLX5 expression was increased in PAX3-FOXO1-driven RMS, and its knockdown inhibited malignant biological behaviors of RMS cells. Moreover, the aberrant expression of DLX5 in PAX3-FOXO1-driven RMS was regulated by KDM4B/H3K9me2 axis. These findings provided potential therapeutic targets for RMS treatment.
Collapse
Affiliation(s)
- Yanxue Zhao
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinpei Liu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zining Wu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guotao Ma
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Quanli Gao
- Department of Immunology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jun Zheng
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
2
|
Jain A, Meher R, Khurana N. Alveolar Rhabdomyosarcoma of the Temporal Region with Metastatic Cervical Lymph Node. Indian J Otolaryngol Head Neck Surg 2024; 76:1075-1079. [PMID: 38440594 PMCID: PMC10908913 DOI: 10.1007/s12070-023-04120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 03/06/2024] Open
Abstract
Introduction: Paediatric rhabdomyosarcoma most commonly occurs in the head and neck region. Its treatment is complex, including multi-drug chemotherapy, surgery and radiotherapy. Case report: Here, we report a case of alveolar rhabdomyosarcoma of the temporal region with a metastatic cervical lymph node, in a 15-year-old girl, and its management. The patient received ne-adjuvant chemotherapy, followed by surgery and post operative radiotherapy. Literature was also reviewed for the various treatment modalities for these rare tumours. Discussion: Rhabdomyosarcoma of the temporal region has rarely been reported in the literature. Due to the rarity of these tumours, there are difficulties in creating standardized therapeutic protocols. However, multimodality treatment, including chemotherapy, surgery and radiotherapy, has been shown to improve the overall survival rate.
Collapse
Affiliation(s)
- Avani Jain
- Department of ENT, ESIC Medical College and Hospital, Faridabad, India
| | - Ravi Meher
- Department of ENT, Maulana Azad Medical College, New Delhi, India
| | - Nita Khurana
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
3
|
Banaszek N, Kurpiewska D, Kozak K, Rutkowski P, Sobczuk P. Hedgehog pathway in sarcoma: from preclinical mechanism to clinical application. J Cancer Res Clin Oncol 2023; 149:17635-17649. [PMID: 37815662 PMCID: PMC10657326 DOI: 10.1007/s00432-023-05441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Sarcomas are a diverse group of malignant neoplasms of mesenchymal origin. They develop rarely, but due to poor prognosis, they are a challenging and significant clinical problem. Currently, available therapeutic options have very limited activity. A better understating of sarcomas' pathogenesis may help develop more effective therapies in the future. The Sonic hedgehog (Shh) signaling pathway is involved in both embryonic development and mature tissue repair and carcinogenesis. Shh pathway inhibitors are presently used in the treatment of basal cell carcinoma. Its increased activity has been demonstrated in many sarcomas, including osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, and malignant rhabdoid tumor. In vitro studies have demonstrated the effectiveness of inhibitors of the Hedgehog pathway in inhibiting proliferation in those sarcomas in which the components of the pathway are overexpressed. These results were confirmed by in vivo studies, which additionally proved the influence of Shh pathway inhibitors on limiting the metastatic potential of sarcoma cells. However, until now, the efficacy of sarcomas treatment with Shh pathway inhibitors has not been established in clinical trials. The reason for that may be the non-canonical activation of the pathway or interactions with other signaling pathways, such as Wnt or Notch. In this review, we present the Shh signaling pathway's role in the pathogenesis of sarcomas, including both canonical and non-canonical signaling. We also propose how this knowledge could be potentially translated into clinics.
Collapse
Affiliation(s)
- Natalia Banaszek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Kurpiewska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Paweł Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Ruas JS, Silva FLT, Euzébio MF, Biazon TO, Daiggi CMM, Nava D, Franco MT, Cardinalli IA, Cassone AE, Pereira LH, Seidinger AL, Maschietto M, Jotta PY. Somatic Copy Number Alteration in Circulating Tumor DNA for Monitoring of Pediatric Patients with Cancer. Biomedicines 2023; 11:biomedicines11041082. [PMID: 37189699 DOI: 10.3390/biomedicines11041082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Pediatric tumors share few recurrent mutations and are instead characterized by copy number alterations (CNAs). The cell-free DNA (cfDNA) is a prominent source for the detection of cancer-specific biomarkers in plasma. We profiled CNAs in the tumor tissues for further evaluation of alterations in 1q, MYCN and 17p in the circulating tumor DNA (ctDNA) in the peripheral blood at diagnosis and follow-up using digital PCR. We report that among the different kinds of tumors (neuroblastoma, Wilms tumor, Ewing sarcoma, rhabdomyosarcoma, leiomyosarcoma, osteosarcoma and benign teratoma), neuroblastoma presented the greatest amount of cfDNA, in correlation with tumor volume. Considering all tumors, cfDNA levels correlated with tumor stage, metastasis at diagnosis and metastasis developed during therapy. In the tumor tissue, at least one CNA (at CRABP2, TP53, surrogate markers for 1q and 17p, respectively, and MYCN) was observed in 89% of patients. At diagnosis, CNAs levels were concordant between tumor and ctDNA in 56% of the cases, and for the remaining 44%, 91.4% of the CNAs were present only in cfDNA and 8.6% only in the tumor. Within the cfDNA, we observed that 46% and 23% of the patients had MYCN and 1q gain, respectively. The use of specific CNAs as targets for liquid biopsy in pediatric patients with cancer can improve diagnosis and should be considered for monitoring of the disease response.
Collapse
Affiliation(s)
| | - Felipe Luz Torres Silva
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil
- Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil
| | - Mayara Ferreira Euzébio
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil
- Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil
| | - Tássia Oliveira Biazon
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil
- Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil
| | | | - Daniel Nava
- Boldrini Children’s Hospital, Campinas 13083-210, SP, Brazil
| | | | | | | | | | - Ana Luiza Seidinger
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil
| | - Mariana Maschietto
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil
- Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil
| | | |
Collapse
|
5
|
Salucci S, Bavelloni A, Stella AB, Fabbri F, Vannini I, Piazzi M, Volkava K, Scotlandi K, Martinelli G, Faenza I, Blalock W. The Cytotoxic Effect of Curcumin in Rhabdomyosarcoma Is Associated with the Modulation of AMPK, AKT/mTOR, STAT, and p53 Signaling. Nutrients 2023; 15:nu15030740. [PMID: 36771452 PMCID: PMC9920154 DOI: 10.3390/nu15030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Approximately 7% of cancers arising in children and 1% of those arising in adults are soft tissue sarcomas (STS). Of these malignancies, rhabdomyosarcoma (RMS) is the most common. RMS survival rates using current therapeutic protocols have remained largely unchanged in the past decade. Thus, it is imperative that the main molecular drivers in RMS tumorigenesis are defined so that more precise, effective, and less toxic therapies can be designed. Curcumin, a common herbal supplement derived from plants of the Curcuma longa species, has an exceptionally low dietary biotoxicity profile and has demonstrated anti-tumorigenic benefits in vitro. In this study, the anti-tumorigenic activity of curcumin was assessed in rhabdomyosarcoma cell lines and used to identify the major pathways responsible for curcumin's anti-tumorigenic effects. Curcumin treatment resulted in cell cycle arrest, inhibited cell migration and colony forming potential, and induced apoptotic cell death. Proteome profiler array analysis demonstrated that curcumin treatment primarily influenced flux through the AKT-mammalian target of rapamycin (mTOR), signal transducer and activator of transcription (STAT), AMP-dependent kinase (AMPK), and p53 associated pathways in a rhabdomyosarcoma subtype-specific manner. Thus, the strategic, combinational therapeutic targeting of these pathways may present the best option to treat this group of tumors.
Collapse
Affiliation(s)
- Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Anna Bartoletti Stella
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40126 Bologna, Italy
| | - Francesco Fabbri
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Manuela Piazzi
- ‘‘Luigi Luca Cavalli-Sforza’’ Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Karyna Volkava
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, 40126 Bologna, Italy
| | - Katia Scotlandi
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanni Martinelli
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
- Correspondence: (I.F.); (W.B.)
| | - William Blalock
- ‘‘Luigi Luca Cavalli-Sforza’’ Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (I.F.); (W.B.)
| |
Collapse
|
6
|
Piazzi M, Bavelloni A, Cenni V, Salucci S, Bartoletti Stella A, Tomassini E, Scotlandi K, Blalock WL, Faenza I. Combined Treatment with PI3K Inhibitors BYL-719 and CAL-101 Is a Promising Antiproliferative Strategy in Human Rhabdomyosarcoma Cells. Molecules 2022; 27:molecules27092742. [PMID: 35566091 PMCID: PMC9104989 DOI: 10.3390/molecules27092742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer arising from skeletal muscle myogenic progenitors. Recent studies have shown an important role for AKT signaling in RMS progression. Aberrant activation of the PI3K/AKT axis is one of the most frequent events occurring in human cancers and serves to disconnect the control of cell growth, survival, and metabolism from exogenous growth stimuli. In the study reported here, a panel of five compounds targeting the catalytic subunits of the four class I PI3K isoforms (p110α, BYL-719 inhibitor; p110β, TGX-221 inhibitor; p110γ, CZC24832; p110δ, CAL-101 inhibitor) and the dual p110α/p110δ, AZD8835 inhibitor, were tested on the RMS cell lines RD, A204, and SJCRH30. Cytotoxicity, cell cycle, apoptosis, and the activation of downstream targets were analyzed. Of the individual inhibitors, BYL-719 demonstrated the most anti-tumorgenic properties. BYL-719 treatment resulted in G1/G0 phase cell cycle arrest and apoptosis. When combined with CAL-101, BYL-719 decreased cell viability and induced apoptosis in a synergistic manner, equaling or surpassing results achieved with AZD8835. In conclusion, our findings indicate that BYL-719, either alone or in combination with the p110δ inhibitor, CAL-101, could represent an efficient treatment for human rhabdomyosarcoma presenting with aberrant upregulation of the PI3K signaling pathway.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.B.); (K.S.)
| | - Vittoria Cenni
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40138 Bologna, Italy;
| | - Anna Bartoletti Stella
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40138 Bologna, Italy; (A.B.S.); (E.T.)
| | - Enrica Tomassini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40138 Bologna, Italy; (A.B.S.); (E.T.)
| | - Katia Scotlandi
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.B.); (K.S.)
| | - William L. Blalock
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (W.L.B.); (I.F.)
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40138 Bologna, Italy;
- Correspondence: (W.L.B.); (I.F.)
| |
Collapse
|
7
|
Mestre-Alagarda C, Gómez-Mateo MC, Berenguer-Romero MD, Syonghyun NC, Nieto G, Navarro-Fos S. [Alveolar rhabdomyosarcoma: Two fusion-negative cases lacking PAX3-FOXO1 and PAX7-FOXO1]. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2022; 55:57-62. [PMID: 34980443 DOI: 10.1016/j.patol.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/24/2019] [Indexed: 06/14/2023]
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma in childhood and adolescence. Morphologically, two major forms are described: alveolar and embryonal rhabdomyosarcoma. The former is generally associated with a poorer prognosis and it usually harbors a characteristic fusion gene, PAX3/7-FOXO1, that is used to confirm the diagnosis. We present two cases, both of which exhibited the classic alveolar histology with immunohistochemical myogenic differentiation (Desmin, MYOD-1 and Myogenin expression) and lacked the characteristic fusion gene PAX3/7-FOXO1. The aim of this report is to highlight the importance of the molecular status in the study and diagnosis of these cases, as it seems to be not only a useful diagnostic tool, but also an important prognostic factor.
Collapse
Affiliation(s)
- Claudia Mestre-Alagarda
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Valencia, Valencia, España.
| | - M Carmen Gómez-Mateo
- Servicio de Anatomía Patológica, Hospital Universitario de Donostia, Donostia, Gipuzkoa, España
| | | | | | - Gema Nieto
- Departamento de Anatomía Patológica, Universidad de Valencia, Valencia, España
| | - Samuel Navarro-Fos
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Valencia, Valencia, España
| |
Collapse
|
8
|
Yan M, Wu Y, Xia J, Zhang X, Wang Y. Cytologic diagnosis of metastatic embryonal rhabdomyosarcoma in cerebrospinal fluid: A case report. Diagn Cytopathol 2021; 49:E320-E324. [PMID: 33750018 DOI: 10.1002/dc.24742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcoma (RMS) originates from a differentiation block in muscle progenitors. Leptomeningeal metastasis is a rare but devastating complication of RMS which can be caused by dissemination of cancer cells in cerebrospinal fluid (CSF). Here, we present a 4-year-old female with RMS originating from the upper nasal wall. The following histologic and immunohistochemistry analyses combined with molecular testing analysis supported the diagnosis of embryonal rhabdomyosarcoma (ERMS). Results from CSF routine test, magnetic resonance imaging scans and CSF cytology indicated metastatic meningitis, thus confirming the diagnosis of metastatic ERMS in CSF. This is the first report to describe the clinical features of ERMS in CSF.
Collapse
Affiliation(s)
- Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying Wu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jianqing Xia
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yiqian Wang
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Population-based survival of pediatric rhabdomyosarcoma of the head and neck over four decades. Int J Pediatr Otorhinolaryngol 2021; 142:110599. [PMID: 33422992 DOI: 10.1016/j.ijporl.2020.110599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 12/26/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Clinical trials have reported increases in the survival of pediatric rhabdomyosarcoma (RMS) from 25% in 1970 to 73% in 2001. The purpose of this study was to examine whether survival of pediatric patients with RMS of the head and neck improved at the US population level. METHODS A population-based cohort of patients with rhabdomyosarcoma of the head and neck aged 0-19 years in the Surveillance, Epidemiology, and End Results (SEER) registry from 1973 to 2013 was queried. The cumulative incidence competing risks (CICR) method was used to estimate risk and survival trends. RESULTS 718 cases were identified for analysis. Survival rates at 1-, 5-, and 10-years after diagnosis were 91.2%, 73.2%, and 69.4% respectively. Survival rates at 1 year after diagnosis increased from 82.6% to 93.1% during the study period. In the subdistributional hazard analysis, there was a significantly improved disease-specific risk of death in the first year after diagnosis. Overall risk of death did not improve significantly. Favorable prognostic factors included age <10 years at diagnosis, smaller tumor size, absence of distant metastasis, localized tumors, earlier stage at presentation, grossly complete surgical resection, and embryonal or botryoid histology. CONCLUSIONS Disease-specific survival in the first year following diagnosis improved, but the change in overall survival at the population level was not statistically significant. These findings should be interpreted in light of the inclusion of patients with distant metastasis at diagnosis, who have poor prognoses, together with the limited statistical power afforded in studies of rare diseases.
Collapse
|
10
|
Martinez AP, Fritchie KJ, Weiss SW, Agaimy A, Haller F, Huang HY, Lee S, Bahrami A, Folpe AL. Histiocyte-rich rhabdomyoblastic tumor: rhabdomyosarcoma, rhabdomyoma, or rhabdomyoblastic tumor of uncertain malignant potential? A histologically distinctive rhabdomyoblastic tumor in search of a place in the classification of skeletal muscle neoplasms. Mod Pathol 2019; 32:446-457. [PMID: 30287926 DOI: 10.1038/s41379-018-0145-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
Skeletal muscle tumors are traditionally classified as rhabdomyoma or rhabdomyosarcoma. We have identified an unusual adult rhabdomyoblastic tumor not clearly corresponding to a previously described variant of rhabdomyoma or rhabdomyosarcoma, characterized by a very striking proliferation of non-neoplastic histiocytes, obscuring the underlying tumor. Ten cases were identified in nine males and one female with a median age of 43 years (range 23-69 years). Tumors involved the deep soft tissues of the trunk (N = 4), lower limbs (N = 4), and neck (N = 2). Tumors were well-circumscribed, nodular masses, frequently surrounded by a fibrous capsule containing lymphoid aggregates and sometimes calcifications. Numerous foamy macrophages, multinucleated Touton-type giant cells, and sheets/fascicles of smaller, often spindled macrophages largely obscured the underlying desmin, MyoD1, and myogenin-positive rhabdomyoblastic tumor. Cases were wild type for MYOD1 and no other mutations or rearrangements characteristic of a known subtype of rhabdomyoma or rhabdomyosarcoma were identified. Two of four cases successfully analyzed using a next-generation sequencing panel of 170 common cancer-related genes harbored inactivating NF1 mutations. Next-generation sequencing showed no gene fusions. Clinical follow (nine patients; median 9 months; mean 23 months; range 3-124 months) showed all patients received wide excision; four patients also received adjuvant radiotherapy and none received chemotherapy. At the time of last follow-up, all patients were alive and without disease; no local recurrences or distant metastases occurred. We hypothesize that these unusual tumors represent rhabdomyoblastic tumors of uncertain malignant potential. Possibly over time they should be relegated to a new category of skeletal muscle tumors of intermediate (borderline) malignancy.
Collapse
Affiliation(s)
- Anthony P Martinez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA, 55902
| | - Karen J Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA, 55902
| | - Sharon W Weiss
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA, 30322
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital of Erlangen, 91054, Erlangen, Germany
| | - Florian Haller
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital of Erlangen, 91054, Erlangen, Germany
| | - Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung City, Taiwan
| | - Seungjae Lee
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA, 55902.
| |
Collapse
|
11
|
Clinical Utility of In Situ Hybridization Assays in Head and Neck Neoplasms. Head Neck Pathol 2018; 13:397-414. [PMID: 30467669 PMCID: PMC6684702 DOI: 10.1007/s12105-018-0988-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Head and neck pathology present a unique set of challenges including the morphological diversity of the neoplasms and presentation of metastases of unknown primary origin. The detection of human papillomavirus and Epstein-Barr virus associated with squamous cell carcinoma and newer entities like HPV-related carcinoma with adenoid cystic like features have critical prognostic and management implications. In salivary gland neoplasms, differential diagnoses can be broad and include non-neoplastic conditions as well as benign and malignant neoplasms. The detection of specific gene rearrangements can be immensely helpful in reaching the diagnosis in pleomorphic adenoma, mucoepidermoid carcinoma, secretory carcinoma, hyalinizing clear cell carcinoma and adenoid cystic carcinoma. Furthermore, molecular techniques are essential in diagnosis of small round blue cell neoplasms and spindle cell neoplasms including Ewing sarcoma, rhabdomyosarcoma, synovial sarcoma, biphenotypic sinonasal sarcoma, dermatofibrosarcoma protuberans, nodular fasciitis and inflammatory myofibroblastic tumor. The detection of genetic rearrangements is also important in lymphomas particularly in identifying 'double-hit' and 'triple-hit' lymphomas in diffuse large B cell lymphoma. This article reviews the use of in situ hybridization in the diagnosis of these neoplasms.
Collapse
|
12
|
Ahmed AA, Habeebu SS, Sherman AK, Ye SQ, Wood N, Chastain KM, Tsokos MG. Potential Value of YAP Staining in Rhabdomyosarcoma. J Histochem Cytochem 2018; 66:577-584. [PMID: 29596030 PMCID: PMC6071181 DOI: 10.1369/0022155418766515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a common malignancy of soft tissue, subclassified as alveolar (ARMS), pleomorphic (PRMS), spindle cell/sclerosing (SRMS), and embryonal (ERMS) types. The Yes-associated protein (YAP) is a member of the Hippo pathway and a transcriptional regulator that controls cell proliferation. We have studied the immunohistochemical expression of YAP in different RMSs, arranged in tissue microarray (TMA) and whole slide formats. Pertinent clinical data including patient age, gender, tumor location, and clinical stage were collected. Out of 96 TMA cases, 30 cases (31%) were pleomorphic, 27 (28%) were embryonal, 24 (25%) alveolar, and 15 (16%) spindle cell. Positive nuclear YAP staining was seen in the PRMS (17/30, 56.7%), SRMS (7/15, 46.7%), ERMS (19/27 or 70%), and less in ARMS (37.5%). YAP nuclear staining was significantly more prevalent in ERMS than ARMS ( p=0.02). Of the 41 whole slide cases, nuclear staining was detected in all ARMS but was restricted in distribution to <30% of the cells, in contrast to ERMS and SRMS, which had diffuse or >30% staining. These results highlight the role of YAP in RMS tumorigenesis, a fact that can be useful in engineering targeted therapy. Restricted nuclear YAP staining (<30% of cells) may be of value in the diagnosis of ARMS.
Collapse
Affiliation(s)
- Atif A. Ahmed
- Division of Anatomic Pathology, Children’s Mercy
Hospital, University of Missouri–Kansas City, Kansas City, Missouri
| | - Sultan S. Habeebu
- Division of Anatomic Pathology, Children’s Mercy
Hospital, University of Missouri–Kansas City, Kansas City, Missouri
| | - Ashley K. Sherman
- Division of Health Services and Outcomes
Research, Children’s Mercy Hospital, University of Missouri–Kansas City,
Kansas City, Missouri
| | - Shui Q. Ye
- Division of Experimental and Translational
Genetics, Children’s Mercy Hospital, University of Missouri–Kansas City,
Kansas City, Missouri
- Department of Biomedical and Health Informatics,
School of Medicine, University of Missouri–Kansas City, Kansas City,
Missouri
| | - Nicole Wood
- Division of Hematology-Oncology, Children’s
Mercy Hospital, University of Missouri–Kansas City, Kansas City,
Missouri
| | - Katherine M. Chastain
- Division of Hematology-Oncology, Children’s
Mercy Hospital, University of Missouri–Kansas City, Kansas City,
Missouri
| | - Maria G. Tsokos
- Department of Medicine, Beth Israel Deaconess
Medical Center, Boston, Massachusetts
| |
Collapse
|
13
|
Focusing on organ preservation and function: paradigm shifts in the treatment of pediatric genitourinary rhabdomyosarcoma. Int Urol Nephrol 2016; 48:1009-13. [PMID: 27068815 DOI: 10.1007/s11255-016-1285-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Pediatric genitourinary rhabdomyosarcoma (RMS) accounts for 25 % of all pediatric soft tissue sarcomas. The treatment of these tumors has shifted over time from debilitating radical exenteration to organ-sparing techniques using multimodal therapy. Our review aims to summarize recent relevant literature regarding the current treatment practices of pediatric genitourinary RMS and how these practices have shifted over time. METHODS PubMed database search was utilized to identify relevant literature from 1997 to 2015 relating to the treatment of pediatric genitourinary RMS with emphasis on organ preservation and maintaining organ function. RESULTS A total of 31 articles from 1997 through 2015 were identified relating to current management concepts in pediatric genitourinary sarcomas. Relevant articles were reviewed in detail and discussed. CONCLUSION The treatment of pediatric genitourinary RMS has shifted from debilitating pelvic exenteration to a multimodal treatment approach involving surgery, chemotherapy, and radiation therapy in an effort to preserve genitourinary organs and reduce treatment morbidity. Continued research is required to improve post-treatment organ function. Further studies utilizing objective urodynamic evaluation are necessary to better characterize bladder function after treatment for RMS. Exciting recent developments in RMS research of fusion proteins that induce cell transformation and inhibit apoptosis and myogenic differentiation may result in future management changes to treatment protocols.
Collapse
|
14
|
Graab U, Hahn H, Fulda S. Identification of a novel synthetic lethality of combined inhibition of hedgehog and PI3K signaling in rhabdomyosarcoma. Oncotarget 2016; 6:8722-35. [PMID: 25749378 PMCID: PMC4496179 DOI: 10.18632/oncotarget.2726] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022] Open
Abstract
We previously reported that aberrant HH pathway activation confers a poor prognosis in rhabdomyosarcoma (RMS). Searching for new treatment strategies we therefore targeted HH signaling. Here, we identify a novel synthetic lethality of concomitant inhibition of HH and PI3K/AKT/mTOR pathways in RMS by GLI1/2 inhibitor GANT61 and PI3K/mTOR inhibitor PI103. Synergistic drug interaction is confirmed by calculation of combination index (CI < 0.2). Similarly, genetic silencing of GLI1/2 significantly increases PI103-induced apoptosis. GANT61 and PI103 also synergize to induce apoptosis in cultured primary RMS cells emphasizing the clinical relevance of this combination. Importantly, GANT61/PI103 cotreatment suppresses clonogenic survival, three-dimensional sphere formation and tumor growth in an in vivo model of RMS. Mechanistic studies reveal that GANT61 and PI103 cooperate to trigger caspase-dependent apoptosis via the mitochondrial pathway, as demonstrated by several lines of evidence. First, GANT61/PI103 cotreatment increases mRNA and protein expression of NOXA and BMF, which is required for apoptosis, since knockdown of NOXA or BMF significantly reduces GANT61/PI103-induced apoptosis. Second, GANT61/PI103 cotreatment triggers BAK/BAX activation, which contributes to GANT61/PI103-mediated apoptosis, since knockdown of BAK provides protection. Third, ectopic expression of BCL-2 or non-degradable phospho-mutant MCL-1 significantly rescue GANT61/PI103-triggered apoptosis. Fourth, GANT61/PI103 cotreatment initiate activation of the caspase cascade via apoptosome-mediated cleavage of the initiator caspase-9, as indicated by changes in the cleavage pattern of caspases (e.g. accumulation of the caspase-9 p35 cleavage fragment) upon addition of the caspase inhibitor zVAD.fmk. Thus, combined GLI1/2 and PI3K/mTOR inhibition represents a promising novel approach for synergistic apoptosis induction and tumor growth reduction with implications for new treatment strategies in RMS.
Collapse
Affiliation(s)
- Ulrike Graab
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center, Goettingen, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Harel M, Ferrer FA, Shapiro LH, Makari JH. Future directions in risk stratification and therapy for advanced pediatric genitourinary rhabdomyosarcoma. Urol Oncol 2016; 34:103-15. [DOI: 10.1016/j.urolonc.2015.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/17/2022]
|
16
|
La Starza R, Nofrini V, Pierini T, Pierini V, Zin A, Bisogno G, Cerri C, Caniglia M, Sidoni A, Ludwig K, Mecucci C. Molecular Cytogenetics Detect an Unbalanced t(2;13)(q36;q14) and PAX3-FOXO1 Fusion in Rhabdomyosarcoma With Mixed Embryonal/Alveolar Features. Pediatr Blood Cancer 2015; 62:2238-41. [PMID: 26179572 DOI: 10.1002/pbc.25664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 06/19/2015] [Indexed: 11/06/2022]
Abstract
Distinguishing between alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma (ERMS) is crucial because treatment and prognosis are different. We describe a case of paratesticular rhabdomyosarcoma (RMS), which was classified as mixed ERMS/ARMS. Fluorescence in situ hybridization (FISH) detected losses of 3'PAX3 and 5'FOXO1, suggesting they had undergone an unbalanced rearrangement that probably produced the PAX3-FOXO1 fusion. Double-color FISH and reverse transcription-polymerase chain reaction (RT-PCR) revealed PAX3-FOXO1, which is characteristic of high-risk RMS. This finding highlights the importance of supplementing histology with genetics so that atypical RMS is appropriately classified and patients are correctly stratified and treated.
Collapse
Affiliation(s)
- Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valeria Nofrini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Tiziana Pierini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Angelica Zin
- Institute of Pediatric Research Città della Speranza, University of Padua, Padova, Italy
| | - Gianni Bisogno
- Pediatric Oncology Hematology-Clinic, University of Padua, Padova, Italy
| | - Carla Cerri
- Pediatric Oncology and Hematology, SM della Misericordia Hospital, Perugia, Italy
| | - Maurizio Caniglia
- Pediatric Oncology and Hematology, SM della Misericordia Hospital, Perugia, Italy
| | - Angelo Sidoni
- Institute of Pathological Anatomy, Medical School, University of Perugia, Perugia, Italy
| | - Kathrin Ludwig
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University-Hospital of Padova, Padova, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Alveolar Rhabdomyosarcoma in a 69-Year-Old Woman Receiving Glucagon-Like Peptide-2 Therapy. Case Rep Oncol Med 2015; 2015:107479. [PMID: 26266067 PMCID: PMC4525456 DOI: 10.1155/2015/107479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
A 69-year-old woman was diagnosed with alveolar rhabdomyosarcoma (ARMS) of the nasopharynx. She has a history of catastrophic thromboembolic event in the abdomen that caused short-gut syndrome and dependence on total parenteral nutrition (TPN) twelve hours per day. She was treated for short-gut syndrome with teduglutide, a glucagon-like peptide-2 (GLP-2) analog, which led to reduction of TPN requirements. However, a few months later, she developed metastatic alveolar rhabdomyosarcoma. Though a causative relationship is unlikely between the peptide and ARMS due to the brief time course between teduglutide therapy and sarcoma diagnosis, neoplastic growth may have been accelerated by the GLP-2 analog, causing release of IGF-1. The transmembrane receptor for IGF-1 is frequently overexpressed in ARMS and is implicated in cell proliferation and metastatic behavior. This case describes a rare incidence of metastatic alveolar rhabdomyosarcoma in a sexagenarian and possibly the first case reported associated with the use of teduglutide. Teduglutide was discontinued due to a potential theoretical risk of acceleration of sarcoma growth, and the patient's rhabdomyosarcoma is in remission following sarcoma chemotherapy.
Collapse
|
18
|
Jokoji R, Ikeda JI, Tsujimoto M, Morii E. Epithelioid Rhabdomyosarcoma; a case report with immunohistochemical and molecular study. Diagn Pathol 2015. [PMID: 26208724 PMCID: PMC4514988 DOI: 10.1186/s13000-015-0349-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Recently, we encountered a biopsy of epithelioid rabdomyosarcoma with lymph node metastasis. A computed tomography (CT) scan showed number of swollen lymph nodes in the left neck and a huge abdominal mass occupying the right kidney. In the lymph node biopsy, tumor cells showed diffuse sheet-like growth reminiscent of carcinoma and melanoma cells with extensive distribution of coagulation necrosis. Tumor cells had abundant amphophilic cytoplasm and clear large nuclei. Most tumor cells showed severe cytologic atypia manifested in prominent nucleoli and pleomorphic nuclei. Tumor cells were focally positive for desmin. Most tumor cells showed expressons for vimentin, BAF47 (INI-1), and myogenin. On reverse transcriptase polymerase chain reaction (RT-PCR) analysis, tumor cells lacked Myo D1 and PAX3/7-FKHR transcripts and showed myogenin transcripts. On cytogenetic (karyotypic) analysis, tumor cells showed highly complex karyotypes. The patient received various regimens of chemotherapy, but 6 months after the biopsy she died with progression of the tumor. Since consent was not obtained, an autopsy was not performed.
Collapse
Affiliation(s)
- Ryu Jokoji
- Department of Pathology, Nissay Hospital, 6-3-8 Itachibori, Nishi-ku, Osaka, 550-0012, Japan.
| | - Jun-ichiro Ikeda
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Schott C, Graab U, Cuvelier N, Hahn H, Fulda S. Oncogenic RAS Mutants Confer Resistance of RMS13 Rhabdomyosarcoma Cells to Oxidative Stress-Induced Ferroptotic Cell Death. Front Oncol 2015; 5:131. [PMID: 26157704 PMCID: PMC4476278 DOI: 10.3389/fonc.2015.00131] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/22/2015] [Indexed: 12/23/2022] Open
Abstract
Recent genomic studies revealed a high rate of recurrent mutations in the RAS pathway in primary rhabdomyosarcoma (RMS) samples. In the present study, we therefore investigated how oncogenic RAS mutants impinge on the regulation of cell death of RMS13 cells. Here, we report that ectopic expression of NRAS12V, KRAS12V, or HRAS12V protects RMS13 cells from oxidative stress-induced cell death. RMS13 cells engineered to express NRAS12V, KRAS12V, or HRAS12V were significantly less susceptible to loss of cell viability upon treatment with several oxidative stress inducers including the thioredoxin reductase inhibitor Auranofin, the glutathione (GSH) peroxidase 4 inhibitor RSL3 or Erastin, an inhibitor of the cysteine/glutamate amino acid transporter system xc− that blocks GSH synthesis. Notably, addition of Ferrostatin-1 confers protection against Erastin- or RSL3-induced cytotoxicity, indicating that these compounds trigger ferroptosis, an iron-dependent form of programed cell death. Furthermore, RMS13 cells overexpressing oncogenic RAS mutants are significantly protected against the dual PI3K/mTOR inhibitor PI103, whereas they are similarly sensitive to DNA-damaging drugs such as Doxorubicin or Etoposide. This suggests that oncogenic RAS selectively modulates cell death pathways triggered by cytotoxic stimuli in RMS13 cells. In conclusion, our discovery of an increased resistance to oxidative stress imposed by oncogenic RAS mutants in RMS13 cells has important implications for the development of targeted therapies for RMS.
Collapse
Affiliation(s)
- Christina Schott
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University , Frankfurt , Germany ; German Cancer Consortium (DKTK) , Heidelberg , Germany ; German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Ulrike Graab
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University , Frankfurt , Germany
| | - Nicole Cuvelier
- Institute of Human Genetics, University Medical Center , Göttingen , Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center , Göttingen , Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University , Frankfurt , Germany ; German Cancer Consortium (DKTK) , Heidelberg , Germany ; German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
20
|
Rhabdomyosarcoma of the head and neck in children. Contemp Oncol (Pozn) 2015; 19:98-107. [PMID: 26034386 PMCID: PMC4444444 DOI: 10.5114/wo.2015.49158] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/04/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in children. It is localized in the head and neck region in 40% of cases. Treatment of RMS is complex, including multi-drug chemotherapy, radiotherapy and surgery. The progress that has been accomplished in oncology in recent decades significantly improved outcomes. The 5-year survival rate raised from 25% in 1970 to 73% in 2001, according to IRS-IV data. The outcome is influenced by primary tumor localization, clinical staging, histological tumor type and age at the moment of diagnosis. The relatively rare incidence of these tumors resulted in difficulties in creating more standardized therapeutic protocols. Comparison of outcomes in large patients groups led to an increase in the number of patients with complete remission. Although survival rates of RMS patients have improved, searching for new therapeutic modalities and substances is still essential to improve outcomes in cases of more advanced stages and unfavorable tumor localizations.
Collapse
|
21
|
Stolnicu S, Moldovan C, Podoleanu C, Georgescu R. Mesenchymal tumors and tumor-like lesions of the breast: a contemporary approach review. Ann Pathol 2014; 35:15-31. [PMID: 25533916 DOI: 10.1016/j.annpat.2014.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The classification of the breast tumors has been revised and recently published in 2012 in the WHO blue book. Contrary to the epithelial tumors in the breast, mesenchymal tumors are rare and the classification for benign and malignant tumors is based on the same criteria in both categories, since no other specific diagnostic criteria, which would have an impact on prognosis, exist to date. The present review deals with minor changes mirroring the recent developments in the benign mesenchymal tumors (new additions are nodular fasciitis and atypical vascular lesions, while the haemangiopericytoma is removed) focusing especially on criteria to diagnose sarcomas, which represent a wide spectrum including very difficult lesions. The majority of sarcomas of the breast arise as a component of a malignant phyllodes tumor, while the pure forms are very rare. When a pure primary sarcoma of the breast is diagnosed, pathologists are encouraged to categorize the lesion according to the type of differentiation and to provide to the clinicians all the important prognostic parameters for the best treatment choice.
Collapse
Affiliation(s)
- Simona Stolnicu
- Department of Pathology, University of Medicine, Tirgu Mures, Romania
| | - Cosmin Moldovan
- Department of Histology, University of Medicine, Tirgu Mures, Romania
| | | | - Rares Georgescu
- Department of Surgery, University of Medicine, Tirgu Mures, Romania
| |
Collapse
|
22
|
Saletta F, Wadham C, Ziegler DS, Marshall GM, Haber M, McCowage G, Norris MD, Byrne JA. Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA CLINICAL 2014; 1:59-77. [PMID: 26675306 PMCID: PMC4633945 DOI: 10.1016/j.bbacli.2014.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. SCOPE OF REVIEW This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. MAJOR CONCLUSIONS There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. GENERAL SIGNIFICANCE The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- ARMS, alveolar rhabdomyosarcoma
- AT/RT, atypical teratoid/rhabdoid tumor
- AURKA, aurora kinase A
- AURKB, aurora kinase B
- BET, bromodomain and extra terminal
- Biomarkers
- CAR, chimeric antigen receptor
- CML, chronic myeloid leukemia
- Childhood cancer
- DFMO, difluoromethylornithine
- DIPG, diffuse intrinsic pontine glioma
- EGFR, epidermal growth factor receptor
- ERMS, embryonal rhabdomyosarcoma
- HDAC, histone deacetylases
- Hsp90, heat shock protein 90
- IGF-1R, insulin-like growth factor type 1 receptor
- IGF/IGFR, insulin-like growth factor/receptor
- Molecular diagnostics
- NSCLC, non-small cell lung cancer
- ODC1, ornithine decarboxylase 1
- PARP, poly(ADP-ribose) polymerase
- PDGFRA/B, platelet derived growth factor alpha/beta
- PI3K, phosphatidylinositol 3′-kinase
- PLK1, polo-like kinase 1
- Ph +, Philadelphia chromosome-positive
- RMS, rhabdomyosarcoma
- SHH, sonic hedgehog
- SMO, smoothened
- SYK, spleen tyrosine kinase
- TOP1/TOP2, DNA topoisomerase 1/2
- TRAIL, TNF-related apoptosis-inducing ligand
- Targeted therapy
- VEGF/VEGFR, vascular endothelial growth factor/receptor
- mAb, monoclonal antibody
- mAbs, monoclonal antibodies
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Federica Saletta
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Geoffrey McCowage
- The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| | - Murray D. Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Jennifer A. Byrne
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
- The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| |
Collapse
|
23
|
Abstract
Neonatal or perinatal tumours frequently relate to prenatal or developmental events and have a short exposure window which provides an opportunity to study tumours in a selective sensitive period of development. As a result, they display a number of host-specific features which include occasional spontaneous maturational changes with cells still responding to developmental influences. Neonatal tumours (NNT) are studied for a number of important reasons. Firstly, many of the benign tumours arising from soft tissue appear to result from disturbances in growth and development and some are associated with other congenital anomalies. Study of these aspects may open the door for investigation of genetic and epigenetic changes in genes controlling foetal development as well as environmental and drug effects during pregnancy. Secondly, the clinical behaviour of NNT differs from that of similar tumours occurring later in childhood. In addition, certain apparently malignant NNT can 'change course' in infancy leading to the maturation of apparently highly malignant tumours. Thirdly, NNT underline the genetic associations of most tumours but appear to differ in the effects of proto-oncogenes and other oncogenic factors. In this context, there are also connections between the foetal and neonatal period and some "adult" cancers. Fourthly, they appear to arise in a period in which minimal environmental interference has occurred, thus providing a unique potential window of opportunity to study the pathogenesis of tumour behaviour. This study will seek to review what is currently known in each of these areas of study as they apply to NNT. Further study of the provocative differences in tumour behaviour in neonates provides insights into the natural history of cancer in humans and promotes novel cancer therapies.
Collapse
Affiliation(s)
- S W Moore
- Department of Paediatric Surgery, Faculty of Medicine and Health Sciences, University of Stellenbosch, P.O. Box 19063, Tygerberg, 7505, South Africa,
| |
Collapse
|
24
|
Simon-Keller K, Barth S, Vincent A, Marx A. Targeting the fetal acetylcholine receptor in rhabdomyosarcoma. Expert Opin Ther Targets 2012; 17:127-38. [PMID: 23231343 DOI: 10.1517/14728222.2013.734500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Recent efforts to enhance overall survival of patients with clinically advanced RMS have failed and there is a demand for conceptually novel treatments. Immune therapeutic options targeting the fetal nicotinic acetylcholine receptor (fnAChR), which is broadly expressed on RMS, are novel approaches to overcome the therapeutic resistance of RMS. Expression of the fnAChR is restricted to developing fetal muscles, some apparently dispensable ocular muscle fibers and thymic myoid cells. Therefore, after-birth fnAChR is a tumor-associated and almost tumor-specific antigen on RMS cells. AREAS COVERED This review gives an overview on nAChR function and expression pattern in RMS tumor cells, and deals with the immunological significance of fnAChR-expressing cells, including the risk of anti-nAChR autoimmunity as a potential side effect of fnAChR-directed immunotherapies. The article also addresses the advantages and disadvantages of vaccination strategies, immunotoxins and chimeric T cells targeting the fnAChR. EXPERT OPINION Finally, we suggest technical and biological strategies to improve the available immunotherapeutic tools including increasing the in vivo expression of the target fnAChR on RMS cells.
Collapse
Affiliation(s)
- Katja Simon-Keller
- University Medical Centre Mannheim, University of Heidelberg, Institute of Pathology, Theodor-Kutzer-Ufer 1-3, D-68135 Mannheim, Germany.
| | | | | | | |
Collapse
|
25
|
Tuna M, Ju Z, Amos CI, Mills GB. Soft tissue sarcoma subtypes exhibit distinct patterns of acquired uniparental disomy. BMC Med Genomics 2012; 5:60. [PMID: 23217126 PMCID: PMC3541987 DOI: 10.1186/1755-8794-5-60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/24/2012] [Indexed: 01/09/2023] Open
Abstract
Background Soft tissue sarcomas (STS) are heterogeneous mesenchymal tumors with diverse subtypes. STS can be classified into two main categories according to the type of genomic alteration: recurrent translocation driven STS, and non-recurrent translocations. However, little has known about acquired uniparental disomy in STS. Methods In this study, we analyzed SNP microarray data to determine the frequency and distribution patterns of acquired uniparental disomy (aUPD) in major soft tissue sarcoma (STS) subtypes using CNAG and R softwares. Results We identified recurrent aUPD regions specific to alveolar rhabdomyosarcoma with the most frequent at 11p15.4, gastrointestinal stromal tumor at 1p36.11-p35.3, leiomyosarcoma at 17p13.3-p13.1, myxofibrosarcoma at 1p35.1-p34.2 and 16q23.3-q24.1, and pleomorphic liposarcoma at 13q13.2-q13.3 and 13q14.11-q14.2. In contrast, specific recurrent aUPD regions were not identified in dedifferentiated liposarcoma, Ewing sarcoma, myxoid/round cell liposarcoma, and synovial sarcoma. Strikingly total, centromeric and segmental aUPD regions are more frequent in STS that do not exhibit recurrent translocation events. Conclusions Our study yields a detailed map of aUPD across 9 diverse STS subtypes and suggests the potential location of several novel tumor suppressor genes and oncogenes.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA.
| | | | | | | |
Collapse
|
26
|
Simon-Keller K, Mößinger K, Bohlender AL, Ströbel P, Marx A. Variable Resistance of RMS to Interferon γ Signaling. ISRN ONCOLOGY 2012; 2012:789152. [PMID: 22919516 PMCID: PMC3420146 DOI: 10.5402/2012/789152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/10/2012] [Indexed: 11/24/2022]
Abstract
Aims. Chimeric T cells directed to the γ-subunit of the fetal acetylcholine receptor (fAChR) produce large amounts of interferon-γ (IFNγ) on coculture with fAChR-expressing rhabdomyosarcoma (RMS) cells prior to RMS cell death. The aim of this study was to elucidate whether IFNγ blocks proliferation and survival of RMS cells and modulates expression of genes with relevance for cytotoxicity of chimeric T cells. Methods. Expression levels of IFNγ receptor (IFNGR), AChR, MHCI, MHCII, and CIITA (class II transactivator) by RMS were checked by flow cytometry, qRT-PCR, and western blot. Proliferation and cell survival were investigated by annexin V and propidium iodide staining and MTT (thiazolyl-blue-tetrazolium-bromide) assay. Key phosphorylation and binding sites of IFNGRs were checked by DNA sequencing. Results. IFNγ treatment blocked proliferation in 3 of 6 RMS cell lines, but reduced survival in only one. IFNGR was expressed at levels comparable to controls and binding sites for JAK and STAT1 were intact. Induction of several target genes (e.g., AChR, MHCI, and MHCII) by IFNγ was detected on the RNA level but not protein level. Conclusions. IFNγ does not significantly contribute to the killing of RMS cells by fAChR directed chimeric T cells. Signalling downstream of the IFNR receptor, including the posttranscriptional level, is impaired in most RMS cell lines.
Collapse
Affiliation(s)
- Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, 68135 Mannheim, Germany
| | | | | | | | | |
Collapse
|
27
|
Arndt CAS, Rose PS, Folpe AL, Laack NN. Common musculoskeletal tumors of childhood and adolescence. Mayo Clin Proc 2012; 87:475-87. [PMID: 22560526 PMCID: PMC3538469 DOI: 10.1016/j.mayocp.2012.01.015] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/07/2012] [Accepted: 01/16/2012] [Indexed: 11/23/2022]
Abstract
Osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma are the most common malignant musculoskeletal tumors in children and adolescents. Today, most patients can be cured. Numerous factors have contributed to improved outcome for these patients over the past several decades. These include multidisciplinary care involving oncologists, radiation oncologists, surgeons, pathologists, and radiologists and enrollment of patients in clinical trials. Better understanding of molecular mechanisms of disease have resulted in studies using molecular targets in addition to standard chemotherapeutic agents, which hopefully will lead to better outcomes in the future. Moreover, new orthopedic techniques and devices as well as new technologies in radiation oncology hold promise for better local control of primary tumors and the potential for fewer late adverse effects. Despite this progress, patients must undergo lifelong follow-up for possible late effects of intense chemotherapy and radiation therapy. We review the diagnosis, prognosis, staging, multidisciplinary therapy, new directions in therapy, and long-term complications of treatment for these tumors. For this review, we searched MEDLINE using the terms rhabdomyosarcoma, osteosarcoma, Ewing sarcoma, biology, and humans and limited the search to articles from 2000 to September 2011. Additional references found in these articles were utilized as appropriate, as well as references from the background information in current therapeutic studies of the Children's Oncology Group. The same database and time frame were searched for articles written by leading authorities in the field.
Collapse
Key Words
- arms, alveolar rhabdomyosarcoma
- cog, children's oncology group
- efs, event-free survival
- erms, embryonal rhabdomyosarcoma
- es, ewing sarcoma
- fdg-pet, fluorodeoxyglucose positron emission tomography
- ie, ifosfamide and etoposide
- map, methotrexate, doxorubicin (adriamycin), and cisplatin
- os, osteosarcoma
- pnet, primitive neuroectodermal tumor
- rms, rhabdomyosarcoma
- vdc, vincristine, doxorubicin, and cyclophosphamide
Collapse
Affiliation(s)
- Carola A S Arndt
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
28
|
McCormick JJ, Maher VM. Malignant transformation of human skin fibroblasts by two alternative pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 720:191-207. [PMID: 21901629 DOI: 10.1007/978-1-4614-0254-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We developed a telomerase-positive, infinite life span human fibroblast cell strain (MSU-1.0) by transfection of a v-MYC oncogene and spontaneous over-expression of transcription factors SP1/SP3. Loss of expression of p14(ALT) and enhanced expression of SPRY2 gave rise to the MSU-1.1 cell strain. Unlike MSU-1.0 cells, the MSU-1.1 cells can be malignantly transformed by expression of N-RAS(LYS61) or H-Ras(v12) oncoproteins (driven by their original promoters) and expression of a SRC-family protein, v-FES. MSU-1.1 cells can also be malignantly transformed by high expression of these RAS oncogenes or the v-K-RAS oncogene. PDGF-B transformed MSU-1.1 cells give rise to benign tumors (fibromas) in athymic mice. A second route to malignant transformation of the MSU-1.1 cells involves loss of functional TP53 protein by carcinogen treatment and loss of expression of wild type p16(INK). These studies indicate 6-8 "hits" are required to activate the oncogenes and inactivate the suppressor genes we identified.
Collapse
Affiliation(s)
- J Justin McCormick
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-1302, USA.
| | | |
Collapse
|
29
|
Kekeeva TV, Zavalishina LE, Frank GA, Zaletaev DV. Fusion genes and transcripts in neoplasia. Mol Biol 2011. [DOI: 10.1134/s0026893311050086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Rengaswamy V, Kontny U, Rössler J. New approaches for pediatric rhabdomyosarcoma drug discovery: targeting combinatorial signaling. Expert Opin Drug Discov 2011; 6:1103-25. [PMID: 22646865 DOI: 10.1517/17460441.2011.611498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Rhabdomyosarcomas (RMS) are rare heterogeneous pediatric tumors that are treated by surgery, chemotherapy and irradiation. New therapeutic approaches are needed, especially in the advanced stages to target the pro-oncogenic signals. Exploring the molecular interactions of the regulatory signals and their roles in the developmental aspects of different subtypes of RMS is essential to identify potential targets and develop new therapeutic drugs. AREAS COVERED Insights into different drug discovery approaches are discussed with specific emphasis on gene expression profiling, fusion protein, role of small interfering RNA (siRNA)- and microRNA (miRNA)-based discovery approaches, targeting cancer stem cells, and in vitro and in vivo model systems. Targeting some overexpressed signals along with the possibilities of combination therapy of validated drug targets is discussed. Additionally, methods to overcome the limitations of discovery-based research are briefly discussed. EXPERT OPINION Due to drug resistance, ineffective therapy in advanced stages and relapse, there is a demand to explore new drug targets and discovery approaches. Implementing miRNA-based profiling would reveal the extent of miR-based regulation, various biomarkers and potential targets in RMS. A suitable combination of innovative techniques and the use of model systems might assist the identification and validation of novel targets and drug discovery methods. Combining specific drugs along with type-specific target inhibition of overexpressed mRNAs through siRNA approaches would enable the development of personalized therapy.
Collapse
Affiliation(s)
- Venkatesh Rengaswamy
- University Hospital Freiburg, Center for Pediatrics and Adolescent Medicine, Clinic IV: Pediatric Hematology and Oncology, Mathildenstr. 1, 79106 Freiburg , Germany +49 761 270 43000 ; +49 761 270 45180 ;
| | | | | |
Collapse
|
31
|
Roca B, Reinoso I. Fiebre de origen desconocido y anemia como forma de presentación de un rabdomiosarcoma. Rev Esp Cir Ortop Traumatol (Engl Ed) 2011. [DOI: 10.1016/j.recot.2011.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Fever of unknown origin and anaemia as a form of presentation of a rhabdomyosarcoma. Rev Esp Cir Ortop Traumatol (Engl Ed) 2011. [DOI: 10.1016/j.recote.2011.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Peterson JM, Bakkar N, Guttridge DC. NF-κB Signaling in Skeletal Muscle Health and Disease. Curr Top Dev Biol 2011; 96:85-119. [DOI: 10.1016/b978-0-12-385940-2.00004-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Dey BK, Gagan J, Dutta A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol 2011; 31:203-14. [PMID: 21041476 PMCID: PMC3019853 DOI: 10.1128/mcb.01009-10] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 10/17/2010] [Accepted: 10/22/2010] [Indexed: 01/09/2023] Open
Abstract
The Pax7 transcription factor is required for muscle satellite cell biogenesis and specification of the myogenic precursor lineage. Pax7 is expressed in proliferating myoblasts but is rapidly downregulated during differentiation. Here we report that miR-206 and -486 are induced during myoblast differentiation and downregulate Pax7 by directly targeting its 3' untranslated region (UTR). Expression of either of these microRNAs in myoblasts accelerates differentiation, whereas inhibition of these microRNAs causes persistence of Pax7 protein and delays differentiation. A microRNA-resistant form of Pax7 is sufficient to inhibit differentiation. Since both these microRNAs are induced by MyoD and since Pax7 promotes the expression of Id2, an inhibitor of MyoD, our results revealed a bistable switch that exists either in a Pax7-driven myoblast state or a MyoD-driven myotube state.
Collapse
Affiliation(s)
- Bijan K. Dey
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Jordan Hall 1232, Charlottesville, Virginia 22908
| | - Jeffrey Gagan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Jordan Hall 1232, Charlottesville, Virginia 22908
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Jordan Hall 1232, Charlottesville, Virginia 22908
| |
Collapse
|
35
|
Bolger JC, Walsh JC, Hughes RE, Eustace SJ, Harrington P. Alveolar rhabdomyosarcoma originating between the fourth and fifth metatarsal--case report and literature review. Foot Ankle Surg 2010; 16:e51-4. [PMID: 20654999 DOI: 10.1016/j.fas.2010.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/16/2010] [Accepted: 03/02/2010] [Indexed: 02/04/2023]
Abstract
We report a case of alveolar rhabdomyosarcoma arising between the fourth and fifth metatarsal. A 13-year-old boy presented to outpatients with a history of pain and swelling in the lateral aspect of his left forefoot. Plain radiographs and MRI showed a soft tissue mass displacing the fourth metatarsal. Percutaneous biopsy revealed an alveolar rhabdomyosarcoma. Staging scans showed advanced metastatic disease. The patient was treated with chemotherapy. This highly malignant lesion remains challenging to diagnose, and difficult to treat successfully.
Collapse
Affiliation(s)
- J C Bolger
- Department of Surgery, Beaumont University Hospital, Beaumont, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
36
|
Bilodeau E, Alawi F, Costello BJ, Prasad JL. Molecular diagnostics for head and neck pathology. Oral Maxillofac Surg Clin North Am 2010; 22:183-94. [PMID: 20159486 DOI: 10.1016/j.coms.2009.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular diagnostic techniques are quickly finding a role in the detection and diagnosis of tumors, and in predicting their behavior. They may also prove useful in developing new therapeutic approaches to head and neck cancer. The surgeon working in the craniomaxillofacial region should have an understanding of these technologies, their availability in various settings, and how they affect various aspects of treatment, particularly in the detection and treatment of malignancies. This article offers an overview of recent advances in molecular diagnostic techniques, with their implications for diagnosis and management of head and neck tumors.
Collapse
Affiliation(s)
- Elizabeth Bilodeau
- Department of Oral and Maxillofacial Surgery, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
37
|
Gustafson S, Medeiros LJ, Kalhor N, Bueso-Ramos CE. Anaplastic large cell lymphoma: another entity in the differential diagnosis of small round blue cell tumors. Ann Diagn Pathol 2010; 13:413-27. [PMID: 19917480 DOI: 10.1016/j.anndiagpath.2009.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
We saw in consultation a biopsy specimen from a 6-year old girl with anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL). The tumor arose in soft tissue of the neck, and diagnostic tissue was obtained by core needle biopsy. Histologically, the neoplasm was cellular without pattern. Immunohistochemical workup with a large panel of antibodies at another institution showed immunoreactivity for NB84 and neuron specific enolase (dim). Antibodies specific for CD3, CD20, and CD45/LCA were negative; CD30 or ALK were not assessed. Electron microscopy showed cytoplasmic structures thought to be neurosecretory granules. The neoplasm was interpreted initially as a neuroblastoma. At the time of our review, we considered the possibility of ALCL. Immunohistochemical analysis for CD30 showed bright, uniform expression and ALK was positive in a nuclear and cytoplasmic pattern, confirming the diagnosis of ALK+ ALCL. The purpose of this review is to discuss ALK+ ALCL and many of the other entities included under the rubric of small round blue cell tumor, with a focus on tumors that occur in children.
Collapse
Affiliation(s)
- Steven Gustafson
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
38
|
Pytel P, Karrison T, Can Gong, Tonsgard JH, Krausz T, Montag AG. Neoplasms with schwannian differentiation express transcription factors known to regulate normal schwann cell development. Int J Surg Pathol 2009; 18:449-57. [PMID: 20034979 DOI: 10.1177/1066896909351698] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of transcription factors have been identified as important in guiding normal Schwann cell development. This study used immunohistochemistry on tissue arrays to assess the expression of some of these transcription factors (Sox5, Sox9, Sox10, AP-2α, Pax7, and FoxD3) on 76 schwannomas, 105 neurofibromas, and 34 malignant peripheral nerve sheath tumors (MPNSTs). Sox9 and Sox10 were found to be widely expressed in all tumor types. FoxD3 reactivity was stronger and more frequently found in schwannomas and MPNSTs than neurofibromas. AP-2α was positive in 31% to 49% of all tumors, but strong reactivity was limited to MPNSTs and schwannomas. Pax7 and Sox5 expression was restricted to subsets of MPNSTs. Statistical analysis showed significant differences between the 3 tumor types in the expression of these markers. No differences were found in the analyzed tumor subgroups, including schwannomas of different sites, schwannomas with or without NF2 association, neurofibromas of different types, or sporadic versus NF1-associated MPNSTs. These results suggest that the transcription factors that guide normal Schwann cell development also play a role in the biology of neoplastic cells with Schwannian differentiation. FoxD3, AP-2α, Pax7, and Sox5 are upregulated in MPNSTs compared with neurofibromas and may be markers of malignant transformation. Screening the expression of FoxD3, Sox9, and Sox10 on 23 cases of other spindle-cell proliferations that may be considered in the differential diagnosis of MPNST, including synovial sarcoma and spindle cell melanoma, suggests that these 3 are helpful markers of Schwannian differentiation in the context of diagnosing MPNSTs.
Collapse
Affiliation(s)
- Peter Pytel
- University of Chicago Medical Center, Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Tumour formation by single fibroblast growth factor receptor 3-positive rhabdomyosarcoma-initiating cells. Br J Cancer 2009; 101:2030-7. [PMID: 19888223 PMCID: PMC2795447 DOI: 10.1038/sj.bjc.6605407] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: The hypothesis that malignant tumours are generated by rare populations of cancer stem cells that are more tumourigenic than other cancer cells has gained increasing credence. The objective of this study was to identify and characterise a subpopulation of human sarcoma-initiating cells. Methods: We examined established rhabdomyosarcoma cell lines by flow cytometry. Tumourigenesis was examined by xenograft models. Real-time PCR and immunohistochemistry were performed to examine the gene expression using cell lines and biopsy specimens. Results: Rhabdomyosarcoma cell lines included small populations of fibroblast growth factor receptor 3 (FGFR3)-positive cells. FGFR3-positive KYM-1 and RD cells were more strongly tumourigenic than FGFR3-negative cells. In addition, xenoengraftment of 33% of single FGFR3-positive KYM-1 cells yielded tumour formation. Stem cell properties of FGFR3-positive cells were further established by real-time PCR, which demonstrated upregulation of undifferentiated cell markers and downregulation of differentiation markers. We showed that in the absence of serum, addition of basic fibroblast growth factor maintained and enriched FGFR3-positive cells. On the other hand, ciliary neurotrophic factor reduced the proportion of FGFR3-positive cells. Real-time PCR and immunohistochemical examination revealed that embryonal rhabdomyosarcoma patient biopsy specimens were found to over-express FGFR3. Conclusions: Our findings suggest that rhabdomyosarcoma cell lines include a minor subpopulation of FGFR3-positive sarcoma-initiating cells, which can be maintained indefinitely in culture and which is crucial for their malignancy.
Collapse
|
40
|
Hu K, Lee C, Qiu D, Fotovati A, Davies A, Abu-Ali S, Wai D, Lawlor ER, Triche TJ, Pallen CJ, Dunn SE. Small interfering RNA library screen of human kinases and phosphatases identifies polo-like kinase 1 as a promising new target for the treatment of pediatric rhabdomyosarcomas. Mol Cancer Ther 2009; 8:3024-35. [PMID: 19887553 PMCID: PMC2783569 DOI: 10.1158/1535-7163.mct-09-0365] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rhabdomyosarcoma, consisting of alveolar (aRMS) and embryonal (eRMS) subtypes, is the most common type of sarcoma in children. Currently, there are no targeted drug therapies available for rhabdomyosarcoma. In searching for new molecular therapeutic targets, we carried out genome-wide small interfering RNA (siRNA) library screens targeting human phosphatases (n = 206) and kinases (n = 691) initially against an aRMS cell line, RH30. Sixteen phosphatases and 50 kinases were identified based on growth inhibition after 72 hours. Inhibiting polo-like kinase 1 (PLK1) had the most remarkable impact on growth inhibition (approximately 80%) and apoptosis on all three rhabdomyosarcoma cell lines tested, namely, RH30, CW9019 (aRMS), and RD (eRMS), whereas there was no effect on normal muscle cells. The loss of PLK1 expression and subsequent growth inhibition correlated with decreased p-CDC25C and Cyclin B1. Increased expression of WEE 1 was also noted. The induction of apoptosis after PLK1 silencing was confirmed by increased p-H2AX, propidium iodide uptake, and chromatin condensation, as well as caspase-3 and poly(ADP-ribose) polymerase cleavage. Pediatric Ewing's sarcoma (TC-32), neuroblastoma (IMR32 and KCNR), and glioblastoma (SF188) models were also highly sensitive to PLK1 inhibition. Finally, based on cDNA microarray analyses, PLK1 mRNA was overexpressed (>1.5 fold) in 10 of 10 rhabdomyosarcoma cell lines and in 47% and 51% of primary aRMS (17 of 36 samples) and eRMS (21 of 41 samples) tumors, respectively, compared with normal muscles. Similarly, pediatric Ewing's sarcoma, neuroblastoma, and osteosarcoma tumors expressed high PLK1. We conclude that PLK1 could be a promising therapeutic target for the treatment of a wide range of pediatric solid tumors including rhabdomyosarcoma.
Collapse
Affiliation(s)
- Kaiji Hu
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Lee
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dexin Qiu
- Cell Phosphosignaling Laboratory, Departments of Pediatrics, Pathology and Laboratory Medicine, and Experimental Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abbas Fotovati
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alastair Davies
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samah Abu-Ali
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Wai
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Elizabeth R. Lawlor
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Timothy J. Triche
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Catherine J. Pallen
- Cell Phosphosignaling Laboratory, Departments of Pediatrics, Pathology and Laboratory Medicine, and Experimental Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sandra E. Dunn
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Kubic JD, Young KP, Plummer RS, Ludvik AE, Lang D. Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res 2008; 21:627-45. [PMID: 18983540 PMCID: PMC2979299 DOI: 10.1111/j.1755-148x.2008.00514.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcription factors initiate programs of gene expression and are catalysts in downstream molecular cascades that modulate a variety of cellular processes. Pax3 is a transcription factor that is important in the melanocyte and influences melanocytic proliferation, resistance to apoptosis, migration, lineage specificity and differentiation. In this review, we focus on Pax3 and the molecular pathways that Pax3 is a part of during melanogenesis and in the melanocyte stem cell. These roles of Pax3 are emphasized during the development of diseases and syndromes resulting from either too much or too little Pax3 function. Due to its key task in melanocyte stem cells and tumors, the Pax3 pathway may provide an ideal target for either stem cell or cancer therapies.
Collapse
Affiliation(s)
- Jennifer D Kubic
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
42
|
De Alvaro C, Nieto-Vazquez I, Rojas JM, Lorenzo M. Nuclear exclusion of forkhead box O and Elk1 and activation of nuclear factor-kappaB are required for C2C12-RasV12C40 myoblast differentiation. Endocrinology 2008; 149:793-801. [PMID: 17962350 DOI: 10.1210/en.2007-0657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activating ras point mutations are frequently found in skeletal muscle tumors such as rhabdomyosarcomas. In this study we investigated the impact of two different H-ras mutants in skeletal muscle differentiation: RasV12, a constitutively active form, and RasV12C40, a mutant deficient in Raf1 activation. Stably transfected C2C12-RasV12 myoblasts actively proliferated as indicated by the sustained expression of proliferating cell nuclear antigen and retinoblastoma at the hyperphosphorylated state and failed to express differentiation markers. This differentiation-defective phenotype was a consequence of the chronic p44/p42MAPK phosphorylation and the inability of the cells to activate AKT. Moreover, we observed that p44/p42MAPK activation in C2C12-RasV12 myoblasts phosphorylated the ETS-like transcription factor (ELK) 1, which translocates to the nuclei and seemed to be involved in maintaining myoblast proliferation. C2C12-RasV12C40 myoblasts cultured in low serum repressed phosphorylation of p44/p42MAPK and ELK1, resulting in cell cycle arrest and myogenic differentiation. Under this condition, activation of AKT, p70S6K, and p38MAPK was produced, leading to formation of myotubes in 3 d, 1 d earlier than in control C2C12-AU5 cells. Moreover, the expression of muscle-specific proteins, mainly the terminal differentiation markers caveolin-3 and myosin heavy chain, also occurred 1 d earlier than in control cells. Furthermore, AKT activation produced phosphorylation of Forkhead box O that led to nuclear exclusion and inactivation, allowing myogenesis. In addition, we found an induction of nuclear factor-kappaB activity in the nucleus in C2C12-RasV12C40 myotubes attributed to p38MAPK activation. Accordingly, muscle differentiation is associated with a pattern of transcription factors that involves nuclear exclusion ELK1 and Forkhead box O and the increase in nuclear factor-kappaB DNA binding.
Collapse
Affiliation(s)
- Cristina De Alvaro
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|