1
|
|
2
|
Zhu S, Gu Z, Zhao Y. Harnessing Tumor Microenvironment for Nanoparticle-Mediated Radiotherapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Chinese Academy of Sciences; Beijing 100190 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
3
|
El Kaffas A, Gangeh MJ, Farhat G, Tran WT, Hashim A, Giles A, Czarnota GJ. Tumour Vascular Shutdown and Cell Death Following Ultrasound-Microbubble Enhanced Radiation Therapy. Am J Cancer Res 2018; 8:314-327. [PMID: 29290810 PMCID: PMC5743550 DOI: 10.7150/thno.19010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
High-dose radiotherapy effects are regulated by acute tumour endothelial cell death followed by rapid tumour cell death instead of canonical DNA break damage. Pre-treatment with ultrasound-stimulated microbubbles (USMB) has enabled higher-dose radiation effects with conventional radiation doses. This study aimed to confirm acute and longitudinal relationships between vascular shutdown and tumour cell death following radiation and USMB in a wild type murine fibrosarcoma model using in vivo imaging. Methods: Tumour xenografts were treated with single radiation doses of 2 or 8 Gy alone, or in combination with low-/high-concentration USMB. Vascular changes and tumour cell death were evaluated at 3, 24 and 72 h following therapy, using high-frequency 3D power Doppler and quantitative ultrasound spectroscopy (QUS) methods, respectively. Staining using in situ end labelling (ISEL) and cluster of differentiation 31 (CD31) of tumour sections were used to assess cell death and vascular distributions, respectively, as gold standard histological methods. Results: Results indicated a decrease in the power Doppler signal of up to 50%, and an increase of more than 5 dBr in cell-death linked QUS parameters at 24 h for tumours treated with combined USMB and radiotherapy. Power Doppler and quantitative ultrasound results were significantly correlated with CD31 and ISEL staining results (p < 0.05), respectively. Moreover, a relationship was found between ultrasound power Doppler and QUS results, as well as between micro-vascular densities (CD31) and the percentage of cell death (ISEL) (R2 0.5-0.9). Conclusions: This study demonstrated, for the first time, the link between acute vascular shutdown and acute tumour cell death using in vivo longitudinal imaging, contributing to the development of theoretical models that incorporate vascular effects in radiation therapy. Overall, this study paves the way for theranostic use of ultrasound in radiation oncology as a diagnostic modality to characterize vascular and tumour response effects simultaneously, as well as a therapeutic modality to complement radiation therapy.
Collapse
|
4
|
Yang F, Jin H, Wang J, Sun Q, Yan C, Wei F, Ren X. Adoptive Cellular Therapy (ACT) for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:169-239. [PMID: 27240459 DOI: 10.1007/978-94-017-7555-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adoptive cellular therapy (ACT) with various lymphocytes or antigen-presenting cells is one stone in the pillar of cancer immunotherapy, which relies on the tumor-specific T cell. The transfusion of bulk T-cell population into patients is an effective treatment for regression of cancer. In this chapter, we summarize the development of various strategies in ACT for cancer immunotherapy and discuss some of the latest progress and obstacles in technical, safety, and even regulatory aspects to translate these technologies to the clinic. ACT is becoming a potentially powerful approach to cancer treatment. Further experiments and clinical trials are needed to optimize this strategy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
| |
Collapse
|
5
|
Abstract
Recent clinical success has underscored the potential for immunotherapy based on the adoptive cell transfer (ACT) of engineered T lymphocytes to mediate dramatic, potent, and durable clinical responses. This success has led to the broader evaluation of engineered T-lymphocyte-based adoptive cell therapy to treat a broad range of malignancies. In this review, we summarize concepts, successes, and challenges for the broader development of this promising field, focusing principally on lessons gleaned from immunological principles and clinical thought. We present ACT in the context of integrating T-cell and tumor biology and the broader systemic immune response.
Collapse
Affiliation(s)
- Marco Ruella
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
6
|
Gottschalk S, Yu F, Ji M, Kakarla S, Song XT. A vaccine that co-targets tumor cells and cancer associated fibroblasts results in enhanced antitumor activity by inducing antigen spreading. PLoS One 2013; 8:e82658. [PMID: 24349329 PMCID: PMC3861387 DOI: 10.1371/journal.pone.0082658] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022] Open
Abstract
Dendritic cell (DC) vaccines targeting only cancer cells have produced limited antitumor activity in most clinical studies. Targeting cancer-associated fibroblasts (CAFs) in addition to cancer cells may enhance antitumor effects, since CAFs, the central component of the tumor stroma, directly support tumor growth and contribute to the immunosuppressive tumor microenvironment. To co-target CAFs and tumor cells we developed a new compound DC vaccine that encodes an A20-specific shRNA to enhance DC function, and targets fibroblast activation protein (FAP) expressed in CAFs and the tumor antigen tyrosine-related protein (TRP)2 (DC-shA20-FAP-TRP2). DC-shA20-FAP-TRP2 vaccination induced robust FAP- and TRP2-specific T-cell responses, resulting in greater antitumor activity in the B16 melanoma model in comparison to monovalent vaccines or a vaccine encoding antigens and a control shRNA. DC-shA20-FAP-TRP2 vaccination enhanced tumor infiltration of CD8-positive T cells, and induced antigen-spreading resulting in potent antitumor activity. Thus, co-targeting of tumor cells and CAFs results in the induction of broad-based tumor-specific T-cell responses and has the potential to improve current vaccine approaches for cancer.
Collapse
Affiliation(s)
- Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (XTS); (SG)
| | - Feng Yu
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Minjun Ji
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sunitha Kakarla
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiao-Tong Song
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (XTS); (SG)
| |
Collapse
|
7
|
Schietinger A, Arina A, Liu RB, Wells S, Huang J, Engels B, Bindokas V, Bartkowiak T, Lee D, Herrmann A, Piston DW, Pittet MJ, Lin PC, Zal T, Schreiber H. Longitudinal confocal microscopy imaging of solid tumor destruction following adoptive T cell transfer. Oncoimmunology 2013; 2:e26677. [PMID: 24482750 PMCID: PMC3895414 DOI: 10.4161/onci.26677] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/02/2013] [Indexed: 01/07/2023] Open
Abstract
A fluorescence-based, high-resolution imaging approach was used to visualize longitudinally the cellular events unfolding during T cell-mediated tumor destruction. The dynamic interplay of T cells, cancer cells, cancer antigen loss variants, and stromal cells-all color-coded in vivo-was analyzed in established, solid tumors that had developed behind windows implanted on the backs of mice. Events could be followed repeatedly within precisely the same tumor region-before, during and after adoptive T cell therapy-thereby enabling for the first time a longitudinal in vivo evaluation of protracted events, an analysis not possible with terminal imaging of surgically exposed tumors. T cell infiltration, stromal interactions, and vessel destruction, as well as the functional consequences thereof, including the elimination of cancer cells and cancer cell variants were studied. Minimal perivascular T cell infiltrates initiated vascular destruction inside the tumor mass eventually leading to macroscopic central tumor necrosis. Prolonged engagement of T cells with tumor antigen-crosspresenting stromal cells correlated with high IFNγ cytokine release and bystander elimination of antigen-negative cancer cells. The high-resolution, longitudinal, in vivo imaging approach described here will help to further a better mechanistic understanding of tumor eradication by T cells and other anti-cancer therapies.
Collapse
Affiliation(s)
| | - Ainhoa Arina
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Rebecca B Liu
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Sam Wells
- Department of Physiology and Biophysics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Jianhua Huang
- Department of Radiation Oncology and The Vanderbilt-Ingram Cancer Center; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Boris Engels
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Vytas Bindokas
- Integrated Microscopy Core; The University of Chicago; Chicago, IL USA
| | - Todd Bartkowiak
- Department of Immunology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - David Lee
- School of Medicine; The University of Chicago; Chicago, IL USA
| | - Andreas Herrmann
- Departments of Cancer Immunotherapeutics & Tumor Immunology; City of Hope; Duarte, CA USA
| | - David W Piston
- Department of Physiology and Biophysics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Mikael J Pittet
- Center for Systems Biology; Massachusetts General Hospital and Harvard Medical School; Boston, MA USA
| | - P Charles Lin
- Department of Radiation Oncology and The Vanderbilt-Ingram Cancer Center; Vanderbilt University School of Medicine; Nashville, TN USA ; Center for Cancer Research; National Cancer Institute, NIH; Frederick, MD USA
| | - Tomasz Zal
- Department of Immunology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Hans Schreiber
- Department of Pathology; The University of Chicago; Chicago, IL USA
| |
Collapse
|
8
|
Kakarla S, Chow KKH, Mata M, Shaffer DR, Song XT, Wu MF, Liu H, Wang LL, Rowley DR, Pfizenmaier K, Gottschalk S. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther 2013; 21:1611-20. [PMID: 23732988 DOI: 10.1038/mt.2013.110] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/01/2013] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors.
Collapse
Affiliation(s)
- Sunitha Kakarla
- Center for Cell and Gene Therapy, Texas Children's Hospital, The Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fiaschi T, Giannoni E, Taddei ML, Cirri P, Marini A, Pintus G, Nativi C, Richichi B, Scozzafava A, Carta F, Torre E, Supuran CT, Chiarugi P. Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle 2013; 12:1791-801. [PMID: 23656776 DOI: 10.4161/cc.24902] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Extracellular acidification, a mandatory feature of several malignancies, has been mainly correlated with metabolic reprogramming of tumor cells toward Warburg metabolism, as well as to the expression of carbonic anydrases or proton pumps by malignant tumor cells. We report herein that for aggressive prostate carcinoma, acknowledged to be reprogrammed toward an anabolic phenotype and to upload lactate to drive proliferation, extracellular acidification is mainly mediated by stromal cells engaged in a molecular cross-talk circuitry with cancer cells. Indeed, cancer-associated fibroblasts, upon their activation by cancer delivered soluble factors, rapidly express carbonic anhydrase IX (CA IX). While expression of CAIX in cancer cells has already been correlated with poor prognosis in various human tumors, the novelty of our findings is the upregulation of CAIX in stromal cells upon activation. The de novo expression of CA IX, which is not addicted to hypoxic conditions, is driven by redox-based stabilization of hypoxia-inducible factor-1. Extracellular acidification due to carbonic anhydrase IX is mandatory to elicit activation of stromal fibroblasts delivered metalloprotease-2 and -9, driving in cancer cells the epithelial-mesenchymal transition epigenetic program, a key event associated with increased motility, survival and stemness. Both genetic silencing and pharmacological inhibition of CA IX (with sulfonamide/sulfamides potent inhibitors) or metalloprotease-9 are sufficient to impede epithelial-mesenchymal transition and invasiveness of prostate cancer cells induced by contact with cancer-associated fibroblasts. We also confirmed in vivo the upstream hierarchical role of stromal CA IX to drive successful metastatic spread of prostate carcinoma cells. These data include stromal cells, as cancer-associated fibroblasts as ideal targets for carbonic anhydrase IX-directed anticancer therapies.
Collapse
Affiliation(s)
- Tania Fiaschi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Tuscany, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Affolter A, Schmidtmann I, Mann WJ, Brieger J. Cancer-associated fibroblasts do not respond to combined irradiation and kinase inhibitor treatment. Oncol Rep 2012; 29:785-90. [PMID: 23232940 DOI: 10.3892/or.2012.2180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/15/2012] [Indexed: 11/06/2022] Open
Abstract
The emergence of radioresistance is a significant issue in the treatment of squamous cell carcinoma. We recently demonstrated that post-radiogenic extracellular signal-regulated kinase (ERK) signaling might decrease radiosensitivity in this cancer type. To further elucidate how tumor-organizing cell types respond to irradiation and ERK pathway inhibition, we analyzed one oral squamous cell carcinoma and one lung cancer cell line (HNSCCUM-02T, A549), fibroblasts (NIH3T3), primary normal and cancer-associated fibroblasts (CAFs) in vitro. Irradiated cells treated with mitogen-activated protein kinase (MAPK) inhibitor U0126 were screened for pERK levels. Post-radiogenic cellular responses were functionally analyzed by proliferation and colony assays. We found analogous pERK expression, proliferation and survival of tumor and normal fibroblast cells. CAFs did not show any response to treatment. We hypothesized that radiation and MAPK inhibition have no dose-limiting effect on tumor-surrounding normal tissue. As CAFs are considered to influence the radioresponse of the entire tumor, but are not affected by treatment themselves, potential CAF-mediated tumor protection should be considered in further studies.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
11
|
Weiss EM, Wunderlich R, Ebel N, Rubner Y, Schlücker E, Meyer-Pittroff R, Ott OJ, Fietkau R, Gaipl US, Frey B. Selected anti-tumor vaccines merit a place in multimodal tumor therapies. Front Oncol 2012; 2:132. [PMID: 23087898 PMCID: PMC3466463 DOI: 10.3389/fonc.2012.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/17/2012] [Indexed: 12/12/2022] Open
Abstract
Multimodal approaches are nowadays successfully applied in cancer therapy. Primary locally acting therapies such as radiotherapy (RT) and surgery are combined with systemic administration of chemotherapeutics. Nevertheless, the therapy of cancer is still a big challenge in medicine. The treatments often fail to induce long-lasting anti-tumor responses. Tumor recurrences and metastases result. Immunotherapies are therefore ideal adjuncts to standard tumor therapies since they aim to activate the patient's immune system against malignant cells even outside the primary treatment areas (abscopal effects). Especially cancer vaccines may have the potential both to train the immune system against cancer cells and to generate an immunological memory, resulting in long-lasting anti-tumor effects. However, despite promising results in phase I and II studies, most of the concepts finally failed. There are some critical aspects in development and application of cancer vaccines that may decide on their efficiency. The time point and frequency of medication, usage of an adequate immune adjuvant, the vaccine's immunogenic potential, and the tumor burden of the patient are crucial. Whole tumor cell vaccines have advantages compared to peptide-based ones since a variety of tumor antigens (TAs) are present. The master requirements of cell-based, therapeutic tumor vaccines are the complete inactivation of the tumor cells and the increase of their immunogenicity. Since the latter is highly connected with the cell death modality, the inactivation procedure of the tumor cell material may significantly influence the vaccine's efficiency. We therefore also introduce high hydrostatic pressure (HHP) as an innovative inactivation technology for tumor cell-based vaccines and outline that HHP efficiently inactivates tumor cells by enhancing their immunogenicity. Finally studies are presented proving that anti-tumor immune responses can be triggered by combining RT with selected immune therapies.
Collapse
Affiliation(s)
- Eva-Maria Weiss
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
El Kaffas A, Tran W, Czarnota GJ. Vascular Strategies for Enhancing Tumour Response to Radiation Therapy. Technol Cancer Res Treat 2012; 11:421-32. [DOI: 10.7785/tcrt.2012.500265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Radiation therapy is prescribed to more than 50% of patients diagnosed with cancer. Although mechanisms of interaction between radiation and tumour cells are well understood on a molecular level, much remains uncertain concerning the interaction of radiation with the tumour as a whole. Recent studies have demonstrated that single large doses of radiation (8–20 Gy) may primarily target tumour endothelial cells, leading to secondary tumour clonogenic cell death. These studies suggest that blood vessels play an important role in radiation response. As a result, various strategies have been proposed to effectively combine radiation with vascular targeting agents. While most proposed schemes focus on methods to disrupt tumour blood vessels, recent evidence supporting that some anti-angiogenic agents may “normalize” tumour blood vessels, in turn enhancing tumour oxygenation and radiosensitivity, indicates that there may be more efficient strategies. Furthermore, vascular targeting agents have recently been demonstrated to enhance radiation therapy by targeting endothelial cells. When combined with radiation, these agents are believed to cause even more localized vascular destruction followed by tumour clonogenic cell death. Taken together, it is now crucial to elucidate the role of tumour blood vessels in radiation therapy response, in order to make use of this knowledge in developing therapeutic strategies that target tumour vasculature above and beyond classic clonogenic tumour cell death. In this report, we review some major developments in understanding the importance of tumour blood vessels during radiation therapy. A discussion of current imaging modalities used for studying vascular response to treatments will also be presented.
Collapse
Affiliation(s)
- Ahmed El Kaffas
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON, Canada M4N 3M5
- Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, ON, Canada M4N 3M5
| | - William Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON, Canada M4N 3M5
| | - Gregory J. Czarnota
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON, Canada M4N 3M5
- Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, ON, Canada M4N 3M5
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON, Canada M4N 3M5
| |
Collapse
|
13
|
Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2011; 9:44-54. [PMID: 22143274 DOI: 10.1038/nrgastro.2011.222] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intrahepatic cholangiocarcinoma is typically characterized by a dense desmoplastic stroma, of which cancer-associated myofibroblasts (which express α-smooth muscle actin), are a major cellular component. These stromal myofibroblasts have a crucial role in accelerating the progression of intrahepatic cholangiocarcinoma and in promoting resistance to therapy through interactive autocrine and paracrine signaling pathways that promote malignant cell proliferation, migration, invasiveness, apoptosis resistance and/or epithelial-mesenchymal transition. These changes correlate with aggressive tumor behavior. Hypoxic desmoplasia and aberrant Hedgehog signaling between stromal myofibroblastic cells and cholangiocarcinoma cells are also critical modulators of intrahepatic cholangiocarcinoma progression and therapy resistance. A novel strategy has been developed to achieve improved therapeutic outcomes in patients with advanced intrahepatic cholangiocarcinoma, based on targeting of multiple interactive pathways between cancer-associated myofibroblasts and intrahepatic cholangiocarcinoma cells that are associated with disease progression and poor survival. Unique organotypic cell culture and orthotopic rat models of cholangiocarcinoma progression are well suited to the rapid preclinical testing of this potentially paradigm-shifting strategy.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, VA 23298-0297, USA.
| |
Collapse
|
14
|
The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. NATURE REVIEWS. GASTROENTEROLOGY & HEPATOLOGY 2011. [PMID: 22143274 DOI: 10.1038/nrgastro.2011.222.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intrahepatic cholangiocarcinoma is typically characterized by a dense desmoplastic stroma, of which cancer-associated myofibroblasts (which express α-smooth muscle actin), are a major cellular component. These stromal myofibroblasts have a crucial role in accelerating the progression of intrahepatic cholangiocarcinoma and in promoting resistance to therapy through interactive autocrine and paracrine signaling pathways that promote malignant cell proliferation, migration, invasiveness, apoptosis resistance and/or epithelial-mesenchymal transition. These changes correlate with aggressive tumor behavior. Hypoxic desmoplasia and aberrant Hedgehog signaling between stromal myofibroblastic cells and cholangiocarcinoma cells are also critical modulators of intrahepatic cholangiocarcinoma progression and therapy resistance. A novel strategy has been developed to achieve improved therapeutic outcomes in patients with advanced intrahepatic cholangiocarcinoma, based on targeting of multiple interactive pathways between cancer-associated myofibroblasts and intrahepatic cholangiocarcinoma cells that are associated with disease progression and poor survival. Unique organotypic cell culture and orthotopic rat models of cholangiocarcinoma progression are well suited to the rapid preclinical testing of this potentially paradigm-shifting strategy.
Collapse
|
15
|
Gupta V, Bassi DE, Simons JD, Devarajan K, Al-Saleem T, Uzzo RG, Cukierman E. Elevated expression of stromal palladin predicts poor clinical outcome in renal cell carcinoma. PLoS One 2011; 6:e21494. [PMID: 21738681 PMCID: PMC3125241 DOI: 10.1371/journal.pone.0021494] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/29/2011] [Indexed: 01/13/2023] Open
Abstract
The role that stromal renal cell carcinoma (RCC) plays in support of tumor progression is unclear. Here we sought to determine the predictive value on patient survival of several markers of stromal activation and the feasibility of a fibroblast-derived extracellular matrix (ECM) based three-dimensional (3D) culture stemming from clinical specimens to recapitulate stromal behavior in vitro. The clinical relevance of selected stromal markers was assessed using a well annotated tumor microarray where stromal-marker levels of expression were evaluated and compared to patient outcomes. Also, an in vitro 3D system derived from fibroblasts harvested from patient matched normal kidney, primary RCC and metastatic tumors was employed to evaluate levels and localizations of known stromal markers such as the actin binding proteins palladin, alpha-smooth muscle actin (α-SMA), fibronectin and its spliced form EDA. Results suggested that RCCs exhibiting high levels of stromal palladin correlate with a poor prognosis, as demonstrated by overall survival time. Conversely, cases of RCCs where stroma presents low levels of palladin expression indicate increased survival times and, hence, better outcomes. Fibroblast-derived 3D cultures, which facilitate the categorization of stromal RCCs into discrete progressive stromal stages, also show increased levels of expression and stress fiber localization of α-SMA and palladin, as well as topographical organization of fibronectin and its splice variant EDA. These observations are concordant with expression levels of these markers in vivo. The study proposes that palladin constitutes a useful marker of poor prognosis in non-metastatic RCCs, while in vitro 3D cultures accurately represent the specific patient's tumor-associated stromal compartment. Our observations support the belief that stromal palladin assessments have clinical relevance thus validating the use of these 3D cultures to study both progressive RCC-associated stroma and stroma-dependent mechanisms affecting tumorigenesis. The clinical value of assessing RCC stromal activation merits further study.
Collapse
Affiliation(s)
- Vivekanand Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Daniel E. Bassi
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey D. Simons
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Karthik Devarajan
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Tahseen Al-Saleem
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Robert G. Uzzo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Yao Q, Cao S, Li C, Mengesha A, Kong B, Wei M. Micro-RNA-21 regulates TGF-β-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction. Int J Cancer 2011; 128:1783-92. [PMID: 20533548 DOI: 10.1002/ijc.25506] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) induces stromal fibroblast-to-myofibroblast transdifferentiation in the tumor-stroma interactive microenvironment via modulation of multiple phenotypic and functional genes, which plays a critical role in tumor progression. Up to now, the involvement of micro-RNAs (miRNAs) and their roles in TGF-β1-induced myofibroblast differentiation in tumor-stroma interaction are unclear. Using quantitative real-time RT-PCR, we demonstrated that the expression of micro-RNA-21 (miR-21) was upregulated in activated fibroblasts after treatment with TGF-β1 or conditioned medium from cancer cells. To determine the potential roles of miR-21 in TGF-β1-mediated gene regulation during myofibroblast conversion, we showed that miR-21 expression was downregulated by miR-21 inhibitor and upregulated by miR-21 mimic. Interestingly, downregulation of miR-21 with the inhibitor effectively inhibited TGF-β1-induced myofibroblast differentiation while upregulation of miR-21 with a mimic significantly promoted myofibroblast differentiation. We further demonstrated that MiR-21 directly targeted and downregulated programmed cell death 4 (PDCD4) gene, which in turn acted as a negative regulator of several phenotypic and functional genes of myofibroblasts. Taken together, these results suggested that miR-21 participated in TGF-β1-induced myofibroblast transdifferentiation in cancer stroma by targeting PDCD4.
Collapse
Affiliation(s)
- Qin Yao
- Griffith Institute for Health and Medical Research, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Simpson-Haidaris PJ, Pollock SJ, Ramon S, Guo N, Woeller CF, Feldon SE, Phipps RP. Anticancer Role of PPARgamma Agonists in Hematological Malignancies Found in the Vasculature, Marrow, and Eyes. PPAR Res 2010; 2010:814609. [PMID: 20204067 PMCID: PMC2829627 DOI: 10.1155/2010/814609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/30/2009] [Accepted: 12/16/2009] [Indexed: 12/19/2022] Open
Abstract
The use of targeted cancer therapies in combination with conventional chemotherapeutic agents and/or radiation treatment has increased overall survival of cancer patients. However, longer survival is accompanied by increased incidence of comorbidities due, in part, to drug side effects and toxicities. It is well accepted that inflammation and tumorigenesis are linked. Because peroxisome proliferator-activated receptor (PPAR)-gamma agonists are potent mediators of anti-inflammatory responses, it was a logical extension to examine the role of PPARgamma agonists in the treatment and prevention of cancer. This paper has two objectives: first to highlight the potential uses for PPARgamma agonists in anticancer therapy with special emphasis on their role when used as adjuvant or combined therapy in the treatment of hematological malignancies found in the vasculature, marrow, and eyes, and second, to review the potential role PPARgamma and/or its ligands may have in modulating cancer-associated angiogenesis and tumor-stromal microenvironment crosstalk in bone marrow.
Collapse
Affiliation(s)
- P. J. Simpson-Haidaris
- Department of Medicine/Hem-Onc Division, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. J. Pollock
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. Ramon
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - N. Guo
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - C. F. Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. E. Feldon
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - R. P. Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- The Lung Biology and Disease Program, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
18
|
Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model. J Control Release 2010; 144:2-9. [PMID: 20117157 DOI: 10.1016/j.jconrel.2010.01.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/25/2010] [Indexed: 11/22/2022]
Abstract
This study evaluated a biodegradable drug delivery system for local cancer radiotherapy consisting of a thermally sensitive elastin-like polypeptide (ELP) conjugated to a therapeutic radionuclide. Two ELPs (49 kDa) were synthesized using genetic engineering to test the hypothesis that injectable biopolymeric depots can retain radionuclides locally and reduce the growth of tumors. A thermally sensitive polypeptide, ELP(1), was designed to spontaneously undergo a soluble-insoluble phase transition (forming viscous microparticles) between room temperature and body temperature upon intratumoral injection, while ELP(2) was designed to remain soluble upon injection and to serve as a negative control for the effect of aggregate assembly. After intratumoral administration of radionuclide conjugates of ELPs into implanted tumor xenografts in nude mice, their retention within the tumor, spatio-temporal distribution, and therapeutic effect were quantified. The residence time of the radionuclide-ELP(1) in the tumor was significantly longer than the thermally insensitive ELP(2) conjugate. In addition, the thermal transition of ELP(1) significantly protected the conjugated radionuclide from dehalogenation, whereas the conjugated radionuclide on ELP(2) was quickly eliminated from the tumor and cleaved from the biopolymer. These attributes of the thermally sensitive ELP(1) depot improved the antitumor efficacy of iodine-131 compared to the soluble ELP(2) control. This novel injectable and biodegradable depot has the potential to control advanced-stage cancers by reducing the bulk of inoperable tumors, enabling surgical removal of de-bulked tumors, and preserving healthy tissues.
Collapse
|
19
|
Giaccia AJ, Schipani E. Role of carcinoma-associated fibroblasts and hypoxia in tumor progression. Curr Top Microbiol Immunol 2010; 345:31-45. [PMID: 20517716 DOI: 10.1007/82_2010_73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, a variety of experimental evidence has convincingly shown that progression of malignant tumors does not depend exclusively on cell-autonomous properties of the cancer cells, but can also be influenced by the tumor stroma. The concept that cancer cells are subjected to microenvironmental control has thus emerged as an important chapter in cancer biology. Recent findings have suggested an important role, in particular, for macrophages, endothelial cells, and cancer-associated fibroblasts (CAFs) in tumor growth and progression. Numerous lines of evidence indicate that the bone marrow is the source, at least in part, of these cells. This chapter summarizes our current knowledge of how bone marrow contributes to the tumor stroma, with particular emphasis on CAFs. The potential role of hypoxia in modulating the differentiation and activity of CAFs, and the therapeutical implications of targeting CAFs for anticancer therapy are discussed.
Collapse
Affiliation(s)
- Amato J Giaccia
- Department of Radiation Oncology, Division of Cancer and Radiation Biology, Stanford University School of Medicine, Stanford, CA 94305-5152, USA.
| | | |
Collapse
|