1
|
Xie W, Zhang Y, Xu J, Sun F, Zhu J, Que Y, Huang J, Zhen Z, Lu S, Wang J, Zhang Y. Characteristics, treatments, and outcomes of adolescents and adults with neuroblastoma: a retrospective study in China. Ther Adv Med Oncol 2025; 17:17588359251337494. [PMID: 40351327 PMCID: PMC12064894 DOI: 10.1177/17588359251337494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Background Neuroblastoma (NB) is rare in adolescents and adults, resulting in limited availability of data. Objectives We comprehensively investigated the characteristics, treatments, and outcomes of adolescent and adult patients with NB, aiming to provide a more in-depth insight into this disease. Design A retrospective, single-center study. Methods We retrieved and analyzed the medical data of patients with NB aged 10 years or older at diagnosis who were treated at Sun Yat-sen University Cancer Center between June 2005 and January 2024. Results Sixty-five patients (30 males and 35 females) were enrolled, with a median age of 20 years (interquartile range, 14-26 years), including 27 patients aged 10-18 years and 38 patients aged >18 years. Most patients were classified as M-stage disease (n = 40, 61.5%), high-risk (n = 42, 64.6%), and poorly differentiated NB (n = 27, 41.5%). Additionally, 3 (6.7%) patients had MYCN amplification, and 5 (25%) had ALK mutations. The genomic landscape revealed that mutations in the cell cycle and DNA repair pathways are related to chemotherapy sensitivity. After induction therapy, 34 (52.3%) patients achieved complete response (CR). The 5-year progression-free survival (PFS) and overall survival (OS) rates were 33.1% ± 6.9% and 55.1% ± 7.6%, respectively. Patients who achieved CR after induction therapy had superior PFS (p = 0.009), with 5-year PFS rates of 44.0% ± 10.6% compared to 18.5% ± 8.5% in non-CR patients. Conclusion Adolescent and adult patients with NB exhibit distinct characteristics, less chemotherapy sensitivity, and poorer outcomes compared to pediatric patients. Achieving CR after induction therapy is associated with better outcomes. Further investigation for new therapies is required.
Collapse
Affiliation(s)
- Weiji Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jiaqian Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Feifei Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jia Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yi Que
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Junting Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zijun Zhen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Suying Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Yuexiu District, Guangzhou City, Guangdong 510060, P.R. China
| | - Juan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Yuexiu District, Guangzhou City, Guangdong 510060, P.R. China
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Yuexiu District, Guangzhou City, Guangdong 510060, P.R. China
| |
Collapse
|
2
|
Mlakar V, Dupanloup I, Gonzales F, Papangelopoulou D, Ansari M, Gumy-Pause F. 17q Gain in Neuroblastoma: A Review of Clinical and Biological Implications. Cancers (Basel) 2024; 16:338. [PMID: 38254827 PMCID: PMC10814316 DOI: 10.3390/cancers16020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent extracranial solid childhood tumor. Despite advances in the understanding and treatment of this disease, the prognosis in cases of high-risk NB is still poor. 17q gain has been shown to be the most frequent genomic alteration in NB. However, the significance of this remains unclear because of its high frequency and association with other genetic modifications, particularly segmental chromosomal aberrations, 1p and 11q deletions, and MYCN amplification, all of which are also associated with a poor clinical prognosis. This work reviewed the evidence on the clinical and biological significance of 17q gain. It strongly supports the significance of 17q gain in the development of NB and its importance as a clinically relevant marker. However, it is crucial to distinguish between whole and partial chromosome 17q gains. The most important breakpoints appear to be at 17q12 and 17q21. The former distinguishes between whole and partial chromosome 17q gain; the latter is a site of IGF2BP1 and NME1 genes that appear to be the main oncogenes responsible for the functional effects of 17q gain.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
| | - Isabelle Dupanloup
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Fanny Gonzales
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Danai Papangelopoulou
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Passudetti V, De Leo L, Maselli F, Pellegrino R, Brindisino F. Tumour Hidden behind Thoracic Spine Pain: A Rare Case of Neuroblastoma in a Young Mother-A Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13448. [PMID: 36294024 PMCID: PMC9602929 DOI: 10.3390/ijerph192013448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common form of paediatric malignancy, responsible for up to 15% of cancer deaths in children, whereas in adults, its onset is a rarer event, despite being characterized by greater lethality. The purpose of this case report was to describe the clinical presentation, physical examination, and clinical decision-making process in a patient with Neuroblastoma mimicking thoracic spine pain of musculoskeletal origin. METHODS a thirty-two-year-old mother complained of thoracic spine pain on her left vertebral side and in her left periscapular muscles; her pain was constant, deep, and worse at night; she also experienced pain during physical exertion of her upper limbs; the patient also reported pain in her left breast. RESULTS the physiotherapist's anamnesis and physical examination led him to suspect the need for an extra-expertise pathology and to refer his patient to another medical specialist; the subsequent investigations revealed a poorly differentiated Neuroblastoma ALK + (IIC) in the posterior mediastinum on the left; the patient underwent surgery excision after 4 months. CONCLUSIONS differential screening should be a physiotherapist's fundamental skill in their patients' clinical management, especially in direct access cases; the physiotherapist has an ethical and moral duty to conduct differential screening, in order to rule out extra-expertise pathologies-both when patients self-refer for rehabilitation assessment, and when they are referred by other practitioners.
Collapse
Affiliation(s)
- Valerio Passudetti
- Department of Clinical Sciences and Translational Medicine, Medicine and Surgery School, University of Roma “Tor Vergata”, 00133 Rome, Italy
| | - Luca De Leo
- Check-Up Center Private Practice, 73020 Lecce, Italy
| | - Filippo Maselli
- Department of Human Neurosciences, University of Roma “Sapienza”, 00185 Rome, Italy
- Sovrintendenza Sanitaria Regionale Puglia INAIL, 70126 Bari, Italy
| | - Raffaello Pellegrino
- Antalgic Mini-Invasive and Rehab-Outpatients Unit, Department of Medicine and Science of Aging, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy or
| | - Fabrizio Brindisino
- Department of Medicine and Health Science “Vincenzo Tiberio”, University of Molise C/da Tappino c/o Cardarelli Hospital, 86100 Campobasso, Italy
| |
Collapse
|
4
|
Bartolucci D, Montemurro L, Raieli S, Lampis S, Pession A, Hrelia P, Tonelli R. MYCN Impact on High-Risk Neuroblastoma: From Diagnosis and Prognosis to Targeted Treatment. Cancers (Basel) 2022; 14:4421. [PMID: 36139583 PMCID: PMC9496712 DOI: 10.3390/cancers14184421] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Among childhood cancers, neuroblastoma is the most diffuse solid tumor and the deadliest in children. While to date, the pathology has become progressively manageable with a significant increase in 5-year survival for its less aggressive form, high-risk neuroblastoma (HR-NB) remains a major issue with poor outcome and little survivability of patients. The staging system has also been improved to better fit patient needs and to administer therapies in a more focused manner in consideration of pathology features. New and improved therapies have been developed; nevertheless, low efficacy and high toxicity remain a staple feature of current high-risk neuroblastoma treatment. For this reason, more specific procedures are required, and new therapeutic targets are also needed for a precise medicine approach. In this scenario, MYCN is certainly one of the most interesting targets. Indeed, MYCN is one of the most relevant hallmarks of HR-NB, and many studies has been carried out in recent years to discover potent and specific inhibitors to block its activities and any related oncogenic function. N-Myc protein has been considered an undruggable target for a long time. Thus, many new indirect and direct approaches have been discovered and preclinically evaluated for the interaction with MYCN and its pathways; a few of the most promising approaches are nearing clinical application for the investigation in HR-NB.
Collapse
Affiliation(s)
| | - Luca Montemurro
- Pediatric Oncology and Hematology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | | | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
Aravindan N, Subramanian K, Somasundaram DB, Herman TS, Aravindan S. MicroRNAs in neuroblastoma tumorigenesis, therapy resistance, and disease evolution. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1086-1105. [PMID: 31867575 PMCID: PMC6924638 DOI: 10.20517/cdr.2019.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) deriving from neural crest cells is the most common extra-cranial solid cancer at infancy. NB originates within the peripheral sympathetic ganglia in adrenal medulla and along the midline of the body. Clinically, NB exhibits significant heterogeneity stretching from spontaneous regression to rapid progression to therapy resistance. MicroRNAs (miRNAs, miRs) are small (19-22 nt in length) non-coding RNAs that regulate human gene expression at the post-transcriptional level and are known to regulate cellular signaling, growth, differentiation, death, stemness, and maintenance. Consequently, the function of miRs in tumorigenesis, progression and resistance is of utmost importance for the understanding of dysfunctional cellular pathways that lead to disease evolution, therapy resistance, and poor clinical outcomes. Over the last two decades, much attention has been devoted to understanding the functional roles of miRs in NB biology. This review focuses on highlighting the important implications of miRs within the context of NB disease progression, particularly miRs’ influences on NB disease evolution and therapy resistance. In this review, we discuss the functions of both the “oncomiRs” and “tumor suppressor miRs” in NB progression/therapy resistance. These are the critical components to be considered during the development of novel miR-based therapeutic strategies to counter therapy resistance.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karthikeyan Subramanian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
6
|
Duan K, Dickson BC, Marrano P, Thorner PS, Chung CT. Adult‐onset neuroblastoma: Report of seven cases with molecular genetic characterization. Genes Chromosomes Cancer 2019; 59:240-248. [DOI: 10.1002/gcc.22826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kai Duan
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Pathology and Laboratory Medicine Mount Sinai Hospital Toronto Ontario Canada
| | - Paula Marrano
- Division of Pathology The Hospital for Sick Children Toronto Ontario Canada
| | - Paul S. Thorner
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Division of Pathology The Hospital for Sick Children Toronto Ontario Canada
| | - Catherine T. Chung
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Division of Pathology The Hospital for Sick Children Toronto Ontario Canada
| |
Collapse
|
7
|
Neuroblastoma in Adolescents and Children Older than 10 Years: Unusual Clinicopathologic and Biologic Features. J Pediatr Hematol Oncol 2019; 41:586-595. [PMID: 30973487 DOI: 10.1097/mph.0000000000001485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuroblastoma (NB) in children older than 10 years is rare. We reviewed our archives for patients with NB aged 10 to 18 years and summarized their clinicopathologic/genetic records. Of 96 patients, 4 patients were identified in this age group. Four tumors were abdominal; 1 patient had 2 tumors at diagnosis, one of which was presacral. Tumor sizes ranged from 3 to 20 cm. All tumors were high risk at clinical stages 3 and 4, with metastasis to bone marrow and other areas. Four tumors were poorly differentiated with unfavorable histology and one patient with bilateral adrenal disease had an intermixed ganglioneuroblastoma on one side. Another tumor exhibited pheochromocytoma-like morphology. MYCN amplification was present in bone marrow metastasis in one case. Complex chromosomal gains and 19p deletions were common. Exome sequencing revealed ALK variants in 2 cases and previously unreported MAGI2, RUNX1, and MLL mutations. All patients received standard chemotherapy and 2 patients received ALK-targeted trial therapy. Three patients died of disease, ranging 18 to 23 months after diagnosis. One patient has active disease and is receiving trial therapy. In conclusion, NB in children older than 10 years may exhibit unusual clinicopathologic and genetic features with large tumors, bilateral adrenal disease, rare morphologic features, complex DNA microarray findings and novel mutations. Patients often have grim prognoses despite genomic profiling-guided targeted therapy.
Collapse
|
8
|
Clinical Features of Neuroblastoma With 11q Deletion: An Increase in Relapse Probabilities In Localized And 4S Stages. Sci Rep 2019; 9:13806. [PMID: 31551474 PMCID: PMC6760233 DOI: 10.1038/s41598-019-50327-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023] Open
Abstract
Neuroblastoma (NB) is a heterogeneous tumor with an extremely diverse prognosis according to clinical and genetic factors, such as the presence of an 11q deletion (11q-del). A multicentric study using data from a national neuroblastic tumor database was conducted. This study compared the most important features of NB patients: presence of 11q-del, presence of MYCN amplification (MNA) and remaining cases. A total of 357 patients were followed throughout an 8-year period. 11q-del was found in sixty cases (17%). 11q-del tumors were diagnosed at an older age (median 3.29 years). Overall survival (OS) was lower in 11q-del patients (60% at 5 years), compared to all other cases (76% at 5 years) p = 0.014. Event free survival (EFS) was 35% after 5 years, which is a low number when compared with the remaining cases: 75% after 5 years (p < 0.001). Localized tumors with 11q-del have a higher risk of relapse (HR = 3.312) such as 4 s 11q-del patients (HR 7.581). 11q-del in NB is a dismal prognostic factor. Its presence predicts a bad outcome and increases relapse probability, specially in localized stages and 4 s stages. The presence of 11q aberration should be taken into consideration when stratifying neuroblastoma risk groups.
Collapse
|
9
|
Kaestner J, Schlodder D, Preussler C, Gruhn B. Supportive mistletoe therapy in a patient with metastasised neuroblastoma. BMJ Case Rep 2019; 12:12/3/e227652. [PMID: 30936335 PMCID: PMC6453412 DOI: 10.1136/bcr-2018-227652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Therapies of complementary and alternative medicine (CAM) are used increasingly in paediatric oncology. We present and discuss the influence of supportive mistletoe therapy on factors, such as quality of life, physical ability and performance, and course of disease based on the case of a female patient diagnosed at age 18 with metastasised neuroblastoma, which responded insufficiently to chemotherapy.
Collapse
Affiliation(s)
- Jens Kaestner
- Klinik für Kinder- und Jugendmedizin, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | | | | - Bernd Gruhn
- Klinik für Kinder- und Jugendmedizin, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
10
|
Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells. Anticancer Drugs 2017; 28:469-479. [PMID: 28240680 DOI: 10.1097/cad.0000000000000478] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroblastoma is one of the most common cancers in infancy, arising from the neuroblasts during embryonic development. This cancer is difficult to treat and resistance to chemotherapy is often found; therefore, clinical trials of novel therapeutic approaches, such as targeted-cancer signaling, could be an alternative for a better treatment. WNT signaling plays significant roles in the survival, proliferation, and differentiation of human neuroblastoma. In this report, WNT signaling of a malignant human neuroblastoma cell line, SH-SY5Y cells, was inhibited by XAV939, a specific inhibitor of the Tankyrase enzyme. XAV939 treatment led to the reduction of β-catenin within the cells, confirming its inhibitory effect of WNT. The inhibition of WNT signaling by XAV939 did not affect cell morphology, survival, and proliferation; however, the differentiation and sensitivity to anticancer drugs of human neuroblastoma cells were altered. The treatment of XAV939 resulted in the downregulation of mature neuronal markers, including β-tubulin III, PHOX2A, and PHOX2B, whereas neural progenitor markers (PAX6, TFAP2α, and SLUG) were upregulated. In addition, the combination of XAV939 significantly enhanced the sensitivity of SH-SY5Y and IMR-32 cells to doxorubicin in both 2D and 3D culture systems. Microarray gene expression profiling suggested numbers of candidate target genes of WNT inhibition by XAV939, in particular, p21, p53, ubiquitin C, ZBED8, MDM2, CASP3, and FZD1, and this explained the enhanced sensitivity of SH-SY5Y cells to doxorubicin. Altogether, these results proposed that the altered differentiation of human malignant neuroblastoma cells by inhibiting WNT signaling sensitized the cells to anticancer drugs. This approach could thus serve as an effective treatment option for aggressive brain malignancy.
Collapse
|
11
|
Rosswog C, Schmidt R, Oberthuer A, Juraeva D, Brors B, Engesser A, Kahlert Y, Volland R, Bartenhagen C, Simon T, Berthold F, Hero B, Faldum A, Fischer M. Molecular Classification Substitutes for the Prognostic Variables Stage, Age, and MYCN Status in Neuroblastoma Risk Assessment. Neoplasia 2017; 19:982-990. [PMID: 29091799 PMCID: PMC5678736 DOI: 10.1016/j.neo.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND: Current risk stratification systems for neuroblastoma patients consider clinical, histopathological, and genetic variables, and additional prognostic markers have been proposed in recent years. We here sought to select highly informative covariates in a multistep strategy based on consecutive Cox regression models, resulting in a risk score that integrates hazard ratios of prognostic variables. METHODS: A cohort of 695 neuroblastoma patients was divided into a discovery set (n = 75) for multigene predictor generation, a training set (n = 411) for risk score development, and a validation set (n = 209). Relevant prognostic variables were identified by stepwise multivariable L1-penalized least absolute shrinkage and selection operator (LASSO) Cox regression, followed by backward selection in multivariable Cox regression, and then integrated into a novel risk score. RESULTS: The variables stage, age, MYCN status, and two multigene predictors, NB-th24 and NB-th44, were selected as independent prognostic markers by LASSO Cox regression analysis. Following backward selection, only the multigene predictors were retained in the final model. Integration of these classifiers in a risk scoring system distinguished three patient subgroups that differed substantially in their outcome. The scoring system discriminated patients with diverging outcome in the validation cohort (5-year event-free survival, 84.9 ± 3.4 vs 63.6 ± 14.5 vs 31.0 ± 5.4; P < .001), and its prognostic value was validated by multivariable analysis. CONCLUSION: We here propose a translational strategy for developing risk assessment systems based on hazard ratios of relevant prognostic variables. Our final neuroblastoma risk score comprised two multigene predictors only, supporting the notion that molecular properties of the tumor cells strongly impact clinical courses of neuroblastoma patients.
Collapse
Affiliation(s)
- Carolina Rosswog
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Rene Schmidt
- Institute of Biostatistics and Clinical Research, University of Muenster, Schmeddingstrasse 56, 48149 Münster, Germany
| | - André Oberthuer
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Dilafruz Juraeva
- Department of Applied Bioinformatics, German Cancer Research Center, Berliner Strasse 41, 69120 Heidelberg, Germany
| | - Benedikt Brors
- Department of Applied Bioinformatics, German Cancer Research Center, Berliner Strasse 41, 69120 Heidelberg, Germany
| | - Anne Engesser
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Yvonne Kahlert
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Ruth Volland
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Frank Berthold
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Andreas Faldum
- Institute of Biostatistics and Clinical Research, University of Muenster, Schmeddingstrasse 56, 48149 Münster, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany.
| |
Collapse
|
12
|
Mlakar V, Jurkovic Mlakar S, Lopez G, Maris JM, Ansari M, Gumy-Pause F. 11q deletion in neuroblastoma: a review of biological and clinical implications. Mol Cancer 2017; 16:114. [PMID: 28662712 PMCID: PMC5492892 DOI: 10.1186/s12943-017-0686-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Deletion of the long arm of chromosome 11 (11q deletion) is one of the most frequent events that occur during the development of aggressive neuroblastoma. Clinically, 11q deletion is associated with higher disease stage and decreased survival probability. During the last 25 years, extensive efforts have been invested to identify the precise frequency of 11q aberrations in neuroblastoma, the recurrently involved genes, and to understand the molecular mechanisms of 11q deletion, but definitive answers are still unclear. In this review, it is our intent to compile and review the evidence acquired to date on 11q deletion in neuroblastoma.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Ansari
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland.,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland. .,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland.
| |
Collapse
|
13
|
Escherich G, Bielack S, Maier S, Braungart R, Brümmendorf TH, Freund M, Grosse R, Hoferer A, Kampschulte R, Koch B, Lauten M, Milani V, Ross H, Schilling F, Wöhrle D, Cario H, Dirksen U. Building a National Framework for Adolescent and Young Adult Hematology and Oncology and Transition from Pediatric to Adult Care: Report of the Inaugural Meeting of the “AjET” Working Group of the German Society for Pediatric Oncology and Hematology. J Adolesc Young Adult Oncol 2017; 6:194-199. [DOI: 10.1089/jayao.2016.0075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Gabriele Escherich
- University Medical Centre Eppendorf, Clinic of Pediatric Hematology and Oncology, Hamburg, Germany
| | - Stefan Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Center, Stuttgart, Germany
| | - Stephan Maier
- Katharinenhöhe, Rehabilitationsklinik GmbH, Schönwald, Germany
| | - Ralf Braungart
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Center, Stuttgart, Germany
| | - Tim H. Brümmendorf
- Department of Hematology and Oncology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Mathias Freund
- Deutsche Stiftung für Junge Erwachsene mit Krebs, Berlin, Germany
| | - Regine Grosse
- University Medical Centre Eppendorf, Clinic of Pediatric Hematology and Oncology, Hamburg, Germany
| | - Anette Hoferer
- Haematology/Oncology Department for Adolescent Medicine, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Rebecca Kampschulte
- Netzwerk für die Versorgung Schwerkranker Kinder und Jugendlicher e.V., Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Barbara Koch
- University Medical Centre Eppendorf, Clinic of Pediatric Hematology and Oncology, Hamburg, Germany
| | - Melchior Lauten
- Department of Pediatrics, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Valeria Milani
- MVZ Facharztzentrum Fürstenfeldbruck, Fürstenfeldbruck, Germany
| | - Henning Ross
- Katharinenhöhe, Rehabilitationsklinik GmbH, Schönwald, Germany
| | - Freimut Schilling
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Center, Stuttgart, Germany
| | - Dieter Wöhrle
- Jugend & Zukunft Berufliche Beratung für Junge Menschen mit Krebserkrankung, München, Germany
| | - Holger Cario
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Uta Dirksen
- University Hospital Muenster, Westfalian Wilhelms University Muenster, Muenster, Germany
| |
Collapse
|
14
|
Bi S, Wang C, Li Y, Zhang W, Zhang J, Lv Z, Wang J. LncRNA-MALAT1-mediated Axl promotes cell invasion and migration in human neuroblastoma. Tumour Biol 2017; 39:1010428317699796. [PMID: 28468579 DOI: 10.1177/1010428317699796] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overexpression of Axl has been noted to correlate with several human cancers. However, the regulatory mechanisms and effects of Axl in human neuroblastoma development remain unclear. Here, we explore the expression of Axl in neurobalstoma and related upstream regulatory mechanisms of invasion and migration. We found that Axl was overexpressed in metastatic neuroblastoma tissues and positively associated with long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1. Meanwhile, our data suggested that metastasis-associated lung adenocarcinoma transcript 1 upregulated Axl expression in neuroblastoma cells, resulting in cell invasion and migration. Furthermore, we found that targeting Axl by inhibitor R428 significantly suppressed the abilities of tumor cell invasion and migration. In summary, these results suggested that Axl, which is regulated by long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1, may exert great influence on invasion and migration of neuroblastoma.
Collapse
Affiliation(s)
- Shaojie Bi
- 1 Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Chunyan Wang
- 2 Department of Emergency Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Yixin Li
- 3 Department of Medical Imaging, The Second Hospital of Shandong University, Jinan, China
| | - Wei Zhang
- 1 Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Juan Zhang
- 1 Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Zhaopeng Lv
- 1 Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Junxia Wang
- 4 Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
15
|
Mazzocco K, Defferrari R, Sementa AR, Garaventa A, Longo L, De Mariano M, Esposito MR, Negri F, Ircolò D, Viscardi E, Luksch R, D'Angelo P, Prete A, Castellano A, Massirio P, Erminio G, Gigliotti AR, Tonini GP, Conte M. Genetic abnormalities in adolescents and young adults with neuroblastoma: A report from the Italian Neuroblastoma group. Pediatr Blood Cancer 2015; 62:1725-32. [PMID: 25925003 DOI: 10.1002/pbc.25552] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Less than 5% of neuroblastomas (NB) occur in adolescents and young adults (AYA), in whom the disease has an indolent and fatal course. PROCEDURE We studied the genomic profile and histological characteristics of 34 NBs from AYA patients enrolled in the Italian Neuroblastoma Registry (INBR) between 1979 and 2009. RESULTS Disease was disseminated in 20 patients and localized in 14; 30/34 tumors were classified as NB and 4/34 as nodular ganglioneuroblastoma (nGNB). Segmental Chromosome Aberrations (SCAs) were observed in 29 tumors (85%) namely 1p imbalance (58%), 17q gain (52%), 9p loss (32%), 11q loss (30%), 1q gain (17%), 7q gain (17%), 2p gain (14%), 3p loss (14%), and 4p loss (7%). MYCN amplification and MYCN gain were detected in 3 (10%) and 2 cases (7%) respectively. An anaplastic lymphoma receptor tyrosine kinase (ALK) gene mutation study on the available cases from this cohort revealed 4/25 (16%) mutated cases. In parallel, alpha thalassaemia/mental retardation syndrome X linked (ATRX) gene mutations were also sought, a novel mutation being detected in 1/21 (4,7%) cases. CONCLUSION This study confirmed the low incidence of MYCN amplification in AYA and recorded a high frequency of 17q gain and 9p and 11q loss independently from the stage of the disease. The presence of 1q gain, which identifies patients with particularly aggressive disease, relapse and poor survival, was also detected. Furthermore, the frequency of ALK mutations suggests that a target-based therapy with ALK inhibitors might be effective in this subset of patients.
Collapse
Affiliation(s)
- Katia Mazzocco
- Department of Pathology, Istituto Giannina Gaslini, Genova, Italy
| | | | | | - Alberto Garaventa
- Department of Hematology-Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - Luca Longo
- U.O.C. Bioterapie IRCSS A.O.U. San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Marilena De Mariano
- U.O.C. Bioterapie IRCSS A.O.U. San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Maria Rosaria Esposito
- Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padova, Pediatric Research Institute, Fondazione Città della Speranza, Padova, Italy
| | - Francesca Negri
- Department of Pathology, Istituto Giannina Gaslini, Genova, Italy
| | - Davide Ircolò
- Department of Pathology, Istituto Giannina Gaslini, Genova, Italy
| | | | - Roberto Luksch
- Department of Pediatric Oncology, National Cancer Institute, Milano, Italy
| | - Paolo D'Angelo
- Department of Pediatric Hematology and Oncology, ARNAS Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", University of Bologna Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Aurora Castellano
- Department of Pediatric Hematology-Oncology, IRCCS, Ospedale Bambino Gesù, Rome, Italy
| | - Paolo Massirio
- Department of Hematology-Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Erminio
- Department of Epidemiology and Biostatistics, Istituto Giannina Gaslini, Genova, Italy
| | | | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padova, Pediatric Research Institute, Fondazione Città della Speranza, Padova, Italy
| | - Massimo Conte
- Department of Hematology-Oncology, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
16
|
Berbegall AP, Villamón E, Tadeo I, Martinsson T, Cañete A, Castel V, Navarro S, Noguera R. Neuroblastoma after childhood: prognostic relevance of segmental chromosome aberrations, ATRX protein status, and immune cell infiltration. Neoplasia 2015; 16:471-80. [PMID: 25077701 PMCID: PMC4198743 DOI: 10.1016/j.neo.2014.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma (NB) is a common malignancy in children but rarely occurs during adolescence or adulthood. This subgroup is characterized by an indolent disease course, almost uniformly fatal, yet little is known about the biologic characteristics. The aim of this study was to identify differential features regarding DNA copy number alterations, α-thalassemia/mental retardation syndrome X-linked (ATRX) protein expression, and the presence of tumor-associated inflammatory cells. Thirty-one NB patients older than 10 years who were included in the Spanish NB Registry were considered for the current study; seven young and middle-aged adult patients (range 18-60 years) formed part of the cohort. We performed single nucleotide polymorphism arrays, immunohistochemistry for immune markers (CD4, CD8, CD20, CD11b, CD11c, and CD68), and ATRX protein expression. Assorted genetic profiles were found with a predominant presence of a segmental chromosome aberration (SCA) profile. Preadolescent and adolescent NB tumors showed a higher number of SCA, including 17q gain and 11q deletion. There was also a marked infiltration of immune cells, mainly high and heterogeneous, in young and middle-aged adult tumors. ATRX negative expression was present in the tumors. The characteristics of preadolescent, adolescent, young adult, and middle-aged adult NB tumors are different, not only from childhood NB tumors but also from each other. Similar examinations of a larger number of such tumor tissues from cooperative groups should lead to a better older age–dependent tumor pattern and to innovative, individual risk-adapted therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Ana P Berbegall
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain; Medical Research Foundation INCLIVA, Hospital Clínico, INCLIVA, Valencia, Spain
| | - Eva Villamón
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain
| | - Irene Tadeo
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain; Medical Research Foundation INCLIVA, Hospital Clínico, INCLIVA, Valencia, Spain
| | - Tommy Martinsson
- Department of Clinical Genetics, Göteborg University, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adela Cañete
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Samuel Navarro
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain
| | - Rosa Noguera
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
17
|
Inhibition of Mer and Axl receptor tyrosine kinases leads to increased apoptosis and improved chemosensitivity in human neuroblastoma. Biochem Biophys Res Commun 2015; 457:461-6. [PMID: 25596315 DOI: 10.1016/j.bbrc.2015.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/07/2015] [Indexed: 11/22/2022]
Abstract
Ectopic expression of Mer and Axl receptor tyrosine kinases (RTKs) are frequently found in various cancers as known to promote oncogenesis by activating antiapoptotic signaling pathways. However, the roles of these receptors in neuroblastoma remain unclear. We found Mer and Axl was co-expressed in neuroblastoma patient samples and cell lines. Ligand-dependent Mer or Axl activation led to an increase in phosphorylated ERK1/2, AKT and FAK indicating roles for these RTKs in multiple oncogenic processes. Furthermore, Mer and Axl knockdown led to apoptosis and inhibition of migration as well as a significant increase in chemosensitivity in response to cisplatin and vincristine treatment. Taken together, our results demonstrated that inhibition of Mer and Axl improved apoptotic response and chemosensitivity in neuroblastoma, providing new insights into development of novel therapeutic strategies by targeting these oncogenes.
Collapse
|
18
|
Abstract
BACKGROUND Neuroblastoma in the adult is rare. No established therapeutic guidelines exist for these patients and the literature on this issue is scant and contradictory. MATERIALS AND METHODS Between 1986 and 2011, 21 adults (18 to 38 y; median, 23) diagnosed with neuroblastoma were referred to our hospital. Three of the 21 were classified as neuroblastoma, not otherwise specified, 13 as neuroblastoma, schwannian stroma-poor, and 5 as ganglioneuroblastoma, nodular. Nine patients had a resectable (stage 1/2) and 6 an unresectable primary tumor (stage 3); 6 had disseminated disease (stage 4). RESULTS Of 9 stage 1/2 patients, 6 underwent surgery alone (2 survive, 4 died), 2 received adjuvant chemotherapy (both survive), and 1 received radiation therapy (alive). Four of the 6 stage 3 patients received chemotherapy and died, 1 underwent partial tumor resection only and died, and 1 received radiation therapy after partial tumor resection and is alive. The 6 stage 4 patients received chemotherapy with/without radiotherapy, and all died. Event-free survival at 10 years was 33.3% for stage 1/2, 16.7% for stage 3, and 0% for stage 4 patients. The 10-year overall and event-free survival rates were 39.8% and 19.1%, respectively. CONCLUSIONS The outcome of neuroblastoma in adults is poorer than in younger patients at all stages. The clinical course seems modestly influenced by therapy.
Collapse
|
19
|
Mossé YP, Deyell RJ, Berthold F, Nagakawara A, Ambros PF, Monclair T, Cohn SL, Pearson AD, London WB, Matthay KK. Neuroblastoma in older children, adolescents and young adults: a report from the International Neuroblastoma Risk Group project. Pediatr Blood Cancer 2014; 61:627-35. [PMID: 24038992 DOI: 10.1002/pbc.24777] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Neuroblastoma in older children and adolescents has a distinctive, indolent phenotype, but little is known about the clinical and biological characteristics that distinguish this rare subgroup. Our goal was to determine if an optimal age cut-off exists that defines indolent disease and if accepted prognostic factors and treatment approaches are applicable to older children. PROCEDURE Using data from the International Neuroblastoma Risk Group, among patients ≥18 months old (n = 4,027), monthly age cut-offs were tested to determine the effect of age on survival. The prognostic effect of baseline characteristics and autologous hematopoietic cell transplant (AHCT) for advanced disease was assessed within two age cohorts; ≥5 to <10 years (n = 730) and ≥10 years (n = 200). RESULTS Older age was prognostic of poor survival, with outcome gradually worsening with increasing age at diagnosis, without statistical evidence for an optimal age cut-off beyond 18 months. Among patients ≥5 years, factors significantly prognostic of lower event-free survival (EFS) and overall survival (OS) in multivariable analyses were INSS stage 4, MYCN amplification and unfavorable INPC histology classification. Among stage 4 patients, AHCT provided a significant EFS and OS benefit. Following relapse, patients in both older cohorts had prolonged OS compared to those ≥18 months to <5 years (P < 0.0001). CONCLUSIONS Despite indolent disease and infrequent MYCN amplification, older children with advanced disease have poor survival, without evidence for a specific age cut-off. Our data suggest that AHCT may provide a survival benefit in older children with advanced disease. Novel therapeutic approaches are required to more effectively treat these patients.
Collapse
Affiliation(s)
- Yaël P Mossé
- Division of Oncology, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wei JS, Johansson P, Chen L, Song YK, Tolman C, Li S, Hurd L, Patidar R, Wen X, Badgett TC, Cheuk ATC, Marshall JC, Steeg PS, Vaqué Díez JP, Yu Y, Gutkind JS, Khan J. Massively parallel sequencing reveals an accumulation of de novo mutations and an activating mutation of LPAR1 in a patient with metastatic neuroblastoma. PLoS One 2013; 8:e77731. [PMID: 24147068 PMCID: PMC3797724 DOI: 10.1371/journal.pone.0077731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 09/04/2013] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is one of the most genomically heterogeneous childhood malignances studied to date, and the molecular events that occur during the course of the disease are not fully understood. Genomic studies in neuroblastoma have showed only a few recurrent mutations and a low somatic mutation burden. However, none of these studies has examined the mutations arising during the course of disease, nor have they systemically examined the expression of mutant genes. Here we performed genomic analyses on tumors taken during a 3.5 years disease course from a neuroblastoma patient (bone marrow biopsy at diagnosis, adrenal primary tumor taken at surgical resection, and a liver metastasis at autopsy). Whole genome sequencing of the index liver metastasis identified 44 non-synonymous somatic mutations in 42 genes (0.85 mutation/MB) and a large hemizygous deletion in the ATRX gene which has been recently reported in neuroblastoma. Of these 45 somatic alterations, 15 were also detected in the primary tumor and bone marrow biopsy, while the other 30 were unique to the index tumor, indicating accumulation of de novo mutations during therapy. Furthermore, transcriptome sequencing on the 3 tumors demonstrated only 3 out of the 15 commonly mutated genes (LPAR1, GATA2, and NUFIP1) had high level of expression of the mutant alleles, suggesting potential oncogenic driver roles of these mutated genes. Among them, the druggable G-protein coupled receptor LPAR1 was highly expressed in all tumors. Cells expressing the LPAR1 R163W mutant demonstrated a significantly increased motility through elevated Rho signaling, but had no effect on growth. Therefore, this study highlights the need for multiple biopsies and sequencing during progression of a cancer and combinatorial DNA and RNA sequencing approach for systematic identification of expressed driver mutations.
Collapse
Affiliation(s)
- Jun S. Wei
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: ; (JK)
| | - Peter Johansson
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Li Chen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Young K. Song
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Catherine Tolman
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Samuel Li
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Laura Hurd
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rajesh Patidar
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xinyu Wen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
- The Advanced Biomedical Computing Center, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Frederick, Maryland, United States of America
| | - Thomas C. Badgett
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Adam T. C. Cheuk
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jean-Claude Marshall
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Patricia S. Steeg
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - José P. Vaqué Díez
- Cell Growth Regulation Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Yanlin Yu
- Cancer Modeling Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - J. Silvio Gutkind
- Cell Growth Regulation Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: ; (JK)
| |
Collapse
|
21
|
Current and future strategies for relapsed neuroblastoma: challenges on the road to precision therapy. J Pediatr Hematol Oncol 2013; 35:337-47. [PMID: 23703550 DOI: 10.1097/mph.0b013e318299d637] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
More than half of the patients with high-risk neuroblastoma (NB) will relapse despite intensive multimodal therapy, with an additional 10% to 20% refractory to induction chemotherapy. Management of these patients is challenging, given disease heterogeneity, resistance, and organ toxicity including poor hematological reserve. This review will discuss the current treatment options and consider novel therapies on the horizon. Cytotoxic chemotherapy regimens for relapse and refractory NB typically center on the use of the camptothecins, topotecan and irinotecan, in combination with agents such as cyclophosphamide and temozolomide, with objective responses but poor long-term survival. I-meta-iodobenzylguanidine therapy is also effective for relapsed patients with meta-iodobenzylguanidine-avid disease, with objective responses in a third of cases. Immunotherapy with anti-GD2 has recently been incorporated into upfront therapy, but its role in the relapse setting remains uncertain, especially for patients with bulky disease. Future cell-based immunotherapies and other approaches may be able to overcome this limitation. Finally, many novel molecularly targeted agents are in development, some of which show specific promise for NB. Successful incorporation of these agents will require combinations with conventional cytotoxic chemotherapies, as well as the development of predictive biomarkers, to ultimately personalize approaches to patients with "targetable" molecular abnormalities.
Collapse
|
22
|
Abstract
INTRODUCTION Neuroblastoma accounts for 8 - 10% of pediatric cancers and is responsible for 15% of childhood cancer deaths. Despite multimodality treatment, the overall survival (OS) and event-free survival (EFS) in high-risk patients remain suboptimal. More than half of children diagnosed with high-risk neuroblastoma either do not respond to conventional therapies or relapse after treatment. AREAS COVERED This review discusses about the unmet medical needs for new therapeutic options against high-risk neuroblastoma. New drugs and therapeutic strategies that are under development in clinical trials, which are currently recruiting patients. EXPERT OPINION There is a need to improve the response rate of induction chemotherapy, which is not effective in a third of patients and also the other components of the current treatment, little efficacious in avoiding the relapses. Few drugs have been introduced as upfront therapy in the last years. Topotecan, irinotecan and temozolomide are expected to improve the response in high-risk neuroblastoma, but their impact on OS and EFS is unknown. Anti-GD2 antibodies combined with other immunomodulators (IL-2, GM-CSF) are an important advance in the treatment of these children. Nevertheless, the hope is put in the new drugs directed to molecular targets of neuroblastoma. Anti-angiogenic drugs, ALK antagonist and PI3K/Akt/mTOR inhibitors are among the most promising.
Collapse
Affiliation(s)
- Victoria Castel
- Unidad de Oncología Pediátrica, Hospital Universitario y Politécnico La Fe, Torre G, 2° Planta, Bulevar Sur s/n, 46026 Valencia, Spain.
| | | | | |
Collapse
|
23
|
Papadopoulos EK, Fountas KN, Brotis AG, Paterakis KN. A supratentorial primitive neuroectodermal tumor presenting with intracranial hemorrhage in a 42-year-old man: a case report and review of the literature. J Med Case Rep 2013; 7:86. [PMID: 23537064 PMCID: PMC3623814 DOI: 10.1186/1752-1947-7-86] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/28/2013] [Indexed: 11/27/2022] Open
Abstract
Introduction We report on a very rare case of a supratentorial primitive neuroectodermal tumor in an adult, which presented with intracerebral hemorrhage, and review the relevant medical literature. Case presentation A 42-year-old Caucasian man complained of a sudden headache and nausea-vomiting. The patient rapidly deteriorated to coma. An emergency computed tomography scan showed an extensive intraparenchymal hemorrhage that caused significant mass effect and tonsilar herniation. During surgery, an increased intracranial pressure was recorded and extensive bilateral decompressive craniectomies were performed. A cherry-like intraparenchymal lesion was found in his right frontal lobe and resected. The patient died in the intensive care unit after approximately 48 hours. The resected lesion was identified as a central nervous system primitive neuroectodermal tumor. Conclusion Supratentorial primitive neuroectodermal tumors must be considered in the differential diagnosis of space-occupying lesions in adults. Spontaneous supratentorial hemorrhage due to primitive neuroectodermal tumors is an extremely rare but potentially lethal event.
Collapse
Affiliation(s)
- Evangelos K Papadopoulos
- Department of Neurosurgery, University Hospital of Larissa, School of Medicine, University of Thessaly, Building A, 3rd Floor, Biopolis, Larisa, 41110, Greece.
| | | | | | | |
Collapse
|
24
|
Gains J, Mandeville H, Cork N, Brock P, Gaze M. Ten challenges in the management of neuroblastoma. Future Oncol 2013; 8:839-58. [PMID: 22830404 DOI: 10.2217/fon.12.70] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Neuroblastoma is a complex disease with many contradictions and challenges. It is, by and large, a cancer of babies and preschool children, but it does occur, albeit increasingly rarely, in older children, adolescents and young adults. The prognosis is very variable, with outcome related to age, stage and molecular pathology. Neuroblastoma may behave in an almost benign way, with spontaneous regression in some infants, but the majority of older patients have high-risk disease, which is usually fatal, despite best current treatments. As a rare disease, international collaboration is essential to run clinical trials of adequate statistical power to answer important questions in a reasonable time frame. High-risk disease requires multimodality therapy including chemotherapy, surgery and radiotherapy as well as biological and immunological treatments for optimal outcomes. Innovative treatment approaches, sometimes associated with appreciable toxicity, offer hope for the future but, despite parental wishes, cannot be generally implemented without adequate assessment in clinical trials.
Collapse
Affiliation(s)
- Jennifer Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK
| | | | | | | | | |
Collapse
|
25
|
Jeison M, Yaniv I, Ash S. Genetic stratification of neuroblastoma for treatment tailoring. Future Oncol 2012; 7:1087-99. [PMID: 21919696 DOI: 10.2217/fon.11.87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is the most common extracranial tumor of childhood. The clinical behavior is variable, ranging from spontaneous regression to fatal progression despite aggressive therapy. The most highly statistically significant and clinically relevant factors that are currently used for classification include stage, age, histopathologic category, MYCN oncogene status, chromosome 11q status and DNA ploidy. These genetic markers were analyzed separately by classical methods until recently: mainly fluorescence in situ hybridization or loss of heterozygosity. The development of genome-wide techniques such as comparative genomic hybridization, array comparative genomic hybridization and single nucleotide polymorphism allows the analysis of copy number variations through the whole genome in one step. This enabled the investigators to refine different genetic subtypes for the better comprehension of neuroblastoma tumor behavior and reach the conclusion that these data together with a genomic profile based on gene expression should be included in future treatment stratification.
Collapse
Affiliation(s)
- Marta Jeison
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | |
Collapse
|