1
|
Nakamori A, Tsuyoshi H, Tsujikawa T, Orisaka M, Kurokawa T, Yoshida Y. Evaluation of calcification distribution by CT-based textural analysis for discrimination of immature teratoma. J Ovarian Res 2023; 16:179. [PMID: 37635241 PMCID: PMC10464244 DOI: 10.1186/s13048-023-01268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Mature and immature teratomas are differentiated based on tumor markers and calcification or fat distribution. However, no study has objectively quantified the differences in calcification and fat distributions between these tumors. This study aimed to evaluate the diagnostic potential of CT-based textural analysis in differentiating between mature and immature teratomas in patients aged < 20 years. MATERIALS AND METHODS Thirty-two patients with pathologically proven mature cystic (n = 28) and immature teratomas (n = 4) underwent transabdominal ultrasound and/or abdominal and pelvic CT before surgery. The diagnostic performance of CT for assessing imaging features, including subjective manual measurement and objective textural analysis of fat and calcification distributions in the tumors, was evaluated by two experienced readers. The histopathological results were used as the gold standard. The Mann-Whitney U test was used for statistical analysis. RESULTS We evaluated 32 patients (mean age, 14.5 years; age range, 6-19 years). The mean maximum diameter and number of calcifications of immature teratomas were significantly larger than those of mature cystic teratomas (p < 0.01). The mean number of fats of immature teratomas was significantly larger than that of mature cystic teratomas (p < 0.01); however, no significant difference in the maximum diameter of fats was observed. CT textural features for calcification distribution in the tumors showed that mature cystic teratomas had higher homogeneity and energy than immature teratomas. However, immature teratomas showed higher correlation, entropy, and dissimilarity than mature cystic teratomas among features derived from the gray-level co-occurrence matrix (GLCM) (p < 0.05). No significant differences were observed in the CT features of fats derived from GLCM. CONCLUSION Our results demonstrate that calcification distribution on CT is a potential diagnostic biomarker to discriminate mature from immature teratomas, thus enabling optimal therapeutic selection for patients aged < 20 years.
Collapse
Affiliation(s)
- Akari Nakamori
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Makoto Orisaka
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Tetsuji Kurokawa
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| |
Collapse
|
2
|
Dai J, Wang H, Xu Y, Chen X, Tian R. Clinical application of AI-based PET images in oncological patients. Semin Cancer Biol 2023; 91:124-142. [PMID: 36906112 DOI: 10.1016/j.semcancer.2023.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Based on the advantages of revealing the functional status and molecular expression of tumor cells, positron emission tomography (PET) imaging has been performed in numerous types of malignant diseases for diagnosis and monitoring. However, insufficient image quality, the lack of a convincing evaluation tool and intra- and interobserver variation in human work are well-known limitations of nuclear medicine imaging and restrict its clinical application. Artificial intelligence (AI) has gained increasing interest in the field of medical imaging due to its powerful information collection and interpretation ability. The combination of AI and PET imaging potentially provides great assistance to physicians managing patients. Radiomics, an important branch of AI applied in medical imaging, can extract hundreds of abstract mathematical features of images for further analysis. In this review, an overview of the applications of AI in PET imaging is provided, focusing on image enhancement, tumor detection, response and prognosis prediction and correlation analyses with pathology or specific gene mutations in several types of tumors. Our aim is to describe recent clinical applications of AI-based PET imaging in malignant diseases and to focus on the description of possible future developments.
Collapse
Affiliation(s)
- Jiaona Dai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang City 421001, China
| | - Xiyang Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Advances in the Preoperative Identification of Uterine Sarcoma. Cancers (Basel) 2022; 14:cancers14143517. [PMID: 35884577 PMCID: PMC9318633 DOI: 10.3390/cancers14143517] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary As a lethal malignant tumor, uterine sarcomas lack specific diagnostic criteria due to their similar presentation with uterine fibroids, clinicians are prone to make the wrong diagnosis or adopt incorrect treatment methods, which leads to rapid tumor progression and increased metastatic propensity. In recent years, with the improvement of medical level and awareness of uterine sarcoma, more and more studies have proposed new methods for preoperative differentiation of uterine sarcoma and uterine fibroids. This review outlines the up-to-date knowledge about preoperative differentiation of uterine sarcoma and uterine fibroids, including laboratory tests, imaging examinations, radiomics and machine learning-related methods, preoperative biopsy, integrated model and other relevant emerging technologies, and provides recommendations for future research. Abstract Uterine sarcomas are rare malignant tumors of the uterus with a high degree of malignancy. Their clinical manifestations, imaging examination findings, and laboratory test results overlap with those of uterine fibroids. No reliable diagnostic criteria can distinguish uterine sarcomas from other uterine tumors, and the final diagnosis is usually only made after surgery based on histopathological evaluation. Conservative or minimally invasive treatment of patients with uterine sarcomas misdiagnosed preoperatively as uterine fibroids will shorten patient survival. Herein, we will summarize recent advances in the preoperative diagnosis of uterine sarcomas, including epidemiology and clinical manifestations, laboratory tests, imaging examinations, radiomics and machine learning-related methods, preoperative biopsy, integrated model and other relevant emerging technologies.
Collapse
|
4
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
5
|
Hosseini SA, Shiri I, Hajianfar G, Bahadorzade B, Ghafarian P, Zaidi H, Ay MR. Synergistic impact of motion and acquisition/reconstruction parameters on 18 F-FDG PET radiomic features in non-small cell lung cancer: phantom and clinical studies. Med Phys 2022; 49:3783-3796. [PMID: 35338722 PMCID: PMC9322423 DOI: 10.1002/mp.15615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives This study is aimed at examining the synergistic impact of motion and acquisition/reconstruction parameters on 18F‐FDG PET image radiomic features in non‐small cell lung cancer (NSCLC) patients, and investigating the robustness of features performance in differentiating NSCLC histopathology subtypes. Methods An in‐house developed thoracic phantom incorporating lesions with different sizes was used with different reconstruction settings, including various reconstruction algorithms, number of subsets and iterations, full‐width at half‐maximum of post‐reconstruction smoothing filter and acquisition parameters, including injected activity and test–retest with and without motion simulation. To simulate motion, a special motor was manufactured to simulate respiratory motion based on a normal patient in two directions. The lesions were delineated semi‐automatically to extract 174 radiomic features. All radiomic features were categorized according to the coefficient of variation (COV) to select robust features. A cohort consisting of 40 NSCLC patients with adenocarcinoma (n = 20) and squamous cell carcinoma (n = 20) was retrospectively analyzed. Statistical analysis was performed to discriminate robust features in differentiating histopathology subtypes of NSCLC lesions. Results Overall, 29% of radiomic features showed a COV ≤5% against motion. Forty‐five percent and 76% of the features showed a COV ≤ 5% against the test–retest with and without motion in large lesions, respectively. Thirty‐three percent and 45% of the features showed a COV ≤ 5% against different reconstruction parameters with and without motion, respectively. For NSCLC histopathological subtype differentiation, statistical analysis showed that 31 features were significant (p‐value < 0.05). Two out of the 31 significant features, namely, the joint entropy of GLCM (AUC = 0.71, COV = 0.019) and median absolute deviation of intensity histogram (AUC = 0.7, COV = 0.046), were robust against the motion (same reconstruction setting). Conclusions Motion, acquisition, and reconstruction parameters significantly impact radiomic features, just as their synergies. Radiomic features with high predictive performance (statistically significant) in differentiating histopathological subtype of NSCLC may be eliminated due to non‐reproducibility.
Collapse
Affiliation(s)
- Seyyed Ali Hosseini
- Department of Medical physics and biomedical engineering, Tehran University of medical sciences, Tehran, Iran.,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4, Switzerland
| | - Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | | | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,PET/CT and cyclotron center, Masih Daneshvari hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4, Switzerland.,Geneva University Neurocenter, Geneva University, CH-1205, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, DK-500, Odense, Denmark
| | - Mohammad Reza Ay
- Department of Medical physics and biomedical engineering, Tehran University of medical sciences, Tehran, Iran.,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Diagnostic performance of 18F-FDG PET or PET/CT in differential diagnosis of uterine leiomyomas and uterine sarcomas: systematic review and meta-analysis of the literature. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00488-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Analysis of KRAS Mutation Status Prediction Model for Colorectal Cancer Based on Medical Imaging. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:3953442. [PMID: 34976107 PMCID: PMC8716224 DOI: 10.1155/2021/3953442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/09/2022]
Abstract
This study retrospectively included some patients with colorectal cancer diagnosed by histopathology, to explore the feasibility of CT medical image texture analysis in predicting KRAS gene mutations in patients with colorectal cancer. Before any surgical procedure, all patients received an enhanced CT scan of the abdomen and pelvis, as well as genetic testing. To define patient groups, divide all patients into test and validation sets based on the order of patient enrollment. A radiologist took a look at the plain axial CT image of the tumor, as well as the portal vein CT image, at the corresponding level. The physician points the computer's cursor to the relevant area in the image, and TexRAD software programs together texture parameters based on various spatial scale factors, also known as total mean, total variance, statistical entropy, overall total average, mean total, positive mean, skewness value, kurtosis value, and general skewness. Using the same method again two weeks later, the observer and another physician measured the image of each patient again to see if the method was consistent between observers. With regard to clinical information, the KRAS gene mutation group and the wild group of participants in the test set and validation set each had values for the texture parameter. In a study of patients with colorectal cancer, the results demonstrated that CT texture parameters were correlated with the presence of the KRAS gene mutation. The best CT prediction model includes the values of the medium texture image's slope and the other CT fine texture image's value of entropy, the medium texture image's slope and kurtosis, and the medium texture image's mean and the other CT fine texture image's value of entropy. Regardless of the training set or the validation set, patients with and without KRAS gene mutations did not differ significantly in clinical characteristics. This method can be used to identify mutations in the KRAS gene in patients with colorectal cancer, making it practical to implement CT medical image texture analysis technology for that purpose.
Collapse
|
8
|
Li X, Xu C, Yu Y, Guo Y, Sun H. Prediction of lymphovascular space invasion using a combination of tenascin-C, cox-2, and PET/CT radiomics in patients with early-stage cervical squamous cell carcinoma. BMC Cancer 2021; 21:866. [PMID: 34320931 PMCID: PMC8317359 DOI: 10.1186/s12885-021-08596-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lymphovascular space invasion is an independent prognostic factor in early-stage cervical cancer. However, there is a lack of non-invasive methods to detect lymphovascular space invasion. Some researchers found that Tenascin-C and Cyclooxygenase-2 was correlated with lymphovascular space invasion. Radiomics has been studied as an emerging tool for distinguishing tumor pathology stage, evaluating treatment response, and predicting prognosis. This study aimed to establish a machine learning model that combines radiomics based on PET imaging with tenascin-C (TNC) and cyclooxygenase-2 (COX-2) for predicting lymphovascular space invasion (LVSI) in patients with early-stage cervical cancer. METHODS One hundred and twelve patients with early-stage cervical squamous cell carcinoma who underwent PET/CT examination were retrospectively analyzed. Four hundred one radiomics features based on PET/CT images were extracted and integrated into radiomics score (Rad-score). Immunohistochemical analysis was performed to evaluate TNC and COX-2 expression. Mann-Whitney U test was used to distinguish differences in the Rad-score, TNC, and COX-2 between LVSI and non-LVSI groups. The correlations of characteristics were tested by Spearman analysis. Machine learning models including radiomics model, protein model and combined model were established by logistic regression algorithm and evaluated by ROC curve. Pairwise comparisons of ROC curves were tested by DeLong test. RESULTS The Rad-score of patients with LVSI was significantly higher than those without. A significant correlation was shown between LVSI and Rad-score (r = 0.631, p < 0.001). TNC was correlated to both the Rad-score (r = 0.244, p = 0.024) and COX-2 (r = 0.227, p = 0.036). The radiomics model had the best predictive performance among all models in training and external dataset (AUCs: 0.914, 0.806, respectively, p < 0.001). However, in testing dataset, the combined model had better efficiency for predicting LVSI than other models (AUCs: 0.801 vs. 0.756 and 0.801 vs. 0.631, respectively). CONCLUSION The machine learning model of the combination of PET radiomics with COX-2 and TNC provides a new tool for detecting LVSI in patients with early-stage cervical cancer. In the future, multicentric studies on larger sample of patients will be used to test the model. TRIAL REGISTRATION This is a retrospective study and there is no experimental intervention on human participants. The Ethics Committee has confirmed that retrospectively registered is not required.
Collapse
Affiliation(s)
- Xiaoran Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning China
| | - Chen Xu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning China
| | - Yang Yu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning China
| | - Yan Guo
- GE Healthcare, Shenyang, Liaoning China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning China
| |
Collapse
|
9
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
10
|
An H, Wang Y, Wong EMF, Lyu S, Han L, Perucho JAU, Cao P, Lee EYP. CT texture analysis in histological classification of epithelial ovarian carcinoma. Eur Radiol 2021; 31:5050-5058. [PMID: 33409777 DOI: 10.1007/s00330-020-07565-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The study aimed to compare the ability of morphological and texture features derived from contrast-enhanced CT in histological subtyping of epithelial ovarian carcinoma (EOC). METHODS Consecutive 205 patients with newly diagnosed EOC who underwent contrast-enhanced CT were included and dichotomised into high-grade serous carcinoma (HGSC) and non-HGSC. Clinical information including age and cancer antigen 125 (CA-125) was documented. The pre-treatment images were analysed using commercial software, TexRAD, by two independent radiologists. Eight qualitative CT morphological features were evaluated, and 36 CT texture features at 6 spatial scale factors (SSFs) were extracted per patient. Features' reduction was based on kappa score, intra-class correlation coefficient (ICC), univariate ROC analysis and Pearson's correlation test. Texture features with ICC ≥ 0.8 were compared by histological subtypes. Patients were randomly divided into training and testing sets by 8:2. Two random forest classifiers were determined and compared: model 1 incorporating selected morphological and clinical features and model 2 incorporating selected texture and clinical features. RESULTS HGSC showed specifically higher texture features than non-HGSC (p < 0.05). Both models performed highly in predicting histological subtypes of EOC (model 1: AUC 0.891 and model 2: AUC 0.937), and no statistical significance was found between the two models (p = 0.464). CONCLUSION CT texture analysis provides objective and quantitative metrics on tumour characteristics with HGSC demonstrating specifically high texture features. The model incorporating texture analysis could classify histology subtypes of EOC with high accuracy and performed as well as morphological features. KEY POINTS • A number of CT morphological and texture features showed good inter- and intra-observer agreements. • High-grade serous ovarian carcinoma showed specifically higher CT texture features than non-high-grade serous ovarian carcinoma. • CT texture analysis could differentiate histological subtypes of epithelial ovarian carcinoma with high accuracy.
Collapse
Affiliation(s)
- He An
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yiang Wang
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Esther M F Wong
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong SAR
| | - Shanshan Lyu
- Department of Pathology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lujun Han
- Department of Diagnostic Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jose A U Perucho
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Peng Cao
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Elaine Y P Lee
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR.
| |
Collapse
|
11
|
Sun YW, Ji CF, Wang H, He J, Liu S, Ge Y, Zhou ZY. Differentiating gastric cancer and gastric lymphoma using texture analysis (TA) of positron emission tomography (PET). Chin Med J (Engl) 2020; 134:439-447. [PMID: 33230019 PMCID: PMC7909296 DOI: 10.1097/cm9.0000000000001206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Texture analysis (TA) can quantify intra-tumor heterogeneity using standard medical images. The present study aimed to assess the application of positron emission tomography (PET) TA in the differential diagnosis of gastric cancer and gastric lymphoma. METHODS The pre-treatment PET images of 79 patients (45 gastric cancer, 34 gastric lymphoma) between January 2013 and February 2018 were retrospectively reviewed. Standard uptake values (SUVs), first-order texture features, and second-order texture features of the grey-level co-occurrence matrix (GLCM) were analyzed. The differences in features among different groups were analyzed by the two-way Mann-Whitney test, and receiver operating characteristic (ROC) analysis was used to estimate the diagnostic efficacy. RESULTS InertiaGLCM was significantly lower in gastric cancer than that in gastric lymphoma (4975.61 vs. 11,425.30, z = -3.238, P = 0.001), and it was found to be the most discriminating texture feature in differentiating gastric lymphoma and gastric cancer. The area under the curve (AUC) of inertiaGLCM was higher than the AUCs of SUVmax and SUVmean (0.714 vs. 0.649 and 0.666, respectively). SUVmax and SUVmean were significantly lower in low-grade gastric lymphoma than those in high grade gastric lymphoma (3.30 vs. 11.80, 2.40 vs. 7.50, z = -2.792 and -3.007, P = 0.005 and 0.003, respectively). SUVs and first-order grey-level intensity features were not significantly different between low-grade gastric lymphoma and gastric cancer. EntropyGLCM12 was significantly lower in low-grade gastric lymphoma than that in gastric cancer (6.95 vs. 9.14, z = -2.542, P = 0.011) and had an AUC of 0.770 in the ROC analysis of differentiating low-grade gastric lymphoma and gastric cancer. CONCLUSIONS InertiaGLCM and entropyGLCM were the most discriminating features in differentiating gastric lymphoma from gastric cancer and low-grade gastric lymphoma from gastric cancer, respectively. PET TA can improve the differential diagnosis of gastric neoplasms, especially in tumors with similar degrees of fluorodeoxyglucose uptake.
Collapse
Affiliation(s)
- Yi-Wen Sun
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Chang-Feng Ji
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Han Wang
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Yun Ge
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zheng-Yang Zhou
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
12
|
Cheze Le Rest C, Hustinx R. Are radiomics ready for clinical prime-time in PET/CT imaging? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 63:347-354. [DOI: 10.23736/s1824-4785.19.03210-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Kim KH, Ryu SY, Lee HY, Choi JY, Kwon OJ, Kim HK, Shim YM. Evaluating the tumor biology of lung adenocarcinoma: A multimodal analysis. Medicine (Baltimore) 2019; 98:e16313. [PMID: 31335678 PMCID: PMC6709045 DOI: 10.1097/md.0000000000016313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We evaluated the relationships among functional imaging modality such as PET-CT and DW-MRI and lung adenocarcinoma pathologic heterogeneity, extent of invasion depth, and tumor cellularity as a marker of tumor microenvironment.In total, 74 lung adenocarcinomas were prospectively included. All patients underwent 18F-fluorodeoxyglucose (FDG) PET-CT and MRI before curative surgery. Pathology revealed 68 stage I tumors, 3 stage II tumors, and 3 stage IIIA tumors. Comprehensive histologic subtyping was performed for all surgically resected tumors. Maximum standardized uptake value (SUVmax) and ADC values were correlated with pathologic grade, extent of invasion, solid tumor size, and tumor cellularity.Mean solid tumor size (low: 1.7 ± 3.0 mm, indeterminate: 13.9 ± 14.2 mm, and high grade: 30.3 ± 13.5 mm) and SUVmax (low: 1.5 ± 0.2, indeterminate: 3.5 ± 2.5, and high grade: 15.3 ± 0) had a significant relationship with pathologic grade based on 95% confidence intervals (P = .01 and P < .01, respectively). SUVmax showed a strong correlation with tumor cellularity (R = 0.713, P < .001), but was not correlated with extent of invasion (R = 0.387, P = .148). A significant and strong positive correlation was observed among SUVmax values and higher cellularity and pathologic grade. ADC did not exhibit a significant relationship with tumor cellularity.Intratumor heterogeneity quantification using a multimodal-multiparametric approach might be effective when tumor volume consists of a real tumor component as well as a non-tumorous stromal component.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
- Department of Radiology, Myongji Hospital, Goyang
| | - Seong-Yoon Ryu
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | | | - O. Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Hong Kwan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Choi IY, Yeom SK, Cha J, Cha SH, Lee SH, Chung HH, Lee CM, Choi J. Feasibility of using computed tomography texture analysis parameters as imaging biomarkers for predicting risk grade of gastrointestinal stromal tumors: comparison with visual inspection. Abdom Radiol (NY) 2019; 44:2346-2356. [PMID: 30923842 DOI: 10.1007/s00261-019-01995-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the feasibility of using computed tomography texture analysis (CTTA) parameters for predicting malignant risk grade and mitosis index of gastrointestinal stromal tumors (GISTs), compared with visual inspection. METHOD AND MATERIALS CTTA was performed on portal phase CT images of 145 surgically confirmed GISTs (mean size: 42.9 ± 37.5 mm), using TexRAD software. Mean, standard deviation, entropy, mean of positive pixels (MPP), skewness, and kurtosis of CTTA parameters, on spatial scaling factor (SSF), 2-6 were compared by risk grade, mitosis rate, and the presence or absence of necrosis on visual inspection. CTTA parameters were correlated with risk grade. Diagnostic performance was evaluated with receiver operating characteristic curve analysis. Enhancement pattern, necrosis, heterogeneity, calcification, growth pattern, and mucosal ulceration were subjectively evaluated by two observers. RESULTS Three to four parameters at different scales were significantly different according to the risk grade, mitosis rate, and the presence or absence of necrosis (p < 0.041). MPP at fine or medium scale (r = - 0.547 to - 393) and kurtosis at coarse scale (r = 0.424-0.454) correlated significantly with risk grade (p < 0.001). HG-GIST was best differentiated from LG-GIST by MPP at SSF 2 (AUC, 0.782), and kurtosis at SSF 4 (AUC, 0.779) (all p < 0.001). CT features predictive of HG-GIST were density lower than or equal to that of the erector spinae muscles on enhanced images (OR 2.1; p = 0.037; AUC, 0.59), necrosis (OR, 6.1; p < 0.001; AUC, 0.70), heterogeneity (OR, 4.3; p < 0.001; AUC, 0.67), and mucosal ulceration (OR, 3.3; p = 0.002; AUC, 0.62). CONCLUSION Using TexRAD, MPP and kurtosis are feasible in predicting risk grade and mitosis index of GISTs. CTTA demonstrated meaningful accuracy in preoperative risk stratification of GISTs.
Collapse
Affiliation(s)
- In Young Choi
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Suk Keu Yeom
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea.
| | - Jaehyung Cha
- Department of Biostatistics, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Sang Hoon Cha
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Seung Hwa Lee
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Hwan Hoon Chung
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Chang Min Lee
- Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Jungwoo Choi
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| |
Collapse
|
15
|
Affiliation(s)
- Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University
| | - Tohru Shiga
- Department of Nuclear Medicine, Hokkaido University
| |
Collapse
|
16
|
Heterogeneity analysis of 18F-FDG PET imaging in oncology: clinical indications and perspectives. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0299-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Tsujikawa T, Tsuyoshi H, Kanno M, Yamada S, Kobayashi M, Narita N, Kimura H, Fujieda S, Yoshida Y, Okazawa H. Selected PET radiomic features remain the same. Oncotarget 2018; 9:20734-20746. [PMID: 29755685 PMCID: PMC5945508 DOI: 10.18632/oncotarget.25070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/24/2018] [Indexed: 01/12/2023] Open
Abstract
Purpose We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18F-FDG PET/CT and PET/MR scans. Results SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR0-2 min and PET/MR0-10 min than on PET/CT in gynecological cancer (p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR0–2 min, and PET/MR0–10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR0–2 min, and PET/MR0–10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR0–2 min, and PET/MR0–10 min images. Conclusions 18F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Methods Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0–2 min and 0–10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR0-2 min, and PET/MR0-10 min images.
Collapse
Affiliation(s)
- Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masafumi Kanno
- Department of Otolaryngology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shizuka Yamada
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masato Kobayashi
- Wellness Promotion Science Center, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Norihiko Narita
- Department of Otolaryngology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Department of Otolaryngology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|