1
|
Adomaitis L, Grinbaum A. Neurotechnologies, Ethics, and the Limits of Free Will. Integr Psychol Behav Sci 2024; 58:894-907. [PMID: 38388982 DOI: 10.1007/s12124-024-09830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
This article delves into the implications of neurotechnologies for the philosophical debates surrounding free will and moral responsibility. Tracing the concept from ancient religious and philosophical roots, we discuss how recent neurotechnological advancements (e.g. optogenetics, fMRI and machine learning, predictive diagnostics, et al.) challenge traditional notions of autonomy. Although neurotechnologies aim to enhance autonomy in the strict sense - as self-determination - they risk reducing or changing the broader notion of autonomy, which involves personal authenticity. We also submit that, in a world with an altered or limited concept of free will, humans should still be held accountable for actions executed through their bodies. By examining the dynamic between choice and responsibility, we emphasize the shift in technology ethics, moral philosophy, and the broader legal landscape in response to the advancement of neurotechnologies. By bringing the neurotechnological innovations into the world, neuroscientists not only change the technological landscape but also partake in long-standing moral narratives about freedom, justice, and responsibility.
Collapse
|
2
|
Smith JN, Dorfman N, Hurley M, Cenolli I, Kostick-Quenet K, Storch EA, Lázaro-Muñoz G, Blumenthal-Barby J. Adolescent OCD Patient and Caregiver Perspectives on Identity, Authenticity, and Normalcy in Potential Deep Brain Stimulation Treatment. Camb Q Healthc Ethics 2024:1-14. [PMID: 38602092 DOI: 10.1017/s0963180124000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The ongoing debate within neuroethics concerning the degree to which neuromodulation such as deep brain stimulation (DBS) changes the personality, identity, and agency (PIA) of patients has paid relatively little attention to the perspectives of prospective patients. Even less attention has been given to pediatric populations. To understand patients' views about identity changes due to DBS in obsessive-compulsive disorder (OCD), the authors conducted and analyzed semistructured interviews with adolescent patients with OCD and their parents/caregivers. Patients were asked about projected impacts to PIA generally due to DBS. All patient respondents and half of caregivers reported that DBS would impact patient self-identity in significant ways. For example, many patients expressed how DBS could positively impact identity by allowing them to explore their identities free from OCD. Others voiced concerns that DBS-related resolution of OCD might negatively impact patient agency and authenticity. Half of patients expressed that DBS may positively facilitate social access through relieving symptoms, while half indicated that DBS could increase social stigma. These views give insights into how to approach decision-making and informed consent if DBS for OCD becomes available for adolescents. They also offer insights into adolescent experiences of disability identity and "normalcy" in the context of OCD.
Collapse
Affiliation(s)
- Jared N Smith
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Natalie Dorfman
- Department of Philosophy, University of Washington, Seattle, WA, USA
| | - Meghan Hurley
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Ilona Cenolli
- Center for Bioethics, Harvard Medical School, Boston, MA, USA
| | - Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Eric A Storch
- Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
3
|
Okun MS, Marjenin T, Ekanayake J, Gilbert F, Doherty SP, Pilkington J, French J, Kubu C, Lázaro-Muñoz G, Denison T, Giordano J. Definition of Implanted Neurological Device Abandonment: A Systematic Review and Consensus Statement. JAMA Netw Open 2024; 7:e248654. [PMID: 38687486 DOI: 10.1001/jamanetworkopen.2024.8654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Importance Establishing a formal definition for neurological device abandonment has the potential to reduce or to prevent the occurrence of this abandonment. Objective To perform a systematic review of the literature and develop an expert consensus definition for neurological device abandonment. Evidence Review After a Royal Society Summit on Neural Interfaces (September 13-14, 2023), a systematic English language review using PubMed was undertaken to investigate extant definitions of neurological device abandonment. Articles were reviewed for relevance to neurological device abandonment in the setting of deep brain, vagal nerve, and spinal cord stimulation. This review was followed by the convening of an expert consensus group of physicians, scientists, ethicists, and stakeholders. The group summarized findings, added subject matter experience, and applied relevant ethics concepts to propose a current operational definition of neurological device abandonment. Data collection, study, and consensus development were done between September 13, 2023, and February 1, 2024. Findings The PubMed search revealed 734 total articles, and after review, 7 articles were found to address neurological device abandonment. The expert consensus group addressed findings as germane to neurological device abandonment and added personal experience and additional relevant peer-reviewed articles, addressed stakeholders' respective responsibilities, and operationally defined abandonment in the context of implantable neurotechnological devices. The group further addressed whether clinical trial failure or shelving of devices would constitute or be associated with abandonment as defined. Referential to these domains and dimensions, the group proposed a standardized definition for abandonment of active implantable neurotechnological devices. Conclusions and Relevance This study's consensus statement suggests that the definition for neurological device abandonment should entail failure to provide fundamental aspects of patient consent; fulfill reasonable responsibility for medical, technical, or financial support prior to the end of the device's labeled lifetime; and address any or all immediate needs that may result in safety concerns or device ineffectiveness and that the definition of abandonment associated with the failure of a research trial should be contingent on specific circumstances.
Collapse
Affiliation(s)
- Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, Gainesville, Florida
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, Gainesville, Florida
| | - Timothy Marjenin
- Musculoskeletal Clinical Regulatory Advisers, Washington, District of Columbia
| | - Jinendra Ekanayake
- Department of Neurosurgery, National Guard Hospital, Riyadh, Saudia Arabia
- Department of Electronic Engineering, Imperial College London, United Kingdom
- Quetz Ltd, Chelmsford, England
| | | | - Sean P Doherty
- Department of Medical Physics and Biomedical Engineering, University College London, London, England
- Amber Therapeutics Limited, London, England
| | | | | | - Cynthia Kubu
- Center for Neuro-Restoration, Cleveland Clinic, Cleveland, Ohio
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Timothy Denison
- Amber Therapeutics Limited, London, England
- Medical Research Council Brain Network Dynamics Unit, Departments of Engineering Sciences and Clinical Neurosciences, University of Oxford, Oxford, England
| | - James Giordano
- Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia
- Department of Biochemistry, Georgetown University Medical Center, Washington, District of Columbia
- Neuroethics Studies Program, Georgetown University Medical Center, Washington, District of Columbia
- Defense Medical Ethics Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
4
|
Ishida S, Nishitsutsumi Y, Kashioka H, Taguchi T, Shineha R. A comparative review on neuroethical issues in neuroscientific and neuroethical journals. Front Neurosci 2023; 17:1160611. [PMID: 37781239 PMCID: PMC10536163 DOI: 10.3389/fnins.2023.1160611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
This study is a pilot literature review that compares the interest of neuroethicists and neuroscientists. It aims to determine whether there is a significant gap between the neuroethical issues addressed in philosophical neuroethics journals and neuroscience journals. We retrieved 614 articles from two specialist neuroethics journals (Neuroethics and AJOB Neuroscience) and 82 neuroethics-focused articles from three specialist neuroscience journals (Neuron, Nature Neuroscience, and Nature Reviews Neuroscience). We classified these articles in light of the neuroethical issue in question before we compared the neuroethical issues addressed in philosophical neuroethics with those addressed by neuroscientists. A notable result is a parallelism between them as a general tendency. Neuroscientific articles cover most neuroethical issues discussed by philosophical ethicists and vice versa. Subsequently, there are notable discrepancies between the two bodies of neuroethics literature. For instance, theoretical questions, such as the ethics of moral enhancement and the philosophical implications of neuroscientific findings on our conception of personhood, are more intensely discussed in philosophical-neuroethical articles. Conversely, neuroscientific articles tend to emphasize practical questions, such as how to successfully integrate ethical perspectives into scientific research projects and justifiable practices of animal-involving neuroscientific research. These observations will help us settle the common starting point of the attempt at "ethics integration" in emerging neuroscience, contributing to better governance design and neuroethical practice.
Collapse
Affiliation(s)
- Shu Ishida
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yu Nishitsutsumi
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
| | - Hideki Kashioka
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
| | - Takahisa Taguchi
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
| | - Ryuma Shineha
- Research Center on Ethical, Legal, and Social Issues, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Gilbert F, Russo I, Ineichen C. Caused by Deep Brain Stimulation? How to Measure a Je ne Sais Quoi. AJOB Neurosci 2023; 14:305-307. [PMID: 37682675 DOI: 10.1080/21507740.2023.2243888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
|
6
|
Zuk P, Sanchez CE, Kostick-Quenet K, Muñoz KA, Kalwani L, Lavingia R, Torgerson L, Sierra-Mercado D, Robinson JO, Pereira S, Outram S, Koenig BA, McGuire AL, Lázaro-Muñoz G. Researcher Views on Changes in Personality, Mood, and Behavior in Next-Generation Deep Brain Stimulation. AJOB Neurosci 2023; 14:287-299. [PMID: 35435795 PMCID: PMC9639000 DOI: 10.1080/21507740.2022.2048724] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The literature on deep brain stimulation (DBS) and adaptive DBS (aDBS) raises concerns that these technologies may affect personality, mood, and behavior. We conducted semi-structured interviews with researchers (n = 23) involved in developing next-generation DBS systems, exploring their perspectives on ethics and policy topics including whether DBS/aDBS can cause such changes. The majority of researchers reported being aware of personality, mood, or behavioral (PMB) changes in recipients of DBS/aDBS. Researchers offered varying estimates of the frequency of PMB changes. A smaller majority reported changes in personality specifically. Some expressed reservations about the scientific status of the term 'personality,' while others used it freely. Most researchers discussed negative PMB changes, but a majority said that DBS/aDBS can also result in positive changes. Several researchers viewed positive PMB changes as part of the therapeutic goal in psychiatric applications of DBS/aDBS. Finally, several discussed potential causes of PMB changes other than the device itself.
Collapse
|
7
|
Brown JW. Transcranial Electrical Neurostimulation as a Potential Addiction Treatment. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2023; 60:469580231221286. [PMID: 38145317 PMCID: PMC10750523 DOI: 10.1177/00469580231221286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023]
Abstract
Addiction remains difficult to treat, but non-invasive transcranial electrical and magnetic neurostimulation methods may provide promising and cost-effective treatment approaches. We provide a narrative review of recent developments and evidence of effectiveness and consider newer technology that may yield improved treatment approaches. In particular, we review temporal interference electrical neurostimulation, which allows non-invasive and focal stimulation of deep brain regions. This provides a promising new potential approach to treat addiction, because many of the brain regions that seem most important for addiction are deeper in the brain, out of reach of existing technologies such as transcranial direct current stimulation.
Collapse
|
8
|
Blumenthal-Barby J, Aas S, Brudney D, Flanigan J, Liao SM, London A, Sumner W, Savulescu J. The Place of Philosophy in Bioethics Today. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2022; 22:10-21. [PMID: 34191681 DOI: 10.1080/15265161.2021.1940355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In some views, philosophy's glory days in bioethics are over. While philosophers were especially important in the early days of the field, so the argument goes, the majority of the work in bioethics today involves the "simple" application of existing philosophical principles or concepts, as well as empirical work in bioethics. Here, we address this view head on and ask: What is the role of philosophy in bioethics today? This paper has three specific aims: (1) to respond to skeptics and make the case that philosophy and philosophers still have a very important and meaningful role to play in contemporary bioethics, (2) to discuss some of the current challenges to the meaningful integration of philosophy and bioethics, and (3) to make suggestions for what needs to happen in order for the two fields to stay richly connected. We outline how bioethics center directors, funders, and philosopher bioethicists can help.
Collapse
|
9
|
Moreno J, Gross ML, Becker J, Hereth B, Shortland ND, Evans NG. The ethics of AI-assisted warfighter enhancement research and experimentation: Historical perspectives and ethical challenges. Front Big Data 2022; 5:978734. [PMID: 36156934 PMCID: PMC9500287 DOI: 10.3389/fdata.2022.978734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The military applications of AI raise myriad ethical challenges. Critical among them is how AI integrates with human decision making to enhance cognitive performance on the battlefield. AI applications range from augmented reality devices to assist learning and improve training to implantable Brain-Computer Interfaces (BCI) to create bionic "super soldiers." As these technologies mature, AI-wired warfighters face potential affronts to cognitive liberty, psychological and physiological health risks and obstacles to integrating into military and civil society during their service and upon discharge. Before coming online and operational, however, AI-assisted technologies and neural interfaces require extensive research and human experimentation. Each endeavor raises additional ethical concerns that have been historically ignored thereby leaving military and medical scientists without a cogent ethics protocol for sustainable research. In this way, this paper is a "prequel" to the current debate over enhancement which largely considers neuro-technologies once they are already out the door and operational. To lay the ethics foundation for AI-assisted warfighter enhancement research, we present an historical overview of its technological development followed by a presentation of salient ethics research issues (ICRC, 2006). We begin with a historical survey of AI neuro-enhancement research highlighting the ethics lacunae of its development. We demonstrate the unique ethical problems posed by the convergence of several technologies in the military research setting. Then we address these deficiencies by emphasizing how AI-assisted warfighter enhancement research must pay particular attention to military necessity, and the medical and military cost-benefit tradeoffs of emerging technologies, all attending to the unique status of warfighters as experimental subjects. Finally, our focus is the enhancement of friendly or compatriot warfighters and not, as others have focused, enhancements intended to pacify enemy warfighters.
Collapse
Affiliation(s)
- Jonathan Moreno
- Department of Bioethics, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Jack Becker
- Harvard Law School, Cambridge, MA, United States
| | - Blake Hereth
- Department of Philosophy, University of Massachusetts at Lowell, Lowell, MA, United States
| | - Neil D. Shortland
- School of Criminology and Justice Studies, University of Massachusetts at Lowell, Lowell, MA, United States
| | - Nicholas G. Evans
- Department of Philosophy, University of Massachusetts at Lowell, Lowell, MA, United States
| |
Collapse
|
10
|
Kostick-Quenet K, Kalwani L, Koenig B, Torgerson L, Sanchez C, Munoz K, Hsu RL, Sierra-Mercado D, Robinson JO, Outram S, Pereira S, McGuire A, Zuk P, Lazaro-Munoz G. Researchers' Ethical Concerns About Using Adaptive Deep Brain Stimulation for Enhancement. Front Hum Neurosci 2022; 16:813922. [PMID: 35496073 PMCID: PMC9050172 DOI: 10.3389/fnhum.2022.813922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
The capacity of next-generation closed-loop or adaptive deep brain stimulation devices (aDBS) to read (measure neural activity) and write (stimulate brain regions or circuits) shows great potential to effectively manage movement, seizure, and psychiatric disorders, and also raises the possibility of using aDBS to electively (non-therapeutically) modulate mood, cognition, and prosociality. What separates aDBS from most neurotechnologies (e.g. transcranial stimulation) currently used for enhancement is that aDBS remains an invasive, surgically-implanted technology with a risk-benefit ratio significantly different when applied to diseased versus non-diseased individuals. Despite a large discourse about the ethics of enhancement, no empirical studies yet examine perspectives on enhancement from within the aDBS research community. We interviewed 23 aDBS researchers about their attitudes toward expanding aDBS use for enhancement. A thematic content analysis revealed that researchers share ethical concerns related to (1) safety and security; (2) enhancement as unnecessary, unnatural or aberrant; and (3) fairness, equality, and distributive justice. Most (70%) researchers felt that enhancement applications for DBS will eventually be technically feasible and that attempts to develop such applications for DBS are already happening (particularly for military purposes). However, researchers unanimously (100%) felt that DBS ideally should not be considered for enhancement until researchers better understand brain target localization and functioning. While many researchers acknowledged controversies highlighted by scholars and ethicists, such as potential impacts on personhood, authenticity, autonomy and privacy, their ethical concerns reflect considerations of both gravity and perceived near-term likelihood.
Collapse
Affiliation(s)
- Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Lavina Kalwani
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Rice University, Houston, TX, United States
| | - Barbara Koenig
- Anthropology & Bioethics Department of Social & Behavioral Sciences, Institute for Health & Aging, University of California, San Francisco, San Francisco, CA, United States
| | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Clarissa Sanchez
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Katrina Munoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Rebecca L. Hsu
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Demetrio Sierra-Mercado
- Department of Anatomy & Neurobiology School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jill Oliver Robinson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Simon Outram
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Amy McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Peter Zuk
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
| | - Gabriel Lazaro-Munoz
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
11
|
Gilbert F, Lancelot M. Incoming ethical issues for deep brain stimulation: when long-term treatment leads to a 'new form of the disease'. JOURNAL OF MEDICAL ETHICS 2021; 47:20-25. [PMID: 32409626 DOI: 10.1136/medethics-2019-106052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Deep brain stimulation (DBS) has been regarded as an efficient and safe treatment for Parkinson's disease (PD) since being approved by the Food and Drug Administration (FDA) in 1997. It is estimated that more than 150 000 patients have been implanted, with a forecasted rapid increase in uptake with population ageing. Recent longitudinal follow-up studies have reported a significant increase in postoperative survival rates of patients with PD implanted with DBS as compared with those not implanted with DBS. Although DBS tends to increase life expectancy for most patients with PD, this medical benefit does not come without attendant negative consequences. For example, emerging forms of iatrogenic harms are sometimes induced-harms which were not initially expected when clinicians proposed neurosurgery and patients or their guardians consented to the treatment. We report and discuss the clinical case of a patient who was implanted with DBS more than 20 years ago (at the time of writing) and is now experiencing unexpected stages of PD. This case illustrates how extending the life span without improving quality of life may introduce a burden of harms for patients and families. As well, this case shows why we should prepare for the expanding numbers of PD-implanted patients experiencing a gain of longevity but with severe stages of disease leading to diminution in quality of life. This newly observed effect of DBS treatment requires us to explore ethical questions related to iatrogenic harms, informed consent, end of life and caregivers' burden.
Collapse
Affiliation(s)
- Frederic Gilbert
- School of Humanities, University of Tasmania, Hobart, Tasmania, Australia
- Center for Neurotechnology, University of Washington, Seattle, U.S.A
| | - Mathilde Lancelot
- SPHERE, Paris Diderot University / University of Paris, Paris, France
| |
Collapse
|
12
|
Muñoz KA, Kostick K, Sanchez C, Kalwani L, Torgerson L, Hsu R, Sierra-Mercado D, Robinson JO, Outram S, Koenig BA, Pereira S, McGuire A, Zuk P, Lázaro-Muñoz G. Researcher Perspectives on Ethical Considerations in Adaptive Deep Brain Stimulation Trials. Front Hum Neurosci 2020; 14:578695. [PMID: 33281581 PMCID: PMC7689343 DOI: 10.3389/fnhum.2020.578695] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023] Open
Abstract
Interest and investment in closed-loop or adaptive deep brain stimulation (aDBS) systems have quickly expanded due to this neurotechnology's potential to more safely and effectively treat refractory movement and psychiatric disorders compared to conventional DBS. A large neuroethics literature outlines potential ethical concerns about conventional DBS and aDBS systems. Few studies, however, have examined stakeholder perspectives about ethical issues in aDBS research and other next-generation DBS devices. To help fill this gap, we conducted semi-structured interviews with researchers involved in aDBS trials (n = 23) to gain insight into the most pressing ethical questions in aDBS research and any concerns about specific features of aDBS devices, including devices' ability to measure brain activity, automatically adjust stimulation, and store neural data. Using thematic content analysis, we identified 8 central themes in researcher responses. The need to measure and store neural data for aDBS raised concerns among researchers about data privacy and security issues (noted by 91% of researchers), including the avoidance of unintended or unwanted third-party access to data. Researchers reflected on the risks and safety (83%) of aDBS due to the experimental nature of automatically modulating then observing stimulation effects outside a controlled clinical setting and in relation to need for surgical battery changes. Researchers also stressed the importance of ensuring informed consent and adequate patient understanding (74%). Concerns related to automaticity and device programming (65%) were discussed, including current uncertainties about biomarker validity. Additionally, researchers discussed the potential impacts of automatic stimulation on patients' autonomy and control over stimulation (57%). Lastly, researchers discussed concerns related to patient selection (defining criteria for candidacy) (39%), challenges of ensuring post-trial access to care and device maintenance (39%), and potential effects on personality and identity (30%). To help address researcher concerns, we discuss the need to minimize cybersecurity vulnerabilities, advance biomarker validity, promote the balance of device control between patients and clinicians, and enhance ongoing informed consent. The findings from this study will help inform policies that will maximize the benefits and minimize potential harms of aDBS and other next-generation DBS devices.
Collapse
Affiliation(s)
- Katrina A. Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Kristin Kostick
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Clarissa Sanchez
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Lavina Kalwani
- Department of Neuroscience, Rice University, Houston, TX, United States
| | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Rebecca Hsu
- Evans School of Public Policy & Governance, University of Washington, Seattle, WA, United States
| | - Demetrio Sierra-Mercado
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jill O. Robinson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Simon Outram
- Program in Bioethics, University of California, San Francisco, San Francisco, CA, United States
| | - Barbara A. Koenig
- Program in Bioethics, University of California, San Francisco, San Francisco, CA, United States
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Amy McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Peter Zuk
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Gabriel Lázaro-Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
13
|
Roskies AL, Walton A. Neuroethics in the Shadow of a Pandemic. AJOB Neurosci 2020; 11:W1-W4. [PMID: 32716751 PMCID: PMC7477764 DOI: 10.1080/21507740.2020.1778130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neuroethics under the BRAIN Initiative has been focused upon both the neuroethical implications of basic advances in neuroscience, as well as the ethics attending the development of ever more powerful tools to both understand the brain and treat dysfunction. It has focused on health and disease in the context of the pre-pandemic status quo, essentially divorced from issues like infectious disease and large-scale disruption of social and economic structures. The questions animating the neuroethics of the BRAIN Initiative, on first glance, seemingly fail to intersect with the primary concerns of a post-Covid world, but careful consideration shows that they of course do. After all, the brain's job is to model and respond to the pressures of our environment, and the environment of virtually all of humanity has changed in a dramatic way, unprecedented since the rise of modern neuroscience. Here we consider ways in which neuroethics work aligned with the BRAIN Initiative can inform our response to the Covid crisis, as well as ways in which the pandemic may shape future work in neuroethics. In particular we focus on neuroethics work on agency.
Collapse
|
14
|
Deflating the Deep Brain Stimulation Causes Personality Changes Bubble: the Authors Reply. NEUROETHICS-NETH 2020. [DOI: 10.1007/s12152-020-09437-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|