1
|
Cozzolino D. Phenolics and spectroscopy: challenges and successful stories in the grape and wine industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1408-1412. [PMID: 38012025 DOI: 10.1002/jsfa.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Phenolic compounds are considered to have a major role in the quality of grapes and wine. These compounds contribute to the sensory perception of red wine as they are involved in astringency and bitterness as well as in determining the colour intensity of grapes and wine (e.g., anthocyanins content). Several techniques are used to characterise and quantify these compounds in grapes and wine samples such as ultraviolet-visible spectroscopy or high-performance liquid chromatography. More recently, different applications and reports have shown the value of vibrational spectroscopy techniques to monitor and measure phenolic compounds along the grape and wine value chain. This article summarises as well as discusses challenges and successful stories in relation to the utilisation of vibrational spectroscopy techniques to measure phenolic compounds in grapes and wine. Specifically, content presented at the workshop 'Outstanding sensors challenge beverage and food future' organised by the Italian Society of Food Science and Technology and the University of Pisa (Pisa, Italy) is summarised. Although vibrational spectroscopy techniques have been proven to be of importance to measure composition across the grape and wine value chain, the adoption of these technologies has been compromised by the accessibility and price of instruments. Understanding the basic principles of the different vibrational spectroscopy methods (e.g., characteristics, limit of detection) as well as how to effectively use the data generated are still main barriers facing the incorporation of these techniques into the grape and wine industry. Furthermore, is still not clear for many users of these technologies how they will contribute to the sustainability of the wine industry as well as to preserve the identity of the wine making process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Hoffman LC, Schreuder J, Cozzolino D. Food authenticity and the interactions with human health and climate change. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39101830 DOI: 10.1080/10408398.2024.2387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Food authenticity and fraud, as well as the interest in food traceability have become a topic of increasing interest not only for consumers but also for the research community and the food manufacturing industry. Food authenticity and fraud are becoming prevalent in both the food supply and value chains since ancient times where different issues (e.g., food spoilage during shipment and storage, mixing decay foods with fresh products) has resulted in foods that influence consumers health. The effect of climate change on the quality of food ingredients and products could also have the potential to influence food authenticity. However, this issue has not been considered. This article focused on the interactions between consumer health and the potential effects of climate change on food authenticity and fraud. The role of technology and development of risk management tools to mitigate these issues are also discussed. Where applicable papers that underline the links between the interactions of climate change, human health and food fraud were referenced.
Collapse
Affiliation(s)
- Louwrens C Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Jana Schreuder
- Food Science Department, Stellenbosch University, Stellenbosch, South Africa
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Temerdashev Z, Abakumov A, Bolshov M, Khalafyan A, Ageeva N, Vasilyev A, Ramazanov A. Instrumental assessment of the formation of the elemental composition of wines with various bentonite clays. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Nejdl L, Havlikova M, Mravec F, Vaculovic T, Faltusova V, Pavelicova K, Baron M, Kumsta M, Ondrousek V, Adam V, Vaculovicova M. UV-Induced fingerprint spectroscopy. Food Chem 2022; 368:130499. [PMID: 34496333 DOI: 10.1016/j.foodchem.2021.130499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 01/04/2023]
Abstract
Here, we present the potential analytical applications of photochemistry in combination with fluorescence fingerprinting. Our approach analyzes the fluorescence of samples after ultraviolet light (UV) treatment. Especially in presence of metal ions and thiol-containing compounds, the fluorescence behavior changes considerably. The UV-induced reactions (changes) are unique to a given sample composition, resulting in distinct patterns or fingerprints (typically in the 230-600 nm spectral region). This method works without the need for additional chemicals or fluorescent probes, only suitable diluent must be used. The proposed method (UV fingerprinting) suggests the option of recognizing various types of pharmaceuticals, beverages (juices and wines), and other samples within only a few minutes. In some studied samples (e.g. pharmaceuticals), significant changes in fluorescence characteristics (mainly fluorescence intensity) were observed. We believe that the fingerprinting technique can provide an innovative solution for analytical detection.
Collapse
Affiliation(s)
- Lukas Nejdl
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Martina Havlikova
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Filip Mravec
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Masaryk University, Faculty of Science, Kamenice 5, 62500 Brno, Czech Republic
| | - Veronika Faltusova
- Department of Chemistry, Masaryk University, Faculty of Science, Kamenice 5, 62500 Brno, Czech Republic
| | - Kristyna Pavelicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00 Brno, Czech Republic
| | - Mojmir Baron
- Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Michal Kumsta
- Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Vit Ondrousek
- Department of Informatics, Mendel University in Brno, Zemedelska 1, CZ 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
5
|
Classification and authentication of Slovak varietal wines by attenuated total reflectance Fourier-transform infrared spectrometry and multidimensional data analysis. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
|
7
|
A matter of place: Sensory and chemical characterisation of fine Australian Chardonnay and Shiraz wines of provenance. Food Res Int 2020; 130:108903. [PMID: 32156353 DOI: 10.1016/j.foodres.2019.108903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 11/23/2022]
Abstract
Establishing a fine wine image through regional typicality has been of interest to New World wine producing countries like Australia, but previous research mainly involved unoaked experimental wines, which were not reflective of the retail wine market. The regional typicality of commercially available fine Australian wines (FAW) was therefore explored, based on the hypotheses that sensory and chemical composition of varietal fine wines would discriminate by region, and further nuances within region would be explained by drivers of intraregional typicality. Chardonnay wines (2015 vintage) from Margaret River (MR, n = 16) and Yarra Valley (YV, n = 16); and Shiraz wines (2014 vintage) from Barossa Valley (BV, n = 16) and McLaren Vale (MV = 15), were selected for descriptive sensory analysis and underwent profiling of volatiles by gas chromatography-mass spectrometry (GC-MS). For both grape varieties, there was large variability in wine styles among wines from the same GI, such as fruity/crisp vs oaked Chardonnay and oaky/astringent vs savoury Shiraz. Consequently, human intervention seemed to be an important component of regional/sub-regional typicality, which therefore cannot be determined solely on geographic origin of the fruit. Using a combination of sensory markers and volatile profiles allowed the building of regional typicality models, which are promising, however, consumers may not perceive sub-regional differences based on sensory attributes. Undoubtedly, variation of wine styles emerging across wine regions, vintages, and viticultural and winemaking practices needs to be further explored, but this work created a preliminary sensory and volatile map for future research.
Collapse
|
8
|
Pan T, Zheng L, Liu J, Guo M, Honghui C, Wang J. Research on key technologies of wine quality and safety system using ANN. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-179506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Tiejun Pan
- School of Digital Technology and Engineering, Ningbo University of Finance and Economics, Ningbo, China
| | - Leina Zheng
- School of Business, Zhejiang Wanli University, Ningbo, China
| | - Jun Liu
- School of Management Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Ming Guo
- Ningbo World Information Technology Development Co., Ltd, Zhejiang University City College, Ningbo, China
| | - Chai Honghui
- Ningbo Qihe Gabriel Agricultural Technology Co., Ltd., Ningbo, China
| | - Jun Wang
- School of Business, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
9
|
Geographical origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint technology combined with chemometrics. Sci Rep 2019; 9:8256. [PMID: 31164667 PMCID: PMC6547656 DOI: 10.1038/s41598-019-44521-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/14/2019] [Indexed: 11/12/2022] Open
Abstract
Mid-infrared (MIR) and near-infrared (NIR) spectroscopy combined with chemometrics were explored to classify Cabernet Sauvignon wines from different countries (Australia, Chile and China). Commercial wines (n = 540) were scanned in transmission mode using MIR and NIR, and their characteristic fingerprint bands were extracted at 1750-1000 cm−1 and 4555-4353 cm−1. Through the identification system of Tri-step infrared spectroscopy, the correlation between macroscopic chemical fingerprints and geographical regions was explored more deeply. Furthermore, Principal component analysis (PCA), soft independent modelling of class analogy (SIMCA) and discriminant analysis (DA) based on MIR and NIR spectra were used to visualize or discriminate differences between samples and to realize geographical origin traceability of Cabernet Sauvignon wines. Through “external test set (n = 157)” validation, SIMCA models correctly classified 97%, 97% and 92% of Australian, Chilean and Chinese Cabernet Sauvignon wines, while the DA models correctly classified 86%, 85% and 77%, respectively. Based on unique digital fingerprints of spectroscopy (FT-MIR and FT-NIR) associated with chemometrics, geographical origin traceability was achieved in a more comprehensive, effective and rapid manner. The developed database models based on IR fingerprint spectroscopy with chemometrics could provide scientific basis and reference for geographical origin traceability of Cabernet Sauvignon wines (Australia, Chile and China).
Collapse
|
10
|
Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J. A review of methods for the detection of pathogenic microorganisms. Analyst 2019; 144:396-411. [PMID: 30468217 DOI: 10.1039/c8an01488d] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The testing and rapid detection of pathogenic organisms is a crucial protocol in the prevention and identification of crises related to health, safety and wellbeing. Pathogen detection has become one of the most challenging aspects in the food and water industries, because of the rapid spread of waterborne and foodborne diseases in the community and at significant costs. With the prospect of inevitable population growth, and an influx of tourism to certain water bodies testing will become a requirement to control and prevent possible outbreaks of potentially fatal illnesses. The legislation is already particularly rigorous in the food industry, where failure to detect pathogenic materials represents a catastrophic event, particularly for the elderly, very young or immune-compromised population types. In spite of the need and requirement for rapid analytical testing, conventional and standard bacterial detection assays may take up to seven days to yield a result. Given the advent of new technologies, biosensors, chemical knowledge and miniaturisation of instrumentation this timescale is not acceptable. This review presents an opportunity to fill a knowledge gap for an extremely important research area; discussing the main techniques, biology, chemistry, miniaturisation, sensing and the emerging state-of-the-art research and developments for detection of pathogens in food, water, blood and faecal samples.
Collapse
Affiliation(s)
- P Rajapaksha
- School of Science, RMIT University, La Trobe Street, Melbourne, 3000, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Innamorato V, Longobardi F, Lippolis V, Cortese M, Logrieco AF, Catucci L, Agostiano A, De Girolamo A. Tracing the Geographical Origin of Lentils (Lens culinaris Medik.) by Infrared Spectroscopy and Chemometrics. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1406-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Handling Complexity in Animal and Plant Science Research-From Single to Functional Traits: Are We There Yet? High Throughput 2018; 7:ht7020016. [PMID: 29843407 PMCID: PMC6023355 DOI: 10.3390/ht7020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 11/16/2022] Open
Abstract
The current knowledge of the main factors governing livestock, crop and plant quality as well as yield in different species is incomplete. For example, this can be evidenced by the persistence of benchmark crop varieties for many decades in spite of the gains achieved over the same period. In recent years, it has been demonstrated that molecular breeding based on DNA markers has led to advances in breeding (animal and crops). However, these advances are not in the way that it was anticipated initially by the researcher in the field. According to several scientists, one of the main reasons for this was related to the evidence that complex target traits such as grain yield, composition or nutritional quality depend on multiple factors in addition to genetics. Therefore, some questions need to be asked: are the current approaches in molecular genetics the most appropriate to deal with complex traits such as yield or quality? Are the current tools for phenotyping complex traits enough to differentiate among genotypes? Do we need to change the way that data is collected and analysed?
Collapse
|
13
|
Abstract
Real-time analytical tools to monitor bioprocess and fermentation in biological and food applications are becoming increasingly important. Traditional laboratory-based analyses need to be adapted to comply with new safety and environmental guidelines and reduce costs. Many methods for bioprocess fermentation monitoring are spectroscopy-based and include visible (Vis), infrared (IR) and Raman. This paper describes the main principles and recent developments in UV-Vis spectroscopy to monitor bioprocess and fermentation in different food production applications.
Collapse
|
14
|
The Application of State-of-the-Art Analytic Tools (Biosensors and Spectroscopy) in Beverage and Food Fermentation Process Monitoring. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3040050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|