1
|
Lamorte D, Calice G, Trino S, Santodirocco M, Caivano A, De Luca L, Laurenzana I. Acute myeloid leukemia-derived extracellular vesicles induced DNA methylation changes responsible for inflammatory program in normal hematopoietic stem progenitor cells. Front Immunol 2025; 16:1569159. [PMID: 40276507 PMCID: PMC12018244 DOI: 10.3389/fimmu.2025.1569159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Acute Myeloid Leukemia (AML) cells communicate with surrounding normal cells, including hematopoietic stem progenitor cells (HSPCs), in the bone marrow, and modify their fate supporting tumor growth. This communication can be mediated by Extracellular Vesicles (EVs), small vectors carrying a range of tumor molecular information. One of the hallmarks of AML is the aberrant DNA methylation. It is not known if and how AML cells can modify the epigenomic profile of healthy HSPCs. Here, we investigated the DNA methylation profile of HSPCs after exposure to AML derived-EVs. Methods Cord blood derived-HSPCs were treated with AML cell line derived-EVs for 20 hours and then their DNA methylation profile was analyzed by methylation array. We cross-referenced differential methylated genes (dmGs) with differential expressed genes (deGs) obtained by gene expression profile of same EV treated-HSPCs. Gene ontology was performed on dmGs and deGs. To confirm the expression of some genes, digital PCR was applied. Results AML-EVs induced DNA methylation changes in HSPCs after short time exposure, showing 110-890 dmGs. In particular, we reported a DNA hypo-methylation in both promoter and body regions. DmGs showed an enrichment in hematopoietic and immunological processes, inflammation, cell movement and AML pathways. The intersection between dmGs and deGs identified 20 common genes, including DSE, SEMA4A, NFKB1 and MTSS1, whose over-expression could be associated with the hypo-methylation of their gene body, and other ones, such as SLA and CUTA whose down-expression could be associated with the hypo-methylated promoter. These deGs were involved in NF-kB pathway, interleukin mediate Toll like receptor signaling and, of note, in tumor. Conclusion This study is the first proof-of-concept that AML-EVs were able to induce changes in DNA methylation of HSPCs modulating the expression of genes involved in inflammatory processes capable of modifying normal hematopoiesis towards leukemic like processes.
Collapse
Affiliation(s)
- Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Michele Santodirocco
- Trasfusional Medicine Department, Puglia Cord Blood Bank (CBB), Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Antonella Caivano
- Unit of Clinical Pathology, IRCCS Centro di Riferimento Oncologico della Basilicata CROB, Rionero in Vulture (PZ), Italy
| | - Luciana De Luca
- Unit of Clinical Pathology, IRCCS Centro di Riferimento Oncologico della Basilicata CROB, Rionero in Vulture (PZ), Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| |
Collapse
|
2
|
Zhang S, Yang L, Duoji Z, Qiangba D, Hu X, Jiang Z, Hou D, Hu Z, Basang Z. DNA Methylation Changes and Phenotypic Adaptations Induced Repeated Extreme Altitude Exposure at 8848 Meters. Int J Mol Sci 2024; 25:12652. [PMID: 39684363 DOI: 10.3390/ijms252312652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 12/18/2024] Open
Abstract
Repeated extreme environmental training (RET) enhances adaptability and induces lasting methylation modifications. We recruited 64 participants from a high-altitude region (4700 m), including 32 volunteers with repeated high-altitude exposure, reaching up to 8848 m and as many as 11 exposures. By analyzing 741,489 CpG loci and 39 phenotypes, we identified significant changes in 13 CpG loci (R2 > 0.8, ACC > 0.75) and 15 phenotypes correlated with increasing RET exposures. The phenotypic Bayesian causal network and phenotypic-CpG interaction networks showed greater robustness (node correlation) with more RET exposures, particularly in systolic blood pressure (SP), platelet count (PLT), and neutrophil count (NEUT). Six CpG sites were validated as significantly associated with hypoxia exposure using the GEO public da-taset (AltitudeOmics). Furthermore, dividing the participants into two groups based on the number of RET exposures (n = 9 and 4) revealed six CpG sites significantly corre-lated with PLT and red cell distribution width-standard deviation (RDW.SD). Our findings suggest that increased RET exposures strengthen the interactions between phenotypes and CpG sites, indicating that critical extreme adaptive states may alter methylation patterns, co-evolving with phenotypes such as PLT, RDW.SD, and NEUT.
Collapse
Affiliation(s)
- Shixuan Zhang
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - La Yang
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| | - Zhuoma Duoji
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| | - Danzeng Qiangba
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| | - Xiaoxi Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Zeyu Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Dandan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Zixin Hu
- Artificial Intelligence Innovation and Incubation Institute of Fudan University, Shanghai 200438, China
| | - Zhuoma Basang
- High Altitude Health Science Research Centre of Tibet University, Tibet University, 10 East Zangda Road, Lhasa 850000, China
| |
Collapse
|
3
|
Park MN. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. Int J Mol Sci 2023; 24:12037. [PMID: 37569414 PMCID: PMC10418941 DOI: 10.3390/ijms241512037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and incurable leukemia subtype. Despite extensive research into the disease's intricate molecular mechanisms, effective treatments or expanded diagnostic or prognostic markers for AML have not yet been identified. The morphological, immunophenotypic, cytogenetic, biomolecular, and clinical characteristics of AML patients are extensive and complex. Leukemia stem cells (LSCs) consist of hematopoietic stem cells (HSCs) and cancer cells transformed by a complex, finely-tuned interaction that causes the complexity of AML. Microenvironmental regulation of LSCs dormancy and the diagnostic and therapeutic implications for identifying and targeting LSCs due to their significance in the pathogenesis of AML are discussed in this review. It is essential to perceive the relationship between the niche for LSCs and HSCs, which together cause the progression of AML. Notably, methylation is a well-known epigenetic change that is significant in AML, and our data also reveal that microRNAs are a unique factor for LSCs. Multiple-targeted approaches to reduce the risk of epigenetic factors, such as the administration of natural compounds for the elimination of local LSCs, may prevent potentially fatal relapses. Furthermore, the survival analysis of overlapping genes revealed that specific targets had significant effects on the survival and prognosis of patients. We predict that the multiple-targeted effects of herbal products on epigenetic modification are governed by different mechanisms in AML and could prevent potentially fatal relapses. Thus, these strategies can facilitate the incorporation of herbal medicine and natural compounds into the advanced drug discovery and development processes achievable with Network Pharmacology research.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
4
|
Xu X, Wang H, Han H, Yao Y, Li X, Qi J, Cai C, Zhou M, Tang Y, Pan T, Zhang Z, Yang J, Wu D, Han Y. Clinical characteristics and prognostic significance of DNA methylation regulatory gene mutations in acute myeloid leukemia. Clin Epigenetics 2023; 15:54. [PMID: 36991512 PMCID: PMC10061765 DOI: 10.1186/s13148-023-01474-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND DNA methylation is a form of epigenetic modification that regulates gene expression. However, there are limited data on the comprehensive analysis of DNA methylation regulated gene mutations (DMRGM) in acute myeloid leukemia (AML) mainly referring to DNA methyltransferase 3α (DNMT3A), isocitrate dehydrogenase 1 (IDH1), isocitrate dehydrogenase 2 (IDH2), and Tet methylcytidine dioxygenase 2 (TET2). RESULTS A retrospective study of the clinical characteristics and gene mutations in 843 newly diagnosed non-M3 AML patients was conducted between January 2016 and August 2019. 29.7% (250/843) of patients presented with DMRGM. It was characterized by older age, higher white blood cell count, and higher platelet count (P < 0.05). DMRGM frequently coexisted with FLT3-ITD, NPM1, FLT3-TKD, and RUNX1 mutations (P < 0.05). The CR/CRi rate was only 60.3% in DMRGM patients, significantly lower than in non-DMRGM patients (71.0%, P = 0.014). In addition to being associated with poor overall survival (OS), DMRGM was also an independent risk factor for relapse-free survival (RFS) (HR: 1.467, 95% CI: 1.030-2.090, P = 0.034). Furthermore, OS worsened with an increasing burden of DMRGM. Patients with DMRGM may be benefit from hypomethylating drugs, and the unfavorable prognosis of DMRGM can be overcome by hematopoietic stem cell transplantation (HSCT). For external validation, the BeatAML database was downloaded, and a significant association between DMRGM and OS was confirmed (P < 0.05). CONCLUSION Our study provides an overview of DMRGM in AML patients, which was identified as a risk factor for poor prognosis.
Collapse
Affiliation(s)
- Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Hong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Haohao Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Yifang Yao
- Soochow Hopes Hematonosis Hospital, Suzhou, People's Republic of China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Chengsen Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Yaqiong Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Jingyi Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
5
|
Herek TA, Bouska A, Lone W, Sharma S, Amador C, Heavican TB, Li Y, Wei Q, Jochum D, Greiner TC, Smith L, Pileri S, Feldman AL, Rosenwald A, Ott G, Lim ST, Ong CK, Song J, Jaffe ES, Wang GG, Staudt L, Rimsza LM, Vose J, d'Amore F, Weisenburger DD, Chan WC, Iqbal J. DNMT3A mutations define a unique biological and prognostic subgroup associated with cytotoxic T cells in PTCL-NOS. Blood 2022; 140:1278-1290. [PMID: 35639959 PMCID: PMC9479030 DOI: 10.1182/blood.2021015019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are heterogenous T-cell neoplasms often associated with epigenetic dysregulation. We investigated de novo DNA methyltransferase 3A (DNMT3A) mutations in common PTCL entities, including angioimmunoblastic T-cell lymphoma and novel molecular subtypes identified within PTCL-not otherwise specified (PTCL-NOS) designated as PTCL-GATA3 and PTCL-TBX21. DNMT3A-mutated PTCL-TBX21 cases showed inferior overall survival (OS), with DNMT3A-mutated residues skewed toward the methyltransferase domain and dimerization motif (S881-R887). Transcriptional profiling demonstrated significant enrichment of activated CD8+ T-cell cytotoxic gene signatures in the DNMT3A-mutant PTCL-TBX21 cases, which was further validated using immunohistochemistry. Genomewide methylation analysis of DNMT3A-mutant vs wild-type (WT) PTCL-TBX21 cases demonstrated hypomethylation in target genes regulating interferon-γ (IFN-γ), T-cell receptor signaling, and EOMES (eomesodermin), a master transcriptional regulator of cytotoxic effector cells. Similar findings were observed in a murine model of PTCL with Dnmt3a loss (in vivo) and further validated in vitro by ectopic expression of DNMT3A mutants (DNMT3A-R882, -Q886, and -V716, vs WT) in CD8+ T-cell line, resulting in T-cell activation and EOMES upregulation. Furthermore, stable, ectopic expression of the DNMT3A mutants in primary CD3+ T-cell cultures resulted in the preferential outgrowth of CD8+ T cells with DNMT3AR882H mutation. Single-cell RNA sequencing(RNA-seq) analysis of CD3+ T cells revealed differential CD8+ T-cell subset polarization, mirroring findings in DNMT3A-mutated PTCL-TBX21 and validating the cytotoxic and T-cell memory transcriptional programs associated with the DNMT3AR882H mutation. Our findings indicate that DNMT3A mutations define a cytotoxic subset in PTCL-TBX21 with prognostic significance and thus may further refine pathological heterogeneity in PTCL-NOS and suggest alternative treatment strategies for this subset.
Collapse
Affiliation(s)
- Tyler A Herek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Tayla B Heavican
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yuping Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Qi Wei
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Dylan Jochum
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE
| | - Stefano Pileri
- Division of Diagnostic Hematopathology, European Institute of Oncology-IEO IRCCS, Milan, Italy
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Joo Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Elaine S Jaffe
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Louis Staudt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ
| | - Julie Vose
- Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE; and
| | - Francesco d'Amore
- Department of Haematology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
6
|
Muylaert C, Van Hemelrijck LA, Maes A, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. Aberrant DNA methylation in multiple myeloma: A major obstacle or an opportunity? Front Oncol 2022; 12:979569. [PMID: 36059621 PMCID: PMC9434119 DOI: 10.3389/fonc.2022.979569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Drug resistance (DR) of cancer cells leading to relapse is a huge problem nowadays to achieve long-lasting cures for cancer patients. This also holds true for the incurable hematological malignancy multiple myeloma (MM), which is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Although new treatment approaches combining immunomodulatory drugs, corticosteroids, proteasome inhibitors, alkylating agents, and monoclonal antibodies have significantly improved median life expectancy, MM remains incurable due to the development of DR, with the underlying mechanisms remaining largely ill-defined. It is well-known that MM is a heterogeneous disease, encompassing both genetic and epigenetic aberrations. In normal circumstances, epigenetic modifications, including DNA methylation and posttranslational histone modifications, play an important role in proper chromatin structure and transcriptional regulation. However, in MM, numerous epigenetic defects or so-called ‘epimutations’ have been observed and this especially at the level of DNA methylation. These include genome-wide DNA hypomethylation, locus specific hypermethylation and somatic mutations, copy number variations and/or deregulated expression patterns in DNA methylation modifiers and regulators. The aberrant DNA methylation patterns lead to reduced gene expression of tumor suppressor genes, genomic instability, DR, disease progression, and high-risk disease. In addition, the frequency of somatic mutations in the DNA methylation modifiers seems increased in relapsed patients, again suggesting a role in DR and relapse. In this review, we discuss the recent advances in understanding the involvement of aberrant DNA methylation patterns and/or DNA methylation modifiers in MM development, progression, and relapse. In addition, we discuss their involvement in MM cell plasticity, driving myeloma cells to a cancer stem cell state characterized by a more immature and drug-resistant phenotype. Finally, we briefly touch upon the potential of DNA methyltransferase inhibitors to prevent relapse after treatment with the current standard of care agents and/or new, promising (immuno) therapies.
Collapse
|
7
|
Laqqan MM, Yassin MM. Cigarette heavy smoking alters DNA methylation patterns and gene transcription levels in humans spermatozoa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26835-26849. [PMID: 34855177 DOI: 10.1007/s11356-021-17786-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 05/27/2023]
Abstract
Tobacco smoking is considered the most common reason of death and infertility around the world. This study was designed to assess the impact of tobacco heavy smoking on sperm DNA methylation patterns and to determine whether the transcription level of ALDH3B2, PTGIR, PRICKLE2, and ALS2CR12 genes is different in heavy smokers compared to non-smokers. As a screening study, the 450 K array was used to assess the alteration in DNA methylation patterns between heavy smokers (n = 15) and non-smokers (n = 15). Then, four CpGs that have the highest difference in methylation level (cg16338278, cg08408433, cg05799088, and cg07227024) were selected for validation using deep bisulfite sequencing in an independent cohort of heavy smokers (n = 200) and non-smokers (n = 100). A significant variation was found between heavy smokers and non-smokers in the methylation level at all CpGs within the PRICKLE2 and ALS2CR12 gene amplicon (P < 0.001). Similarly, a significant variation was found in the methylation level at nine out of thirteen CpGs within the ALDH3B2 gene amplicon (P < 0.01). Additionally, eighteen CpGs out of the twenty-six within the PTGIR gene amplicon have a significant difference in the methylation level between heavy smokers and non-smokers (P < 0.01). The study showed a significant difference in sperm global DNA methylation, chromatin non-condensation, and DNA fragmentation (P < 0.001) between heavy smokers and non-smokers. A significant decline was shown in the transcription level of ALDH3B2, PTGIR, PRICKLE2, and ALS2CR12 genes (P < 0.001) in heavy smokers. In conclusion, heavy smoking influences DNA methylation at several CpGs, sperm global DNA methylation, and transcription level of the PRICKLE2, ALS2CR12, ALDH3B2, and PTGIR genes, which affects negatively the semen parameters of heavy smokers.
Collapse
Affiliation(s)
- Mohammed M Laqqan
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Islamic University, Gaza, Palestinian Territories, Palestine.
| | - Maged M Yassin
- Department of Human Physiology, Faculty of Medicine, Islamic University, Gaza, Palestinian Territories, Palestine
| |
Collapse
|
8
|
Ma L, Tang Q, Gao X, Lee J, Lei R, Suzuki M, Zheng D, Ito K, Frenette PS, Dawlaty MM. Tet-mediated DNA demethylation regulates specification of hematopoietic stem and progenitor cells during mammalian embryogenesis. SCIENCE ADVANCES 2022; 8:eabm3470. [PMID: 35235365 PMCID: PMC8890710 DOI: 10.1126/sciadv.abm3470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/06/2022] [Indexed: 05/10/2023]
Abstract
Ten-eleven translocation (Tet) enzymes promote DNA demethylation by oxidizing 5-methylcytosine. They are expressed during development and are essential for mouse gastrulation. However, their postgastrulation functions are not well established. We find that global or endothelial-specific loss of all three Tet enzymes immediately after gastrulation leads to reduced number of hematopoietic stem and progenitor cells (HSPCs) and lethality in mid-gestation mouse embryos. This is due to defects in specification of HSPCs from endothelial cells (ECs) that compromise primitive and definitive hematopoiesis. Mechanistically, loss of Tet enzymes in ECs led to hypermethylation and down-regulation of NFκB1 and master hematopoietic transcription factors (Gata1/2, Runx1, and Gfi1b). Restoring Tet catalytic activity or overexpression of these factors in Tet-deficient ECs rescued hematopoiesis defects. This establishes Tet enzymes as activators of hematopoiesis programs in ECs for specification of HSPCs during embryogenesis, which is distinct from their roles in adult hematopoiesis, with implications in deriving HSPCs from pluripotent cells.
Collapse
Affiliation(s)
- Liyang Ma
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Xin Gao
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Joun Lee
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Run Lei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Meelad M. Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| |
Collapse
|
9
|
Chattopadhyaya S, Ghosal S. DNA methylation: a saga of genome maintenance in hematological perspective. Hum Cell 2022; 35:448-461. [DOI: 10.1007/s13577-022-00674-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022]
|
10
|
|
11
|
Cenariu D, Iluta S, Zimta AA, Petrushev B, Qian L, Dirzu N, Tomuleasa C, Bumbea H, Zaharie F. Extramedullary Hematopoiesis of the Liver and Spleen. J Clin Med 2021; 10:5831. [PMID: 34945127 PMCID: PMC8707658 DOI: 10.3390/jcm10245831] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is the formation of blood cellular components and, consequently, immune cells. In a more complete definition, this process refers to the formation, growth, maturation, and specialization of blood cells, from the hematopoietic stem cell, through the hematopoietic progenitor cells, to the s pecialized blood cells. This process is tightly regulated by several elements of the bone marrow microenvironment, such as growth factors, transcription factors, and cytokines. During embryonic and fetal development, hematopoiesis takes place in different organs: the yolk sac, the aorta-gonad mesonephros region, the lymph nodes, and not lastly, the fetal liver and the spleen. In the current review, we describe extramedullary hematopoiesis of the spleen and liver, with an emphasis on myeloproliferative conditions.
Collapse
Affiliation(s)
- Diana Cenariu
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (B.P.); (N.D.)
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania;
- Department of Hematology, Municipal County Hospital, 400111 Oradea, Romania
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (B.P.); (N.D.)
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (B.P.); (N.D.)
- Department of Pathology, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400124 Cluj-Napoca, Romania
| | - Liren Qian
- Department of Hematology, 5th Medical Center of the People’s Liberation Army General Hospital, Beijing 100037, China;
| | - Noemi Dirzu
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (B.P.); (N.D.)
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (D.C.); (A.-A.Z.); (B.P.); (N.D.)
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania;
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400004 Cluj-Napoca, Romania
| | - Horia Bumbea
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 400004 Bucharest, Romania
- Department of Hematology, University Emergency Hospital, 400004 Bucharest, Romania
| | - Florin Zaharie
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Meng FJ, Guo F, Sun ZN, Wang SJ, Yang CR, Wang CY, Zhang WC, Gao ZY, Ji LL, Feng FK, Guan ZY, Wang GS. Downregulation of DNMT3a expression by RNAi and its effect on NF-κBs expression of thymic epithelial cells. Immunol Lett 2021; 237:17-26. [PMID: 34192561 DOI: 10.1016/j.imlet.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To understand the characteristics of DNA methyltransferase 3a (DNMT3a) in thymoma associated Myasthenia Gravis reveal its transcriptional regulator network as while as analyze the effect of DNMT3a on Rel/ nuclear factor-kappaB family (RelA/RelB) and its downstream autoimmune regulatory factor (Aire). METHODS Tissues of 30 patients with thymoma, with or without myasthenia gravis (MG), were collected and the DNMT3a protein expression were evaluated through immunohistochemistry. We performed mRNA expression profiling microarray detection and analysis, and integrated the analysis by constructing protein-protein interaction networks and the integration with other database. We identified molecular difference between low and high DNMT3a in the thymoma by heatmap. We also performed PCR validation in thymoma tissues. The DNMT3a-shRNA plasmid was transfected into TEC cells, and these cells were treated with 5-aza-2-deoxycytidine, a blocker of DNMT3a. After the down-regulation of DNMT3a in TEC cells, the transcript and protein levels of RelA, RelB, Aire, and CHRNA3 were evaluated by western blotting. In addition, changes in gene expression profiles were screened through microarray technology. We performed differential gene analysis in the thymoma cohort by heatmap with R (v.4.3.0) software. RESULTS In 30 matched tissue specimens, the expression of DNMT3a protein in thymoma with MG was lower than that in thymoma. Through mRNA expression profiling analysis, we constructed a co-expression network of DNMT3a and found direct interaction between IKZF1 and DNMT3a, and this co-expression relationship was overlappted with Cistrome DB database. We found up-regulation of 149 mRNAs and repression of 177 mRNAs in thymoma with MG compared with thymoma. Gene ontology and pathway analysis show the involvement of a multitude of genes in the mis-regulation of MG-related pathways. RNA interference significantly reduced the level of mRNA of DNMT3a, which proved that plasmid DNMT3a was effective. In comparison to the control group, the levels of DNMT3a, Aire, and CHRNA3 mRNA and protein in TEC cells transfected with DNMT3a-shRNA interference plasmid were significantly decreased, while the expression level of RelA and RelA/RelB was significantly increased. CONCLUSIONS Our study reveals the DNMT3a-NF-κB pathway has a major effect on MG, and can be used as a marker for diagnosis as well as a target for MG treatment.
Collapse
Affiliation(s)
- Fan-Jie Meng
- Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin 301800, China
| | - Feng Guo
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhao-Nan Sun
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | | | - Chun-Rui Yang
- The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chun-Yang Wang
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen-Cheng Zhang
- Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin 301800, China
| | - Zhou-Yong Gao
- Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin 301800, China
| | - Lin-Lin Ji
- Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin 301800, China
| | - Fu-Kai Feng
- Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin 301800, China
| | - Zhi-Yu Guan
- The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Guang-Shun Wang
- Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin 301800, China.
| |
Collapse
|
13
|
Genomic Uracil and Aberrant Profile of Demethylation Intermediates in Epigenetics and Hematologic Malignancies. Int J Mol Sci 2021; 22:ijms22084212. [PMID: 33921666 PMCID: PMC8073381 DOI: 10.3390/ijms22084212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
DNA of all living cells undergoes continuous structural and chemical alterations resulting from fundamental cellular metabolic processes and reactivity of normal cellular metabolites and constituents. Examples include enzymatically oxidized bases, aberrantly methylated bases, and deaminated bases, the latter largely uracil from deaminated cytosine. In addition, the non-canonical DNA base uracil may result from misincorporated dUMP. Furthermore, uracil generated by deamination of cytosine in DNA is not always damage as it is also an intermediate in normal somatic hypermutation (SHM) and class shift recombination (CSR) at the Ig locus of B-cells in adaptive immunity. Many of the modifications alter base-pairing properties and may thus cause replicative and transcriptional mutagenesis. The best known and most studied epigenetic mark in DNA is 5-methylcytosine (5mC), generated by a methyltransferase that uses SAM as methyl donor, usually in CpG contexts. Oxidation products of 5mC are now thought to be intermediates in active demethylation as well as epigenetic marks in their own rights. The aim of this review is to describe the endogenous processes that surround the generation and removal of the most common types of DNA nucleobase modifications, namely, uracil and certain epigenetic modifications, together with their role in the development of hematological malignances. We also discuss what dictates whether the presence of an altered nucleobase is defined as damage or a natural modification.
Collapse
|
14
|
Velasco G, Ulveling D, Rondeau S, Marzin P, Unoki M, Cormier-Daire V, Francastel C. Interplay between Histone and DNA Methylation Seen through Comparative Methylomes in Rare Mendelian Disorders. Int J Mol Sci 2021; 22:3735. [PMID: 33916664 PMCID: PMC8038329 DOI: 10.3390/ijms22073735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.
Collapse
Affiliation(s)
- Guillaume Velasco
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| | - Damien Ulveling
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| | - Sophie Rondeau
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Pauline Marzin
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Motoko Unoki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Claire Francastel
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| |
Collapse
|
15
|
Lopusna K, Nowialis P, Opavska J, Abraham A, Riva A, Opavsky R. Dnmt3b catalytic activity is critical for its tumour suppressor function in lymphomagenesis and is associated with c-Met oncogenic signalling. EBioMedicine 2021; 63:103191. [PMID: 33418509 PMCID: PMC7804970 DOI: 10.1016/j.ebiom.2020.103191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND DNA methylation regulates gene transcription in many physiological processes in mammals including development and haematopoiesis. It is catalysed by several DNA methyltransferases, including Dnmt3b that mediates both methylation-dependant and independent gene repression. Dnmt3b is critical for mouse embryogenesis and functions as a tumour suppressor in haematologic malignancies in mice. However, the extent to which Dnmt3b's catalytic activity (CA) is involved in development and cancer is unclear. METHODS We used a mouse model expressing catalytically inactive Dnmt3b (Dnmt3bCI) to study a role of Dnmt3b's CA in development and cancer. We utilized global approaches including Whole-genome Bisulfite sequencing and RNA-seq to analyse DNA methylation and gene expression to identify putative targets of Dnmt3b's CA. To analyse postnatal development and haematopoiesis, we used tissue staining, histological and FACS analysis. To determine potential involvement of selected genes in lymphomagenesis, we used overexpression and knock down approaches followed by in vitro growth assays. FINDINGS We show that mice expressing Dnmt3bCI only, survive postnatal development and develop ICF (the immunodeficiency-centromeric instability-facial anomalies) -like syndrome. The lack of Dnmt3b's CA promoted fibroblasts transformation in vitro, accelerated MLL-AF9 driven Acute Myeloid Leukaemia and MYC-induced T-cell lymphomagenesis in vivo. The elimination of Dnmt3b's CA resulted in decreased methylation of c-Met promoter and its upregulation, activated oncogenic Met signalling, Stat3 phosphorylation and up-regulation of Lin28b promoting lymphomagenesis. INTERPRETATION Our data demonstrates that Dnmt3b's CA is largely dispensable for mouse development but critical to prevent tumourigenesis by controlling events involved in cellular transformation. FUNDING This study was supported by Department of Anatomy and Cell Biology and Cancer Centre at the University of Florida start-up funds, NIH/NCI grant 1R01CA188561-01A1 (R.O.).
Collapse
Affiliation(s)
- Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL 32610, United States
| | - Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL 32610, United States
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL 32610, United States
| | - Ajay Abraham
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL 32610, United States
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, P.O. Box 103622. Gainesville, FL 32610, United States
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL 32610, United States.
| |
Collapse
|
16
|
Lopusna K, Nowialis P, Opavska J, Abraham A, Riva A, Haney SL, Opavsky R. Decreases in different Dnmt3b activities drive distinct development of hematologic malignancies in mice. J Biol Chem 2021; 296:100285. [PMID: 33450231 PMCID: PMC7949038 DOI: 10.1016/j.jbc.2021.100285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
DNA methylation regulates gene transcription and is involved in various physiological processes in mammals, including development and hematopoiesis. It is catalyzed by DNA methyltransferases including Dnmt1, Dnmt3a, and Dnmt3b. For Dnmt3b, its effects on transcription can result from its own DNA methylase activity, the recruitment of other Dnmts to mediate methylation, or transcription repression in a methylation-independent manner. Low-frequency mutations in human DNMT3B are found in hematologic malignancies including cutaneous T-cell lymphomas, hairy cell leukemia, and diffuse large B-cell lymphomas. Moreover, Dnmt3b is a tumor suppressor in oncogene-driven lymphoid and myeloid malignancies in mice. However, it is poorly understood how the different Dnmt3b activities contribute to these outcomes. We modulated Dnmt3b activity in vivo by generating Dnmt3b+/- mice expressing one wild-type allele as well as Dnmt3b+/CI and Dnmt3bCI/CI mice where one or both alleles express catalytically inactive Dnmt3bCI. We show that 43% of Dnmt3b+/- mice developed T-cell lymphomas, chronic lymphocytic leukemia, and myeloproliferation over 18 months, thus resembling phenotypes previously observed in Dnmt3a+/- mice, possibly through regulation of shared target genes. Interestingly, Dnmt3b+/CI and Dnmt3bCI/CI mice survived postnatal development and were affected by B-cell rather than T-cell malignancies with decreased penetrance. Genome-wide hypomethylation, increased expression of oncogenes such as Jdp2, STAT1, and Trip13, and p53 downregulation were major events contributing to Dnmt3b+/- lymphoma development. We conclude that Dnmt3b catalytic activity is critical to prevent B-cell transformation in vivo, whereas accessory and methylation-independent repressive functions are important to prevent T-cell transformation.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities/genetics
- ATPases Associated with Diverse Cellular Activities/metabolism
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- DNA (Cytosine-5-)-Methyltransferases/deficiency
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Heterozygote
- Homozygote
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, T-Cell/enzymology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Male
- Mice
- Mice, Knockout
- Myeloproliferative Disorders/enzymology
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ajay Abraham
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, Gainesville, Florida, USA
| | - Staci L Haney
- Department of Internal Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
17
|
Chebly A, Chouery E, Ropio J, Kourie HR, Beylot-Barry M, Merlio JP, Tomb R, Chevret E. Diagnosis and treatment of lymphomas in the era of epigenetics. Blood Rev 2020; 48:100782. [PMID: 33229141 DOI: 10.1016/j.blre.2020.100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Lymphomas represent a heterogeneous group of cancers characterized by clonal lymphoproliferation. Over the past decades, frequent epigenetic dysregulations have been identified in hematologic malignancies including lymphomas. Many of these impairments occur in genes with established roles and well-known functions in the regulation and maintenance of the epigenome. In hematopoietic cells, these dysfunctions can result in abnormal DNA methylation, erroneous chromatin state and/or altered miRNA expression, affecting many different cellular functions. Nowadays, it is evident that epigenetic dysregulations in lymphoid neoplasms are mainly caused by genetic alterations in genes encoding for enzymes responsible for histone or chromatin modifications. We summarize herein the recent epigenetic modifiers findings in lymphomas. We focus also on the most commonly mutated epigenetic regulators and emphasize on actual epigenetic therapies.
Collapse
Affiliation(s)
- Alain Chebly
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Porto University, Institute of Biomedical Sciences of Abel Salazar, 4050-313 Porto, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465 Porto, Portugal
| | - Hampig Raphael Kourie
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Hematology-Oncology Department, Beirut, Lebanon
| | - Marie Beylot-Barry
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Dermatology Department, 33000 Bordeaux, France
| | - Jean-Philippe Merlio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, 33600 Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France.
| |
Collapse
|
18
|
Abstract
Acute leukemias are hematologic malignancies with aggressive behavior especially in adult population. With the introduction of new gene expression and sequencing technologies there have been advances in the knowledge of the genetic landscape of acute leukemias. A more detailed analysis allows for the identification of additional alterations in epigenetic regulators that have a profound impact in cellular biology without changes in DNA sequence. These epigenetic alterations disturb the physiological balance between gene activation and gene repression and contribute to aberrant gene expression, contributing significantly to the leukemic pathogenesis and maintenance. We review epigenetic changes in acute leukemia in relation to what is known about their mechanism of action, their prognostic role and their potential use as therapeutic targets, with important implications for precision medicine.
Collapse
|
19
|
Tu HC, Lee GH, Hsiao TH, Kao TT, Wang TY, Tsai JN, Fu TF. One crisis, diverse impacts-Tissue-specificity of folate deficiency-induced circulation defects in zebrafish larvae. PLoS One 2017; 12:e0188585. [PMID: 29176804 PMCID: PMC5703520 DOI: 10.1371/journal.pone.0188585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Abstract
Folate (vitamin B9) is an essential nutrient required for cell survival, proliferation, differentiation and therefore embryogenesis. Folate deficiency has been associated with many diseases, including congenital heart diseases and megaloblastic anemia, yet the mechanisms underlying these remains elusive. Here, we examine the impact of folate deficiency on the development of the circulation system using a zebrafish transgenic line which displays inducible folate deficiency. Impaired hematopoiesis includes decreased hemoglobin levels, decreased erythrocyte number, increased erythrocyte size and aberrant c-myb expression pattern were observed in folate deficient embryos. Cardiac defects, including smaller chamber size, aberrant cardiac function and cmlc2 expression pattern, were also apparent in folate deficient embryos. Characterization of intracellular folate content in folate deficiency revealed a differential fluctuation among the different folate derivatives that carry a single carbon group at different oxidation levels. Rescue attempts by folic acid and nucleotides resulted in differential responses among affected tissues, suggesting that different pathomechanisms are involved in folate deficiency-induced anomalies in a tissue-specific manner. The results of the current study provide an explanation for the inconsistent outcome observed clinically in patients suffering from folate deficiency and/or receiving folate supplementation. This study also supports the use of this model for further research on the defective cardiogenesis and hematopoiesis caused by folate deficiency.
Collapse
Affiliation(s)
- Hung-Chi Tu
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Gang-Hui Lee
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Tsun-Hsien Hsiao
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Tseng-Ting Kao
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Tzu-Ya Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Jen-Ning Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tzu-Fun Fu
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Yu CH, Cui NX, Wang Y, Wang Y, Liu WJ, Gong M, Zhao X, Rong L, Yi ZC. Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to catechol in long term. Toxicol In Vitro 2017; 43:21-28. [PMID: 28552822 DOI: 10.1016/j.tiv.2017.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Catechol is one of phenolic metabolites of benzene that is a general occupational hazard and a ubiquitous environmental air pollutant. Catechol also occurs naturally in fruits, vegetables and cigarettes. Previous studies have revealed that 72h exposure to catechol improved hemin-induced erythroid differentiation of K562 cells accompanied with elevated methylation in erythroid specific genes. In present study, K562 cells were treated with 0, 10 or 20μM catechol for 1-4weeks, hemin-induced hemoglobin synthesis increased in a concentration- and time-dependent manner and the enhanced hemoglobin synthesis was relatively stable. The mRNA expression of α-, β- and γ-globin genes, erythroid heme synthesis enzymes PBGD and ALAS2, transcription factor GATA-1 and NF-E2 showed a significant increase in K562 cells exposed to 20μM catechol for 3w, and catechol enhanced hemin-induced mRNA expression of these genes. Quantitative MassARRAY methylation analysis also confirmed that the exposure to catechol changed DNA methylation levels at several CpG sites in several erythroid-specific genes and their far upstream of regulatory elements. These results demonstrated that long-term exposure to low concentration of catechol enhanced the hemin-induced erythroid differentiation of K562 cells, in which DNA methylation played a role by up-regulating erythroid specific genes.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ning-Xuan Cui
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yan Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ying Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wen-Juan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Meng Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiao Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Rong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
21
|
Laqqan M, Tierling S, Alkhaled Y, Lo Porto C, Solomayer EF, Hammadeh M. Spermatozoa from males with reduced fecundity exhibit differential DNA methylation patterns. Andrology 2017; 5:971-978. [DOI: 10.1111/andr.12362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 01/30/2023]
Affiliation(s)
- M. Laqqan
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg/Saar Germany
| | - S. Tierling
- Life Science; Department of Genetics & Epigenetics; Saarland University; Saarbrücken Germany
| | - Y. Alkhaled
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg/Saar Germany
| | - C. Lo Porto
- Life Science; Department of Genetics & Epigenetics; Saarland University; Saarbrücken Germany
| | - E. F. Solomayer
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg/Saar Germany
| | - M. Hammadeh
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg/Saar Germany
| |
Collapse
|
22
|
Goyama S, Kitamura T. Epigenetics in normal and malignant hematopoiesis: An overview and update 2017. Cancer Sci 2017; 108:553-562. [PMID: 28100030 PMCID: PMC5406607 DOI: 10.1111/cas.13168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Epigenetic regulation in hematopoiesis has been a field of rapid expansion. Genome‐wide analyses have revealed, and will continue to identify genetic alterations in epigenetic genes that are present in various types of hematopoietic neoplasms. Development of new mouse models for individual epigenetic modifiers has revealed their novel, sometimes unexpected, functions. In this review, we provide an overview of genetic alterations within epigenetic genes in various types of hematopoietic neoplasms. We then summarize the physiologic roles of these epigenetic modifiers during hematopoiesis, and describe therapeutic approaches targeting the epigenetic modifications. Interestingly, the mutational spectrum of epigenetic genes indicates that myeloid neoplasms are similar to T‐cell neoplasms, whereas B‐cell lymphomas have distinct features. Furthermore, it appears that the epigenetic mutations related to active transcription are more associated with myeloid/T‐cell neoplasms, whereas those that repress transcription are associated with B‐cell lymphomas. These observations may imply that the global low‐level or high‐level transcriptional activity underlies the development of myeloid/T‐cell tumors or B‐cell tumors, respectively.
Collapse
Affiliation(s)
- Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Sirirat T, Chuncharunee S, Nipaluk P, Siriboonpiputtana T, Chareonsirisuthigul T, Limsuwannachot N, Rerkamnuaychoke B. Mutation Analysis of Isocitrate Dehydrogenase (IDH1/2) and DNA Methyltransferase 3A (DNMT3A) in Thai Patients with Newly Diagnosed Acute Myeloid Leukemia. Asian Pac J Cancer Prev 2017; 18:413-420. [PMID: 28345823 PMCID: PMC5454736 DOI: 10.22034/apjcp.2017.18.2.413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematopoietic stem/progenitor cell disorder which features several genetic mutations. Recurrent genetic alterations identified in AML are recognized as causes of the disease, finding application as diagnostic, prognostic and monitoring markers, with potential use as targets for cancer therapy. Here, we performed a pyrosequencing technique to investigate common mutations of IDH1, IDH2 and DNMT3A in 81 newly diagnosed AML patients. The prevalences of IDH1, IDH2 and DNMT3A mutations were 6.2%, 18.5%, and 7.4%, respectively. In addition, exclusive mutations in IDH1 codon 132 (R132H, R132C, R132G and R132S) were identified in all IDH1-mutated cases indicating that these are strongly associated with AML. Interestingly, higher median blast cell counts were significantly associated with IDH1/2 and DNMT3A mutations. In summary, we could establish a routine robust pyrosequencing method to detect common mutations in IDH1/2 and DNMT3A and demonstrate the frequency of those mutations in adult Thai AML patients.
Collapse
Affiliation(s)
- Tanasan Sirirat
- Doctoral Program in Clinical Pathology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University. Bangkok, 10400, Thailand.
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang W, Xu J. DNA methyltransferases and their roles in tumorigenesis. Biomark Res 2017; 5:1. [PMID: 28127428 PMCID: PMC5251331 DOI: 10.1186/s40364-017-0081-z] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
DNA methylation plays an important role in gene expression, chromatin stability, and genetic imprinting. In mammals, DNA methylation patterns are written and regulated by DNA methyltransferases (DNMTs), including DNMT1, DNMT3A and DNMT3B. Recent emerging evidence shows that defects in DNMTs are involved in tumor transformation and progression, thus indicating that epigenetic disruptions caused by DNMT abnormalities are associated with tumorigenesis. Herein, we review the latest findings related to DNMT alterations in cancer cells and discuss the contributions of these effects to oncogenic phenotypes.
Collapse
Affiliation(s)
- Wu Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, 197 Rui Jin Er Road, 200025 Shanghai, China
| | - Jie Xu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, 197 Rui Jin Er Road, 200025 Shanghai, China
| |
Collapse
|
25
|
Tian X, Tian J, Tang X, Ma J, Wang S. Long non-coding RNAs in the regulation of myeloid cells. J Hematol Oncol 2016; 9:99. [PMID: 27680332 PMCID: PMC5041333 DOI: 10.1186/s13045-016-0333-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been attracting immense research interests. The relevance of lncRNAs in biological and physiological as well as in pathological processes has increased along with the understanding of their various regulatory mechanisms. Abundant studies have indicated that lncRNAs are involved in the differentiation, proliferation, activation, and initiation of apoptosis in different cell types. However, most studies about the regulating biology of lncRNAs are currently focused on cancer cells. This review is focused on the widely unexplored role of lncRNAs in the cell fate of myeloid cells. In this review, we summarize recent studies that have confirmed lncRNAs to be essential in the development of myeloid cells under normal and pathological conditions.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| | - Jie Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China. .,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
26
|
Haney SL, Upchurch GM, Opavska J, Klinkebiel D, Appiah AK, Smith LM, Heavican TB, Iqbal J, Joshi S, Opavsky R. Loss of Dnmt3a induces CLL and PTCL with distinct methylomes and transcriptomes in mice. Sci Rep 2016; 6:34222. [PMID: 27677595 PMCID: PMC5039761 DOI: 10.1038/srep34222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/07/2016] [Indexed: 01/09/2023] Open
Abstract
Cytosine methylation of DNA is an epigenetic modification involved in the repression of genes that affect biological processes including hematopoiesis. It is catalyzed by DNA methyltransferases, one of which -DNMT3A- is frequently mutated in human hematologic malignancies. We have previously reported that Dnmt3a inactivation in hematopoietic stem cells results in chronic lymphocytic leukemia (CLL) and CD8-positive peripheral T cell lymphomas (PTCL) in EμSRα-tTA;Teto-Cre;Dnmt3afl/fl; Rosa26LOXPEGFP/EGFP (Dnmt3aΔ/Δ) mice. The extent to which molecular changes overlap between these diseases is not clear. Using high resolution global methylation and expression analysis we show that whereas patterns of methylation and transcription in normal B-1a cells and CD8-positive T cells are similar, methylomes and transcriptomes in malignant B-1a and CD8+ T cells are remarkably distinct, suggesting a cell-type specific function for Dnmt3a in cellular transformation. Promoter hypomethylation in tumors was 10 times more frequent than hypermethylation, three times more frequent in CLL than PTCL and correlated better with gene expression than hypermethylation. Cross-species molecular comparison of mouse and human CLL and PTCL reveals significant overlaps and identifies putative oncogenic drivers of disease. Thus, Dnmt3aΔ/Δ mice can serve as a new mouse model to study CLL and PTCL in relevant physiological settings.
Collapse
Affiliation(s)
- Staci L Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Garland M Upchurch
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Jana Opavska
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | | | | | - Tayla B Heavican
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA.,Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Shantaram Joshi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA.,Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Rene Opavsky
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA.,Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA.,Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| |
Collapse
|
27
|
Upchurch GM, Haney SL, Opavsky R. Aberrant Promoter Hypomethylation in CLL: Does It Matter for Disease Development? Front Oncol 2016; 6:182. [PMID: 27563627 PMCID: PMC4980682 DOI: 10.3389/fonc.2016.00182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL.
Collapse
Affiliation(s)
- Garland Michael Upchurch
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, NE , USA
| | - Staci L Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center , Omaha, NE , USA
| | - Rene Opavsky
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
28
|
Furukawa Y, Kikuchi J. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma. Int J Hematol 2016; 104:281-92. [DOI: 10.1007/s12185-016-2048-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
|
29
|
Guest editorial: Cooperative networks for stem cell homeostasis in normal and malignant hematopoiesis: from metabolism to epigenetics. Int J Hematol 2016; 103:605-6. [PMID: 27095040 DOI: 10.1007/s12185-016-2012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
|